
Acceleration of Interactive Multiple
Precision Arithmetic Toolbox MuPAT

sing FMA, SIMD, and OpenMP

Hotaka YAGI a,1, Emiko ISHIWATA a, and Hidehiko HASEGAWA b

a Tokyo University of Science, Japan
b University of Tsukuba, Japan

Abstract. MuPAT, an interactive multiple precision arithmetic toolbox for use on
MATLAB and Scilab, enables users to handle quadruple- and octuple-precision
arithmetic operations. MuPAT uses the DD and QD algorithms, which require from
10 to 600 double-precision floating-point operations for each DD or QD operation,
which entails corresponding execution time costs. In order to reduce the execu-
tion time of vector and matrix operations, we apply FMA, AVX2, and OpenMP to
MuPAT by using the MATLAB executable file. Unit stride access is required for
high performance and it makes vectorization with AVX2 easier. Larger blocks are
suitable for parallelization with OpenMP. That is, AVX2 is suitable for the inner-
most loop and OpenMP is suitable for the outer loop. One result of adopting the
described configuration is that matrix multiplication is nearly 13 times faster in a
four-core environment. By using parallel processing in this way, the execution time
of some DD vector operations is almost twice that of the original double-precision
floating-point operations without parallel processing.

Keywords. DD, Double-Double, MATLAB, AVX2, Multicore

1. Introduction

In floating-point arithmetic, rounding error is unavoidable. The accumulation of round-
ing errors leads to unreliable and inaccurate results. One of the ways to reduce round-
ing errors is to use a high-precision arithmetic. For example, the high-precision arith-
metic is used for improving the convergence of Krylov subspace methods [1] and is used
in semidefinite programming problems [2]. Most high-precision arithmetics are imple-
mented through software emulation such as the QD library [3].

Our team developed MuPAT , an open-source interactive Multiple Precision
Arithmetic Toolbox [4,5] for use with the MATLAB and Scilab computing environ-
ments. MuPAT uses the DD (Double-Double) [6,7] and QD (Quad-Double) [3,7] algo-
rithms, which are based on a combination of double-precision arithmetic operations. The
high execution time cost is due to the large number of operations. We accelerate the DD
arithmetics using FMA [8], AVX2 [8], and OpenMP [9].

1Corresponding Author: Department of Applied Mathematics, Graduate School of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan; E-mail: 1419521@ed.tus.ac.jp.

U

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200069

431

FMA (Fused Multiply-Add) can perform a double-precision floating-point multiply-
add operation in one step with a single rounding, AVX2 (Advanced Vector Extensions 2)
instructions can process four double-precision data at once, and OpenMP enables thread-
level parallelism in a shared memory.

2. DD Arithmetic

DD (Double-Double) arithmetic [6,7] is based on an algorithm that enables quasi
quadruple-precision arithmetic. A DD number a is represented by a combination of two
double-precision numbers ahi and alo such as a = ahi + alo. According to the DD algo-
rithm, each arithmetic operation of DD requires 10 to 30 double-precision floating-point
operations and the order of computation must be maintained.

�� � � ��� 	
��

�� � � �
 ���

�� �� � ���
 �
 �

�� �� � �� 	 �
��
 ��

�� �� � �� 	 ����	
���

�� ��� � � 	 ��

�� ��� � ��
 ����
 ��

� � �� �������� ��
� � � �� !"#��$#������� ��
�

$ � ��� %
��

� � &#���� '
�� ($�

� � &#���� '
��) ��

� � &#���� '
��) ��

��� � $ 	 �

��� � �
 ���
 $

Figure 1. DD addition and multiplication. a, b, and c are DD numbers. The symbols ⊕, �, and ⊗ denote
the double-precision floating-point operators and the symbols +, −, and × denote mathematical operators.
f l(a×b+ c) means FMA.

The algorithms for DD addition and multiplication are shown in Figure 1. The num-
ber of double-precision floating-point operations for DD addition is 11. The DD mul-
tiplication algorithm utilizes FMA (Fused Multiply-Add). FMA can execute a double-
precision multiply-add operation in one instruction with a single rounding. By us-
ing FMA instructions, the rounding error is reduced. The number of double-precision
floating-point operations for DD multiplication is 7 with FMA and 24 without FMA.
Thus, the number of double-precision floating-point operations for the DD multiply-add
is 18 (=11+7).

3. Environment of Parallelization

Since the order of computation in DD arithmetic cannot be changed, we consider pro-
cessing multiple data simultaneously by using data-level parallelism for acceleration.
The unit of time of each operation is not changed, but if multiple results can be ob-
tained in one unit of time, then the total execution time is reduced. We applied data-level
parallelism to vector and matrix operations.

AVX2 (Advanced Vector Extensions 2) instructions [8] can process four double-
precision data in one unit of time. The same arithmetic operations are applied to these
four data. To do this, four double-precision data must be prepared on a SIMD register.
An AVX2 load instruction can load four double-precision data from a continuous mem-

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT432

ory location in one unit of time. However, for a discontinuous memory location, four
scalar load instructions are needed. AVX2 instructions cannot sum up the SIMD register
elements. The performance may increase four-fold.

OpenMP [9] allows thread-level parallelism on shared memory for a multicore envi-
ronment. Each thread is a separate process with its own instructions and data. By process-
ing threads with the different cores simultaneously, the performance may be increased
by the number of cores. A loop is parallelized by putting a pragma directive above the
loop. There are two scheduling methods: block and cyclic scheduling.

We assume the memory references should be in column order, since MATLAB
stores data column-wise.

Performance [Gflops/sec] is defined as the number of double-precision floating-
point operations [flops] divided by the execution time [sec]. The upper bound of perfor-
mance is defined as min(computational performance, memory performance×operational
intensity). The computational performance [Gflops/sec] is defined as the product of clock
frequency for the CPU [Hz] and the number of flops which can be computed in one unit
of time [flops/sec]. Performance is increased four-fold using AVX2 and by the number
of cores using OpenMP. Memory performance [Gbytes/sec] is defined as 8 bytes/cycle
times the product of clock frequency for memory [GHz] and the number of channels.
Operational intensity (O. I.) [flops/bytes] is defined as the number of double-precision
floating-point operations [flops] divided by the number of memory references [bytes].

We used an Intel Core i7 7820HQ, 2.90 GHz CPU, with LPDDR3-2133 memory and
Intel compiler 18.0.3 with options -O2, -fma, -mavx, -fopenmp, and -fp-model precise.
The peak computational performance of a single core including FMA is 5.80 Gflops/sec,
and that of AVX2 or that of four cores is 23.20 Gflops/sec. Performance is 92.80 Gflop-
s/sec using AVX2 with four cores. The peak memory performance is 34.13 Gbytes/sec
because there are two channels.

Performance is bounded by computational performance or memory performance
[10]. Performance is bounded by memory performance when operational intensity is
0.17 (= 5.80/34.13) or lower without parallelization, 0.68 (= 23.20/34.13) or lower when
using AVX2 or OpenMP, and 2.72 (= 92.80/34.13) or lower when using both AVX2 and
OpenMP. When operational intensity is higher than those values, performance is bounded
by computational performance.

4. Experiment in DD Arithmetic for Matrix and Vector Operations

4.1. DD Vector Operations

In vector operations, the four elements of a vector are processed simultaneously using
AVX2. When using OpenMP, different parts of the vector are processed by each thread.
When we compute the inner product with AVX2, we must sum up the four SIMD register
elements, with requires three scalar additions. In the case of using OpenMP, since we
must sum up the p thread elements, p−1 scalar additions are needed. When using both
AVX2 and OpenMP, each thread computes a partial sum with a vector of length N/p
using AVX2. Then, these partial sums are converted to a global sum.

Table 1 shows the operational intensity (O. I.) and the experimental results of vec-
tor operations when the dimension is 4,096,000. In many vector operations, the upper

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT 433

bound is calculated by the product of memory performance and its operational intensity.
According to Table 1, the performances of four operations (yyy = αxxx, zzz = xxx+yyy, zzz = xxx+xxx,
and zzz = αxxx+ yyy) with a new vector variable on the left is nearly 20% of the upper bound
of performance when using both AVX2 and OpenMP. However, the performances of six
operations (xxx = αxxx, yyy = xxx+ yyy, xxx = xxx+ xxx, yyy = αxxx+ yyy, α = xxxT yyy, and β = xxxT xxx) with no
new vector variables on the left are nearly 70% of the upper bound of performance when
using both AVX2 and OpenMP. Since the four operations yyy = αxxx, zzz = xxx+ yyy, zzz = xxx+ xxx,
and zzz = αxxx+ yyy require memory allocation, it is difficult to achieve high performance by
parallelization. The other six operations do not have the overhead of allocating memory.
Figure 2 shows the performances of αxxx, xxx+ yyy, and αxxx+ yyy with and without the over-
head of allocating memory. As N becomes larger, the differences in performance increase
between with and without overhead.

Table 1. Number of double-precision floating-point operations [flops], number of memory references [bytes],
operational intensity [flops/bytes], memory requirement, and performances [Gflops/sec] for DD vector opera-
tions for N = 4,096,000.

Flops
Memory

references
O. I.

Memory
requirement

Serial AVX2 OpenMP
AVX2&
OpenMP

yyy = αxxx 7N 2N×16 0.22 2N 1.19 1.51 1.30 1.25

xxx = αxxx 7N 2N×16 0.22 N 2.05 4.78 5.03 5.21

zzz = xxx+ yyy 11N 3N×16 0.23 3N 1.96 2.05 2.15 1.67

yyy = xxx+ yyy 11N 3N×16 0.23 2N 4.10 5.18 5.56 5.43

zzz = xxx+ xxx 11N 2N×16 0.34 2N 2.25 2.25 2.15 2.25

xxx = xxx+ xxx 11N 2N×16 0.34 N 4.10 8.19 7.51 8.34

zzz = αxxx+ yyy 18N 3N×16 0.38 3N 2.23 3.21 3.35 2.73

yyy = αxxx+ yyy 18N 3N×16 0.38 2N 2.84 7.37 8.57 8.78

α = xxxT yyy 18N 2N×16 0.56 2N 2.30 7.76 8.19 14.18

β = xxxT xxx 18N N×16 1.13 N 2.30 8.67 8.38 26.33

104 105 106 4×106

N

1

2

3

4

5

6

7

8

9

10

Pe
rf

or
m

an
ce

 [
G

fl
op

s/
se

c]

z=x+y
y=x+y

Figure 2. Performances [Gflops/sec] using AVX2 and OpenMP for αxxx, xxx+ yyy, and αxxx+ yyy.

For all ten operations, a higher operational intensity results in a higher performance.
For the same operational intensity, performance is higher for a smaller memory require-

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT434

ment. It is also important for high performance to reduce the number of memory refer-
ences and the memory requirements.

In summary, for vector operations, when memory allocation overhead is not re-
quired, the performances are almost 70% of the upper bound by using AVX2 and
OpenMP. Otherwise, the performances are degraded to 20%.

4.2. DD Matrix-Vector Multiplication

Matrix-vector multiplication yyy = Axxx is written as yi = ∑ai jx j. The operational inten-
sity of matrix-vector multiplication is 1.13, because the number of double-precision
floating-point operations is 7N2 +11N(N−1) and the number of memory references is
(N2 +2N)×16, and this operation is limited by memory performance when using both
AVX2 and OpenMP. Matrix-vector multiplication has two algorithms, PB and PDOT.
The memory references for the matrix A are column order in PB, and those for matrix A
are row order in PDOT. Since MATLAB stores data column-wise, the memory references
for PB are continuous. Unit stride access can be used for PB.

4.2.1. AVX2

There are four algorithms using AVX2 shown in Figure 3. The order to load elements
of matrix A is by column in PDOTPB and PBPB, and by row in PDOTPDOT and PBPDOT.
Here, a prefix v indicates a vector and the variables are DD numbers. The variables
va, vx, and vy hold the four DD numbers. The vload instruction loads four continuous
data as a(i, j) to a(i+ 3, j) or x(j) to x(j+ 3). The vmuladd(vy,va,vx) instruction per-
forms the multiply-add operation vy = vy+ va∗ vx to compute four elements simultane-
ously and costs 18 double-precision floating-point operations. The vmul(va,vx) instruc-
tion is the multiplication operation vy = va ∗ vx and costs 7 double-precision floating-
point operations. The sum(vy) instruction sums the data in the SIMD register and costs
11×3 double-precision floating-point operations.

��������� �� � �	 �
 �	 � ��
�

�� � �� � � ��

����� � �	 �
 �	 � � ��

�� � ��������� ���

����������	�	
	�������
����������	����	�
�� � ���������������

�� � ���������� �� ���

�������� � ��� �������	������������������

��� � � �	 �
 �	 � � �

�� � �� � � �� ����	��	��
����� � �	 �
 �	 � ��
�

����������������������������
�� � ������� �� � ��� � � ��

�� � ����������� �������������������������
�� � ���������� �� ��� ��� �����������������

� � � ������� �����
���	�	
	�������������	����	�

��������
� � ���!������ "� ����	���#���	���������	��
��� � � �	 �
 �	 � ��

�� � �����������

����� � �	 �
 �	 � � ��

�� � ��� � � � � � � � �

�� � ���� �� �� ���������������
� � � ���� � �������

������

����� � ���!���� � "

��� �� � �	 �
 �	 � � ��

�� � ���������������

��� � � �	 �
 �	 � ��

�� � ��������� ���

�� � �����������

�� � ���������� �� ���

�������� � ���

Figure 3. Algorithms using AVX2 for yyy = Axxx.

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT 435

Table 2. Instructions and performances [Gflops/sec] for yyy = Axxx for N=2,500.

Computation Load Store Serial AVX2 OpenMP
AVX2&
OpenMP

PDOT N2 muladd 2N2 load N store 1.25 - 4.96 -

PB N2 muladd
N load

2N2 load
N2 store 3.55 - 12.77 -

PDOTPDOT

N2/4
vmuladd

N sum

N setzero

N2 load

N2/4 vload

N store - 1.64 - 6.11

PDOTPB
N2/4
vmuladd

N/4 setzero

N2/4 vload

N2/4 broadcast

N/4
vstore

- 4.96 - 10.58

PBPDOT

N2/4 vmul

N2/4 sum

N2/4 add

N/4 vload

5N2/4 load

N2/4
store

- 3.89 - 14.72

PBPB
N2/4
vmuladd

N broadcast

N2/2 vload

N2/4
vstore

- 11.97 - 25.63

It is clear from comparing PDOT with PB in Table 2 that unit stride access is required
to achieve high performance. Since the performance for PBPB (11.97) is increased almost
four-fold from that shown for PB (3.35), and that for PDOTPB (4.96) is also increased
four-fold from the PDOT value (1.25) shown in Table 2, it is clearly important to use
the vmuladd instruction instead of muladd in order to increase performance. To improve
performance with the vmuladd instruction, the vload and vstore instructions must also
be used.

4.2.2. AVX2 and OpenMP

The performance of PBPB using AVX2 in the innermost loop was the highest as shown
in Section 4.2.1. Since we assume that the innermost loop i is parallelized by AVX2, we
parallelize the outer loop by OpenMP.

As in Table 2, when using AVX2 and OpenMP, the performances of PBPB
(11.97→25.63) and PDOTPB (4.96→10.58), which have improved performance with
AVX2, are only twice as high as the case of just AVX2. By using AVX2 and OpenMP,
the performances of PDOTPDOT (1.64→6.11) and PBPDOT (3.89→14.72), which did not
improve much with AVX2, is nearly four times higher than the case of just AVX2. Since
the OpenMP can parallelize and accelerate regardless of the order of memory references,
the performances of PDOTPDOT and PBPDOT can be increased by using OpenMP. The
performance of PBPB is the highest for using AVX2 and OpenMP, 25.63 Gflops/sec, and
it is almost 7 times faster than before parallelization.

As shown in Table 2, even using both AVX2 and OpenMP, the execution time cannot
be reduced 16-fold (AVX2 × four cores) compared to without parallelization. Since the
operational intensity of matrix-vector multiplication is 1.13, which is lower than 2.72,
matrix-vector multiplication is limited by memory performance when using AVX2 and
OpenMP. Since the upper bound of performance is 38.53 Gflops/sec, which is calculated
using operational intensity×memory performance, the performance 25.63 Gflops/sec is
67% of the upper bound of performance.

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT436

As for DD matrix-vector multiplication, when using the AVX2 vmuladd, vload and
vstore instructions with OpenMP applied to the outer loop, the performance can reach
67% of the upper bound.

0 500 1000 1500 2000 2500 3000
N

0

5

10

15

20

25

30

Pe
rf

or
m

an
ce

 [
G

fl
op

s/
se

c]

PB
PB

 AVX2 & OpenMP

PB OpenMP
PB

PB
 AVX2

PB Serial

Figure 4. Performances [Gflops/sec] for Serial, AVX2 or OpenMP, and AVX2 and OpenMP for yyy = Axxx.

4.3. DD Matrix-Matrix Multiplication

Matrix multiplication C = AB is written as ci j = ∑aikbk j with three nested loops i, j,
and k. Since operational intensity for matrix multiplication is quite high, at O(N) =
18N3/(3N2× 16), this operation is limited by computational performance. As we have
seen in Section 4.2, unit stride access is essential to achieve high performance. If the
innermost processed loop is the k or j loop, then unit stride access cannot be performed,
because MATLAB stores data in column-wise order. Since the index of the innermost
loop for matrix multiplication must be i, there are two implementation algorithms: MP
and PDOT. MP uses j-k-i order and PDOT uses k- j-i order for the loops.

AVX2 is easily applied to the loops in both algorithms, MP and PDOT. In order to
parallelize using vload and vstore instructions, the loop of index i should be processed
as a vector, in which case, its performance increases almost four-fold, as shown in Table
3. One of the remaining loops, with index j or k, will be parallelized by OpenMP. Figure
5 shows the four algorithms according to which loops are parallelized.

Table 3. Instructions and performances [Gflops/sec] for C = AB for N = 2,500.

Additional
Instructions

Serial AVX2
OpenMP

block
OpenMP

cyclic

AVX2&
OpenMP

block

AVX2&
OpenMP

cyclic

MP 3.60 13.73 13.04 12.88 46.71 45.58

MPPB
N2 load/store

N2 sum
- - 13.04 13.08 29.46 29.36

PDOT 3.67 12.25 12.79 12.62 15.06 15.02

PDOTPDOT
N load/store

N sum
- - 7.55 7.76 8.46 8.54

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT 437

��������	��
	�

��
 *� � �� � + �� � � �,

��
 *� � �� � + �� � � �,

��� � �����
��*�� �,

� � �*�� �,

��
 � � �� � + �� � � �

��� � � ��� � � � �� � �

�����������		
�
���� �
��
 ��	�
�����
������������!
��������	�� !�"#"!�$

% & � � � % & � � � �'(*���,

��������

����������	��
	�

��
 *� � �� � + �� � � �,

��
 *� � �� � + �� � � �,

� � �*�� �,

��
 � � �� � + �� � � �

% �� � � % �� � � � �� � �

��
 *� � �� � + �� � � �,

��������	��
	�

��
 *� � �� � + �� � � �,

� � �*�� �,

��
 � � �� � + �� � � �

% �� � � % �� � � � �� � �

����

����
��
 *� � �� � + �� � � �,

��� � �����
��*�� �, ���
����)����������
�����
��������	��
	�

��
 *� � �� � + �� � � �,

� � �*�� �,

��
 � � �� � + �� � � �

��� � � ��� � � � �� � �

��������	�� !�"#"!�$

% & � � � % & � � � �'(*���,

Figure 5. Algorithms using OpenMP for C = AB.

MP and PDOT are easily parallelized with putting the “#pragma omp f or” directive
above an intended f or statement, as shown in Figure 5. All the threads in MPPB and
PDOTPDOT can potentially process and update the same data location in parallel. To
avoid this problem, in each thread, we defined thread-local vector vtl for holding a partial
sum as a private variable. Thread-local vector vtl requires memory equal to the product
of N× 16 and the number of threads. Accumulation to a global sum from each partial
sum is processed serially by inserting a “#pragma omp critical” directive. Each sum(vtl)
in Figure 5 costs 11pN double-precision floating-point operations, where p denotes the
number of threads. In Figure 5, c(:, j) denotes the j-th column of array c. MP and PDOT
can be processed in serial without OpenMP. However, executing MPPB and PDOTPDOT
requires using OpenMP.

In the case of OpenMP, as shown in Table 3, the performances for MP and PDOT are
almost 13 Gflops/sec, or about four times higher than without parallelization, but that for
PDOTPDOT is about 8 Gflops/sec, which is lower than other cases. There is almost no dif-
ference between block and cyclic scheduling. PDOTPDOT needs one sum(vtl) for each in-
nermost loop, total cost of sum(vtl) becomes 11pN3 double-precision floating-point op-
erations. MPPB also needs sum(vtl), but its total cost is 11pN2 double-precision floating-
point operations because of once for each nested loop. Since DD Matrix multiplication
requires 18N3 double-precision floating-point operations, the overhead for PDOTPDOT
is extremely large and greater than original computations. Since the additional overhead
for parallelization in MP is much less than that for MPPB, as shown in Figure 5, the per-
formance for MP was higher than that of MPPB, as shown in Table 3. It is clear that less
additional overhead for parallelization is required for high performance.

When using both AVX2 and OpenMP, there is a difference in performance between
PDOT and MP for large N, as shown in Figure 6. Since the all elements of ci j are updated
N times in PDOT, but a column of ci j are updated N times in MP. The data locality of MP
is higher than that of PDOT. Thus, the performance of MP is higher than that of PDOT.

Since operational intensity for matrix multiplication is larger than 2.72, the upper
bound of performance for matrix multiplication is 92.80 Gflops/sec. The DD matrix mul-
tiplication has a 16-fold increase, because this operation is limited by computational per-

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT438

0 500 1000 1500 2000 2500 3000
N

0

10

20

30

40

50

60

Pe
rf

or
m

an
ce

 [
G

fl
op

s/
se

c]

MP
MP

PB
PDOT
PDOT

PDOT

Figure 6. Performances [Gflops/sec] using AVX2 and OpenMP in block scheduling for C = AB.

formance. Although MP demonstrates the best performance 46.71 Gflops/sec, 50% of the
upper bound of performance and 13-fold higher than without parallelization (46.71/3.60).

When operational intensity is high and the outer loop is parallelized by using
OpenMP with less additional overhead, the operation is much accelerated. Thus, in order
to use both AVX2 and OpenMP, it is important to vectorize the innermost loop by using
AVX2 and parallelize outer loops by using OpenMP while avoiding the same memory
location being updated by different threads.

Table 4. Execution time [sec] in double-precision and DD precision. N=4,096,000 for vector operations, and
N=2,500 for matrix-vector multiplication.

xxx = αxxx yyy = xxx+ yyy yyy = αxxx+ yyy α = xxxT yyy yyy = Axxx

Double 0.0028 0.0042 0.0042 0.0027 0.0022

DD (AVX2 & OpenMP) 0.0055 0.0083 0.0084 0.0052 0.0044

DD / Double 1.96 1.98 2.00 1.93 2.00

5. Conclusion

In response to demands for ways to facilitate high-precision arithmetic with an interac-
tive computing environment, we developed MuPAT on Scilab/MATLAB. MuPAT uses
DD and QD arithmetics that require large numbers of double-precision floating-point
operations. Executing DD arithmetic operations takes 10 to 30 times the execution time
of double-precision floating-point operations, due to the heavy computation load and the
need to maintain computation order.

We utilized computation offloading to call an outer C function with the MATLAB
executable file, and parallelized the computation by using AVX2 and OpenMP. By using
a C executable with MATLAB, the code becomes platform dependent, but we intended to
achieve fast computation using data-level parallelism such as with AVX2 and OpenMP
instead of platform independence. We used an FMA (Fused Multiply-Add) based algo-
rithm to reduce rounding errors.

AVX2 (Advanced Vector Extensions 2) executes operations on four double-
precision numbers simultaneously. To achieve high performance, it requires that vector-

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT 439

ized fused multiply-add operations and load/store instructions be used. Unit stride access
is essential for using vector load/store instructions. OpenMP enables the same opera-
tions to process different data within threads on different cores. To avoid the same data
location from being accessed by different threads, we should apply OpenMP to as large
a block as possible.

Thus, in order to use both AVX2 and OpenMP, it is important to vectorize the inner-
most loop by using AVX2 and parallelize outer loops by using OpenMP while avoiding
the same memory location being updated by different threads. By utilizing both AVX2
and OpenMP, the performance of the matrix-vector multiplications became 25.63 Gflop-
s/sec (67% of the upper bound), and the performance of matrix multiplication became
46.71 Gflops/sec (50% of the upper bound). Each DD arithmetic operation requires 10 to
30 double-precision floating-point operations, however the execution time of these DD
operations for vector operations and matrix-vector multiplication in parallel processing
became only about twice that of the original double-precision floating-point operations
without parallel processing.

The performance of these DD operations is bounded by memory performance. It is
possible to compute many more operations in the same time if no additional data are
required. The execution times of yyy = xxx+ yyy and yyy = αxxx+ yyy are the same. These facts
mean that parallel processing provides us more accurate results and/or processes a much
larger workload for during the same time without an extra cost.

Acknowledgment

The authors would like to thank the reviewers for their valuable comments. This re-
search was supported by a grant from the Japan Society for the Promotion of Science
(JSPS: JP17K00164).

References

[1] T. Saito, E. Ishiwata, and H. Hasegawa, Analysis of the GCR method with mixed precision arithmetic
using QuPAT, Journal of Computational Science 3 (2012), 87-91.

[2] H. Waki, M. Nakata, and M. Muramatsu, Strange behaviors of interior point methods for solving
semidefinite programming problems in polynomial optimization, Computational Optimization and Ap-
plications 53 (2012), 823-844.

[3] Y. Hida, X. S. Li, and D. H. Baily, QD arithmetic: algorithms, implementation, and application, Techni-
cal Report LBNL-46996, Lawrence Berkeley National Laboratory, 2000.

[4] S. Kikkawa, T. Saito, E. Ishiwata, and H. Hasegawa, Development and acceleration of multiple precision
arithmetic toolbox MuPAT for Scilab, JSIAM Letters 5 (2013), 9-12.

[5] MuPAT on MATLAB. https://www.ed.tus.ac.jp/1419521/index.html
[6] T. J. Dekker, A floating-point technique for extending the available precision, Numerische Mathematik

18 (1971), 224-242.
[7] J.- M. Muller, et al, Handbook of Floating-Point Arithmetic, Birkhäuser, 2010.
[8] Intel Intrinsics Guide. https://software.intel.com/sites/landingpage/IntrinsicsGuide/
[9] P. S. Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, 2011.

[10] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance model for
multicore architectures, Communications of the ACM 52 (2009), 65-76.

H. Yagi et al. / Acceleration of Interactive Multiple Precision Arithmetic Toolbox MuPAT440

