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Abstract. In this work, we address the problem of tuning communication libraries
by using a deep reinforcement learning approach. Reinforcement learning is a ma-
chine learning technique incredibly effective in solving game-like situations. In
fact, tuning a set of parameters in a communication library in order to get better
performance in a parallel application can be expressed as a game: Find the right
combination/path that provides the best reward. Even though AITuning has been
designed to be utilized with different run-time libraries, we focused this work on
applying it to the OpenCoarrays run-time communication library, built on top of
MPI-3. This work not only shows the potential of using a reinforcement learning
algorithm for tuning communication libraries, but also demonstrates how the MPI
Tool Information Interface, introduced by the MPI-3 standard, can be used effec-
tively by run-time libraries to improve the performance without human interven-
tion.
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1. Motivaton

Tuning a general-purpose communication library is tightly related to the communication
pattern utilized by the application, the network interconnect, the computer architecture,
and the problem size. Profilers and other performance analysis tools have improved sub-
stantially in recent years and they are now able to provide the user with very accurate and
descriptive interpretations of the various bottlenecks in a parallel application. However,
most users in the scientific computing community do not have the time or expertise to
study and tune the parameters of the communication libraries used by their codes. In fact,
optimizing the parameters of communication libraries requires technical knowledge and
time to try different configurations. For example, most Message Passing Interface (MPI)
implementations offer hundreds of parameters that can provide significant speedup if
they are set to their optimal value (which varies depending on the application), compared
to the default configuration.

Furthermore, general-purpose communication libraries, like MPI, express several
parallel programming models (e.g. one-sided, message-passing, task-based, etc...), and
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the optimal setting of a parameter used for a programming model might impact the per-
formance when used on a different application, using a different programming model.

On the other hand, run-time communication libraries usually express fewer parallel
programming models than general-purpose parallel programming libraries, and thus the
communication pattern exposed by a run-time library can be interpreted and modeled
much more easily.

In this work, we explore the use of machine learning techniques to optimize a par-
ticular run-time communication library, namely the OpenCoarrays run-time (used by the
GNU Fortran compiler to implement the coarray support) and particularly its implemen-
tation on top of MPI-3.

Another important goal of this work is to demonstrate how the MPI Tool Informa-
tion Interface, introduced by the MPI-3 standard, can be used effectively for automatic
performance improvements when used by run-time libraries based on MPI-3, such as
OpenCoarrays.

2. Related Work

The problem of tuning and auto-tuning communication libraries, like MPI, has been
tackled several times in the past, using many different approaches.

In [10], Miceli et al. propose AutoTune, an extension of Periscope [1], an automatic
distributed performance analysis tool. This framework tries to optimize a parallel appli-
cation under many aspects including MPI tuning, thread affinity, and CPU frequency.

In [15], Sikora et al. extend again Periscope as part of the AutoTune project to im-
plement autotuning capabilities for MPI applications. The output of the framework pro-
posed is a set of tuning recommendation that can be integrated into the production ver-
sion of the code. This tool provides the user with evolutionary algorithms able to heuris-
tically guide the search of the most significant tuning parameters in MPI by executing a
reasonable number of experiments.

Pellegrini et al. in [12] propose the use of two machine learning algorithms (decision
trees and neural networks), to implement a predictive model that analyzes any MPI input
program, and according to gained knowledge of the architecture, produces the value
of a set of a predefined runtime parameters that provide optimal speedup. The overall
approach proposed by Pellegrini et al. is similar to what we describe in this work, but our
machine learning approach and modelization is completely different because it makes
use of deep reinforcement learning techniques.

3. (Deep) Reinforcement Learning

The idea behind Reinforcement Learning (RL) is to have a learner called agent which
interacts with an environment through actions. The environment responds to the actions
and it presents new situations to the agent. The environment also gives rise to rewards:
a numerical representation that the agent tries to maximize. The final goal of Reinforce-
ment Learning is to find a policy, that maximizes the overall reward for the agent. A pol-
icy is a mapping from states to probabilities of selecting a certain action. Reinforcement
Learning methods specify how the agent changes its policy as a result of experience.
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Q-Learning is a reinforcement learning technique. It belongs to the class of model-
free methods and tries to estimate the Q-value function using the update equation ex-
pressed in 1.

Q(st ,at) = Q(st ,at)+α [rt+1 + γ max
a

Q(st+1,a)−Q(st ,at)] (1)

Q-learning is just the Bellman optimality equation applied iteratively to evaluate and
improve the Q-value function in a model-free problem, using a greedy policy. In other
words, the best update rule to estimate the optimal action-value function Q for a given
state, is the quantity that leads to the optimal policy. The optimal policy is the one given
by the Bellman optimality equation, which is the max Q among all possible actions in
the next state.

The Q-learning algorithm can be implemented by just keeping track of the Q-values
of all the visited states in a table, but this is prohibitive for real problem with a large
number of states.

Alternatively, one could estimate the Q-value of the states, using various techniques.
One of these is called “Deep Q-Learning” and it involves the use of a deep neural network
for the estimate. Unfortunately, applying non-linear function approximators to model-
free algorithms, such as Q-learning, could cause the Q-network to diverge [16], however
there have been works to fix the divergence issue such as the gradient temporal-difference
methods like [7] and [8].

The most famous and meaningful example of successful application of deep rein-
forcement learning is probably [11], where a convolutional neural network has been used
to interpret the state of an Atari video game to produce the values of Q for all the possible
actions allowed by the game. In the Atari work [11], the stability of the Q-learning algo-
rithm, while using neural networks, is guaranteed by two mechanisms: experience replay
and fixed Q-targets. Experience replay is random sampling over the entire experience
accumulated and applying an optimization step on the neural network using the samples.
This mechanism makes sure to break the temporal correlation of the experience observed
by the network, resulting in a better stability and convergence of the algorithm. Q-targets
means that the Q values used to compute the updates of the Q-learning algorithm belong
to a neural network trained on old values. In [11], the authors use two neural networks,
an they switch between the two after a certain number of steps to compute the Q-value
for the targets in the Q-learning algorithm.

4. Potential in Communication Library Introspection

Understanding the performance issues of an MPI code is an operation that requires low-
level information; for example, knowing how much time is spent in an MPI Recv can
help to understand whether the application suffers of poor load balancing or just high
communication costs. Such a low-level information is usually hidden into the internal
variables of the MPI implementation. For example, a typical information that can be
useful to know is how many messages are in the Unexpected Message Queue waiting to
be received?.

With the new tools information interface introduced in MPI-3, MPI provides a stan-
dard way to access performance data contained inside the MPI implementation (called
performance variables) and internal variables that control the behavior of the implemen-
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tation (called control variables). An example of a control variable is the one that defines
the threshold, associated with the message size, that decides whether a message should
be sent using the eager or rendezvous protocol.

Although the performance variables are common to any MPI implementation (e.g.,
Unexpected Message Queue length), the MPI Forum does not specify a direct way
to get the status of these variables. The intent of the MPI Tool Information Interface
(from now on MPI T, see Section 4.1) is to enable an MPI implementation to expose
implementation-specific details; for this reason is not possible to define variables that
all MPI implementations must provide. This approach is called introspection. The most
common use case for the MPI T is to provide performance information and control vari-
ables to profilers and debuggers in order to help the users understanding issues and bot-
tlenecks in MPI applications.

It is possible to write applications that take advantage of the information provided
by MPI T, but introducing such low-level concepts in user code is not advisable. We be-
lieve that the best opportunities to improve the performance of an MPI application using
MPI T are in the run-time communication libraries built on top of MPI. In fact, MPI T
has been already successfully used by run-time communication libraries to select the
best algorithm based on the support provided by the MPI implementation. For example,
Fanfarillo and Hammond in [5] use the MPI T to select the best algorithm to implement
events in OpenCoarrays [4], with a remarkable performance enhancement.

4.1. MPI Tool Information Interface (MPI T)

MPI T provides a standard interface to access performance variables and control vari-
ables. For both types of variables, there are several common concepts. In order to access
a variable, an handle must be created first. With the handle the MPI implementation can
provide low-overhead access to the internal variable.

Control variables allow the use to influence how the MPI implementation works.
In order to use a control variable, the variable needs to be discovered. MPI provides
functions to implement introspection, discover how many control variables are available,
getting their details and modifying their values. During this work, we found out that it is
important to modify all the control variables values before calling MPI Init.

Performance variables are usually expressed in terms of queue lengths, waiting
times, re-transmission attempts. For example, in a load imbalanced situations, where
some processes make send requests before that the corresponding receives have been
posted, the length of the unexpected message queue will be longer on some processes
than on others. Another typical symptom of load imbalance is the longer time spent in a
receive, waiting for the data to arrive. By combining the data with an understanding of
how the implementation works, profilers are able to provide clues to the programmer on
how to determine the source of the performance problem. The way performance vari-
ables are accessed is similar to the way control variables are managed but performance
variables require an additional step: the creation of a session. A session enables different
parts of the code to access and modify a performance variable in a way that is specific
to that part of the code. In other words, a session provides a way to isolate the use of a
performance variable to a specific part of the code. In order to read the value associated
with a performance variable the creation of handle and session should be performed after
calling MPI Init.
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4.2. OpenCoarrays

OpenCoarrays [4] is an open-source software project for developing, porting and tuning
transport layers that support coarray Fortran compilers. It targets compilers that conform
to the coarray parallel programming feature set specified in the Fortran 2008 standard. It
also supports several features defined in the Fortran 2018 standard including: events for
fine-grain synchronization between parallel entities, failed images to manage failures,
collective/reduction (called collective), and a partial implementation of teams, used to
create independent subgroups of parallel entities. Currently, it is used as the run-time
communication library by the GNU Fortran (GFortran) compiler.

OpenCoarrays defines an application binary interface (ABI) that translates high-
level communication and synchronization requests into low-level calls to a user-specified
communication run-time library. This design decision liberates compiler teams from
hardwiring communication-library choice into their compilers and it frees Fortran pro-
grammers to express parallel algorithms once, and reuse identical CAF source with
whichever communication library is most efficient for a given hardware platform.

Since the first release of OpenCoarrays (August 2014), the widest coverage of coar-
ray features was provided by a MPI based run-time library (LIBCAF MPI). Because
of the one-sided nature of coarrays, the run-time library uses almost exclusively MPI
one-sided communication routines based on passive synchronization.

5. AITuning Design

AITuning has been designed as a separate component from run-time communication
libraries. Its purpose is to guide the automatic tuning process of the libraries utilizing
machine learning techniques. It is written in C++ and it is structured to be completely
agnostic of run-time libraries, communication libraries, and machine learning algorithms
and paradigms (although RL approaches are well suited for this problem).

5.1. Architecture

2The Controller class exposes a set of methods identified by the prefix AITuning *

that can be called by the run-time library. The method AITuning start(string

layer) takes a string representing the communication layer to be used. This method
needs to be called before the initialization of the communication library (in this case
MPI Init thread). In order to plug AITuning in OpenCoarrays without changing the
source code of the latter, we decided to use the MPI Profiling Interface. We created
wrappers for the MPI functions that AITuning needs to interact with (e.g. MPI Init and
MPI Finalize) and called the AITuning * methods from there.

As explained in Section 4.1, control variables and performance variables needed to
be set before and after the actual call to MPI Init thread, respectively. Once the layer
has been passed to the Controller object, a specific CollectionCreator is instantiated us-
ing the CollectionCreator object. The actual collection (in our case MPICHCollection-
Creator) has predefined lists of control and performance variables that we decided and
used for a specific AI component.

2A class diagram of the architecture is available on https://github.com/NCAR/AITuning
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In order to make AITuning general enough to handle any kind of control and
performance variables, we decided to declare the classes ControlVariable and
PerformanceVariable as abstract. In fact, besides the default control and performance
variables defined in a specific Collection object (related to a specific communication li-
brary implementation), it is possible to define UserDefined Performance Variables. This
class of variables allows the user to defined specific performance variables, like the time
spent to run the entire application, the time spent to execute a MPI Win flush and simi-
lar. Since they all inherit from the abstract class PerformanceVariable, they can be stored
in the CollectionPerformanceVar object. In order to read performance variables, specific
objects of the class Probes should be used. This class makes sure that the performance
variables read using MPI T or any other way (user defined included), respect certain
criteria, like datatype, precision, and range.

All the performance variables keep track of the values detected during the program
execution. At the end of the execution, in a wrapper of MPI Finalize, statistics of the
values get collected (e.g. average, max, min, median) and they will form the “state”
representation passed to the AI component.

The entire machine learning process is performed in the MPI Finalize wrapper,
at the end of the program. The AI components receives a representation of the state of
the application, which represents the state of the environment in a reinforcement learn-
ing setting. The reward gets computed in the AI component, based on previous data (in
particular total execution time) and the reinforcement learning algorithm gets trained on
the new data and produces a new action, defined as a “change” for a control variable. The
new values for the control variables will be used during the next execution of the same
application. A detailed description of the training process and AI component is provided
in Section 5.2.

Not all the performance variables are the same; a variable like total time cannot be
passed to the RL algorithm as an absolute value. In fact, the same application has very
different execution times when run on a different numbers of processes. In AITuning
it is possible to declare a performance variable as “Relative”. During the first run, the
performance variable declared as relative will maintain in memory the absolute value of
the quantity they represent. During the other runs, all the values of a relative performance
variable are express as the difference between the absolute value obtained during the first
run and the current absolute value. For example, if we consider the total execution time as
performance variables, a positive value can be seen as a performance improvement, since
during the first run the execution time was higher that the new value. This representation
allowed us to write easy reward functions based on the results of relative variables.

5.2. Training

As first step, all the values of the performance variables are “standardized” against a ref-
erence run. To do so, a first run (or set of runs) is used as a reference for performance
variables related to time and to a specific run in a consistent way. For this reason, when
AITuning is active, the first run of the application is used to record the performance vari-
ables of the application when using a vanilla MPI implementation. The user communi-
cates the first run by setting an environment variable AITUNING FIRST RUN = 1.

For every run other than the first, the algorithm produces a new action in the form
of a “change” on a control variable. Each control variable has a fixed “step” to be used
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to change the absolute value of the control variable. For example, the MPICH control
variable MPIR CVAR ASYNC PROGRESS which controls the use of a helper thread to im-
plement MPI asynchronous progress, can assume only two values: 0 and 1. On the other
hand, the variable MPIR CVAR CH3 EAGER MAX MSG SIZE assumes a numerical value
representing the message size threshold to switch from the eager to the rendezvous pro-
tocol: in this case AITuning will change its value in predefined steps of 1024.

In every run, the neural network in charge of estimating the Q-value produces an es-
timate of the Q-value given a certain state provided by the performance variables. At the
end of the run, the new reward gets computed and the neural network gets retrained based
on the outcome. In order to make the Q-learning stable, we used the replay technique
described in Section 3. We pick a random subset of the whole experience accumulated
every 200 runs, and we train the neural network on that. We have not implemented the
Q-target technique.

5.3. Control and Performance Variables for MPICH

For now, we focused our efforts only MPICH-3.2.1 because of the small num-
ber of control and performance variables exposed by the implementation, which
made our reinforcement learning algorithm design and training faster. The con-
trol variables chosen for MPICH-3.2.1 are ASYNC_PROGRESS, CH3_ENABLE_HCOLL,
CH3_RMA_DELAY_ISSUING_FOR_PIGGYBACKING,
CH3_RMA_OP_PIGGYBACK_LOCK_DATA_SIZE, POLLS_BEFORE_YIELD,
CH3_EAGER_MAX_MSG_SIZE. The only performance variable chosen from MPICH-3.2.1
was unexpected recvq length, representing the length of the unexpected message
queue. We use several user-defined performance variables related to the average and
maximum time needed to complete MPI Win Flush, MPI Put,MPI Get, and total appli-
cation time. We also added the number of processes used in the run as input parameter.

5.4. Inference

AITuning will be shipped along with OpenCoarrays already trained for several MPI im-
plementations and transport layers (e.g. GASNet). When the user decides to activate
AITuning, he/she will compile OpenCoarrays using the PMPI wrapper. At this point, we
recommend the user to run their application for at least 20 times. During these 20 runs,
the RL algorithm will “explore” the new application and produce the right combination
of parameters. During this exploration phase, AITuning may produce a configuration
that penalizes the performance. At the end of the 20 runs, AITuning analyzes the results,
discards the runs where the performance was penalized, and applies the median over the
values of the control variables of the runs that provided good results within 5% from
the best (creating an ensemble). Further runs of the same applications with different data
input but same number of images will not require additional runs.

6. Experimental Evaluation

In order to train AITuning properly on MPICH-3.2.1, we decided to use two different
supercomputers: Cheyenne (NCAR) an SGI machine with InfiniBand network intercon-
nect and Edison (NERSC) a Cray XC30 with Aries interconnect. For the training we
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decided to use four main codes parallelized with Coarrays Fortran: 1) CloverLeaf [9], 2)
Lattice-Boltzmann code [13], 3) Skeleton Particle-in-cell [2], 4) Parallel Research Ker-
nels [3]. We have run the aforementioned codes using a different number of processes
going from 64 to 2048 for a total of 5000 runs.

6.1. Intermediate Complexity Atmospheric Research

The Intermediate Complexity Atmospheric Research (ICAR) [6] model developed at
NCAR, is a simplified atmospheric model designed primarily for climate downscaling,
atmospheric sensitivity tests, and educational uses. ICAR is a quasi-dynamical downscal-
ing approach that uses simplified wind dynamics to perform high-resolution meteorolog-
ical simulations 100 to 1000 times faster than a traditional atmospheric model and can
therefore be used to better characterize uncertainty across numerical weather prediction
models and climate models, and in dynamical downscaling.

In [14], Rouson et al. developed a mini-app of the ICAR model using coarray For-
tran, showing great performance improvements. Since then, lead developer of ICAR,
Ethan Gutmann, developed a fully functional version of ICAR based on coarray Fortran,
which we used for testing AITuning. The version of ICAR we used is a full atmospheric
model; the code include computation, communication and IO parts.

6.2. Results Evaluation

In Figure 1, we report the results obtained for ICAR running on Cheyenne using the
default “vanilla” configuration set in MPICH-3.2.1, the optimized configuration found
by AITuning after running ICAR 20 times, and an human optimized version based on
reasonable guesses. The “default” bars represent the total time needed to complete a test
case on ICAR using the default settings and in both cases, with 256 and 512 images, it
provides the worst performance. On the other hand, the “optimized” version produced by
AITuning always leads to the best performance. In both the 256 and 512 images cases,
the manual optimization increased the eager limit by an order of magnitude higher than
the default while leaving all the other setting as in the default configuration. For the case
with 256 images, the optimized version provides 13% performance improvement com-
pared to the vanilla version. For the case with 512 images, the optimized version provide
25% performance improvement over the vanilla version, mostly because of the higher
communication cost imposed by the higher number of processes and same problem size
(strong scaling).

The most influential tuning parameter for the ICAR test case resulted to be the
presence of the asynchronous progress thread. We also noticed that some parameters
have a different influence based on the number of processes being used. In particu-
lar, the value of MPICH POLLS BEFORE YIELD played a much more relevant role in the
case with 512 images than in the case with 256 images. This is not surprising because
ICAR attempt to overlap computation with communication by using coarray “puts” in-
stead of “gets”. For the 256 case, the optimal configuration found by AITuning had
MPICH POLLS BEFORE YIELD set to the default value 1000, meaning that it was found
not relevant. On the other hand, for the 512 images case, AITuning found a value of
1100. We manually changed the value of MPICH POLLS BEFORE YIELD by keeping the
configurations found by AITuning the same for both cases and found that in the case with
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Figure 1. Performance comparison between default and optimized configurations

512 images, a value of MPICH POLLS BEFORE YIELD between 1200 and 1500 provides
the best performance, so it seems there is still room for improvement.

7. Conclusions and Future Work

In this work, we presented AITuning, a machine learning-base tuning tool for run-time
libraries. AITuning has been released under open-source license and it is currently avail-
able on github 3. It currently works with the OpenCoarrays library, but its structure allows
it to be extended to any run-time communication library, based on any communication
layer. To the best of our knowledge, this paper is a unique contribution because it is the
first attempt to try to find the optimal tuning parameters used a deep reinforcement learn-
ing algorithm and MPI T. We tested AITuning and our RL algorithm, carefully designed
for MPICH-3.2.1, using a real atmospheric code: ICAR. AITuning was able to produce a
configuration of parameters that lead to 13% and 25% performance improvement for the
case running on 256 and 512 images, respectively, compared to the default configuration.
It also improves performance compared to an expertly tuned configuration, marginally
for 256 images and substantially for 512.

In the future, we plan to extend our analysis to other MPI implementations with a
higher number of control and performance variables. Furthermore, we will explore more
options on the RL algorithm, and potentially other machine learning approaches. In our
brief preliminary tests, it has been clear that whatever technique is chosen, it must be very
robust to the noise of run-to-run variability. However, finding the best learning algorithm
for AITuning is beyond the scope of this paper and left for a future work.

Finally, to better evaluate the results of the tool, we plan to test it on a larger number
of machines and on a larger and more diverse set of applications.

3https://github.com/NCAR/AITuning
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