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Abstract. In this work, we investigate the performance impact of using the Rust

programming language instead of the C++ one to implement two basic parallel pat-
terns as provided by the FASTFLOW parallel library. The rationale of using Rust

is that it is a modern system-level language capable to statically guarantee that if a
data reference is sent over a communication channel, the ownership of the reference
is transferred from the producer to the consumer. Such reference-passing semantics
is at the base of the FASTFLOW programming model. However, the FASTFLOW

library does not enforce nor checks its correct usage leaving this burden to the pro-
grammer. The results obtained comparing the FASTFLOW/C++, and the Rust im-
plementations of the same implementation schema of the Task-Farm and Pipeline
patterns show that Rust is a valid alternative to C++ for the FASTFLOW library with
indubitable benefits in terms of programmability.
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1. Introduction

Multi-core and many-core processors are today largely used both in professional and
consumer settings. Multi-cores are tightly-coupled Multiple-Instruction Multiple-Data
(MIMD) architectures. They are shared-memory multiprocessors systems integrated into
a single chip, often referred to as Chip Multi-Processors (CMP). Many-core processors
are CMP systems that are designed to employ a high degree of parallelism (currently up
to a few hundred cores), by using a large number of simpler cores than those used in
general-purpose multi-cores. The broad diffusion of CMP systems has had and still is
having, an important effect on how software is developed.

In these systems, the physically shared memory is the primary means of cooperation
among threads and processes running on different cores. Communications occur implic-
itly through loads and stores coordinated by synchronization protocols typically imple-
mented using locks. Locks seriously limit concurrency, they are costly operations requir-
ing the intervention from the OS to suspend the thread and restore it later. Moreover,
locks might introduce deadlock situations into the application, and, therefore, increase
the debugging and maintainability software phases.

A different approach is to use message passing semantics to coordinate the concur-
rent entities. A message induces an implicit synchronization between the sender and the
receiver. This model may be used merely for synchronization purposes while data may
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be shared exploiting the cache-coherent hardware capabilities of modern CMPs. Indeed,
sharing mutable data in a producer-consumer fashion is generally more efficient than
explicit copying, especially for large data structures. However data sharing is danger-
ous. Changes to a data reference might propagate producing unexpected data-races, i.e.
two concurrent operations (where at least one is a write operation) to the same memory
location without any synchronization.

The message passing model is used as a synchronization mechanism in some C++-
based parallel library, such for example FASTFLOW [3] and GrPPI [5]. The C++ pro-
gramming language is commonly used for its large set of features and its performance.
However, it does not provide strong guarantees for memory safety. Modern program-
ming languages such as Rust [10] and Pony [4] have a reference capability system that
statically checks access permissions to memory locations. In Rust, this feature is ex-
pressed with the concept of ownership [7]. The idea behind ownership is that, although
multiple aliases to a resource may exist simultaneously, to perform specific actions on
the resource (e.g., reading or writing a memory location) should require some unique
capability owned by exactly one alias at any point in time during the execution of the
program. This concept permits to enforce at compile time that every time a variable is
sent over a communication channel, its ownership capability is also sent, so the sender
cannot access the data anymore [11]. Such reference capability semantics is employed in
the C++-based FASTFLOW parallel programming library. FASTFLOW is a library offer-
ing both high-level parallel patterns as well as composable parallel building blocks suit-
able for building run-time systems for new DSLs or for building new high-level parallel
patterns. However, the reference capability semantics is not enforced by the FASTFLOW

library, leaving the burden of respecting the semantics directly to the run-time system
programmer.

In this work, we analyze the implications on the programming model and on the
overall application performance of using the Rust language to implement the FAST-
FLOW parallel semantics. Specifically, we considered two simple synthetic benchmarks
implemented by using two FASTFLOW parallel patterns: the Task-Farm pattern and the
Pipeline pattern. These two patterns are particularly relevant because they are used in
FASTFLOW as basic building blocks of other more complex parallel patterns (e.g., Par-
allelFor Divide&Conquer, and Macro Data-Flow). We aim to demonstrate that a system-
level language such as Rust which provides strong statically checked features to the pro-
grammer can be a valid alternative to C++ to write the parallel patterns offered by the
FASTFLOW library. From the programming model standpoint, the Rust implementation
has the additional advantage of statically enforcing the FASTFLOW producer-consumer
semantics at the language level. To meet the objective, the FASTFLOW communica-
tion channel implemented as a Single-Producer Single-Consumer (SPSC) lock-free un-
bounded queue [2] has been adequately and safely wrapped to build a Rust library to
be used for the implementation of inter-thread communication channels in Rust. The
results obtained by running the synthetic benchmarks on a 24-core Intel multi-core plat-
form, demonstrate that the Rust implementation of the benchmarks considered exhibits
the same level of performance of the FASTFLOW C++ implementation.

The remaining of this paper is organized as follows. The next section presents the
background, specifically the FASTFLOW and the Rust language features. Then, Section 3
provides the motivations of this work. The experimental tests are described in Section 4.
Finally, Section 5 briefly reviews similar works and summarizes our contributions.
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Figure 1. FASTFLOW library producer-consumer semantics: sending references to shared data over a SPSC
lock-free FIFO channel.

2. Background

2.1. FASTFLOW

FASTFLOW is a C++ parallel programming library targeting multi/many-cores and offer-
ing a multi-level API to the parallel programmer [3,]. At the top level of the FASTFLOW
software stack, there are some ready-to-use high-level parallel patterns such as Pipeline
Task-Farm, ParallelFor, Divide&Conquer, StencilReduce, Macro Data-Flow and so on.
At a lower level of abstraction, the library provides customizable sequential and parallel
building blocks addressing the needs of the run-time system programmer. The idea is
that new high-level patterns or new high-level libraries can be built by a proper assembly
of the building blocks [1].

The library was conceived to support highly efficient stream parallel computations
on heterogeneous multi-cores. The library is released open-source under the LGPLv3
licence 2.

The FASTFLOW library is realized as a modern C++ header-only template library
that allows the programmer to simplify the development of parallel applications mod-
eled as a structured directed data-flow graph (called concurrency graph) of processing
nodes. A FASTFLOW node represents a basic unit of computation. Each node can have
zero or more input channels and zero or more output channels. The graph of concurrent
nodes is constructed by the assembly of sequential and parallel building blocks as well
as higher-level parallel patterns. A generic node of the concurrency graph (being it either
standalone or part of a more complex parallel pattern) performs a loop that: i) gets a data
item (through a memory reference to a data structure) from one of its input channels; ii)
executes a functional code (i.e. business logic) working on the data item and possibly on
a state maintained by the node itself; iii) puts a memory reference to the result item into
one or multiple output channels selected according to a predefined or user-defined pol-
icy. Input and output channels are implemented with a Single-Producer Single-Consumer
(SPSC) FIFO queue. Operations on FASTFLOW queues (that can have either bounded or
unbounded capacity) are based on non-blocking lock-free synchronizations enabling fast
data processing in high-frequency streaming applications [2].

From the programming model standpoint, the FASTFLOW library follows the well-
known Data-Flow parallel model where channels do not carry plain data but references
to heap-allocated data. The semantics of sending data references over a communication
channel is that of transferring the ownership of the data pointed by the reference from the
sender node (producer) to the receiver node (consumer) (see also the schema in Figure 1).
The data reference is de facto a capability, i.e. a logical token that grants access to a given

2FASTFLOW home: http://calvados.di.unipi.it/fastflow
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data structure or to a portion of a data structure. On the basis of this reference-passing
semantics, the receiver is expected to have exclusive access to the data value received
from one of the input channels, while the producer is expected to not use the reference
anymore. This semantics is not directly enforced by the library itself with any static or
run-time checks.

2.2. Rust

Rust [10], is a modern system-level programming language that focuses on memory
safety and performance.

The principal novelty of Rust is in the management of memory. Languages like
C/C++ provide the user with total control on memory allocation and deallocation. Pro-
grammers can create, destroy and manipulate the memory space without any limitation.
This is a very attractive feature for expert programmers, but it can also lead to very subtle
bugs and vulnerabilities (e.g., buffer overflow). Other popular languages such as Java,
rely on a Garbage Collector (GC) to safely manage memory without the explicit inter-
vention of the user. The increased security comes along with some performance degra-
dation due to the GC service running in the background trying to reclaim unused mem-
ory. Instead, the Rust language deals with memory management through the ownership
concept [8]. The compiler statically checks a set of rules to control the memory allo-
cation/deallocation and memory accesses. Therefore, the compiler guarantees a certain
level of memory safety at the price of a more complex and longer compilation process
but without any additional overheads at running time.

Concerning the owenship feature, once a variable is bound with a value, it gains
exclusive ownership of it. Therefore, only the owner can access that memory location
until it transfers the exclusive ownership to another variable. The ownership rule states
three simple concepts [8]: 1) each value has a variable that is called owner; 2) there can
be only one owner at a time; 3) when the owner goes out of scope, the value will be
dropped.

Values stored in the heap maintain the same rules and when the owner variable goes
out of scope the memory is automatically released. In this way the user does not have
to directly deal with allocation and deallocation instructions avoiding the risk of double
frees or memory leaks.

To improve the flexibility of the language, Rust also implements the borrowing
concept through memory references. It is possible to create an immutable reference by
using & and a mutable reference by using &mut. Both of them borrow the value from the
original owner. The compiler imposes the following rules: 1) at any given point in time,
only one mutable reference or any number of immutable references may exist; 2) the
borrowed value cannot be accessed by the original owner; 3) when the reference goes
out of scope the ownership goes back to the original owner.

Rust has also the lifetimes concept to avoid dangling references. A lifetime is the
scope in which a reference is valid and the compiler enforces that it must be smaller of the
scope of the value referenced. Lifetimes are usually inferred by the compiler. However,
there are cases in witch the user has to annotate functions with life time parameters.

Finally, Rust provides native threads support, synchronization mechanisms such as
mutex and atomic variables as well as Multi-Producer Single-Consumer (MPSC) com-
munication channels for connecting threads. Indeed, the compiler guarantees that either
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multiple threads have only read access to a memory location or only one thread has read
and write access to it. To manage the mutability of variables and to guarantee memory
safety in multi-thread applications, Rust defines the Send and Sync traits. The Send

marker trait indicates that ownership of the type implementing Send can be transferred
between threads. Almost every type in Rust implements Send and types composed en-
tirely of types that are Send-able are themselves Send-able. The Sync trait indicates that
it is safe for the type implementing Sync to be referenced from multiple threads.

3. Motivations

Many mainstream parallel programming libraries are written in C/C++ primarily for per-
formance reasons. Often, the burden of maintaining non-interference among threads im-
plementing the application is in charge of the parallel programmer which has to correctly
use either locks or (hopefully) suitable high-level parallel abstractions (e.g., parallel pat-
terns). From the one hand, the usage of low-level synchronization mechanisms allows
the programmer to have great flexibility and to tweak the code applying specific opti-
mizations, but on the other hand, it exposes to potential unexpected behaviors and subtle
data-races.

The so-called “modern C++” (i.e. C++11 and above) introduced move semantics
and smart pointers features which greatly help the programmers to avoid errors related
to pointer arithmetic without affecting (in the majority of cases) the overall performance.
However, the responsibility to correctly use such new features is still in charge of the pro-
grammer that might not be a parallel programming expert. Moreover, in some situations,
C++ move semantics may produce additional data copies, for example in the one-to-many
communication pattern implementing a data scattering operation.

Figure 2. Logical schema of the FASTFLOW two-stage pipeline described in Listing 1.

As an example, a valid FASTFLOW program is the one sketched in Listing 1. It
implements a two-stage pipeline where the two stages work disjointly on two distinct
portions of the same vector in a producer-consumer fashion. The producer (S1) allocates
a standard vector of size 2N and then uses two raw pointers to point to two distinct parts
of the vector that are swapped at every producer-consumer iteration. Each stage works
on a portion of length N of the initial vector. The logical schema of this simple producer-
consumer use-case is sketched in Figure 2.

In this simple example, there is no guarantee that within the workS1 or workS2
functions some wrong accesses to a portion of the vector may produce data-races due to
buffer overruns. This kind of implementation would not be possible in the Rust language
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1 struct Stage1: ff_node_t<float> {

2 Stage1():base(2*N) {}

3 int svc_init() {

4 initialize(base);

5 p1=base.data(); p2=p1+N;

6 std::swap(p1,p2);

7 return 0;

8 }

9 float* svc(float* in) {

10 if(haveToStop(p1,p2))

11 return EOS;

12 std::swap(p1,p2);

13 ff_send_out(p1);

14 workS1(p2, N, 10.0);

15 return GO_ON;

16 }

17 std::vector<float> base;

18 float *p1,*p2;

19 } S1;

20 struct Stage2: ff_node_t<float> {

21 float* svc(float* in) {

22 workS2(in, N, 20.0);

23 return in;

24 }

25 } S2;

26

27 int main() {}

28 // creates the pipeline

29 ff_Pipe pipe(S1,S2);

30 // creates the feedback channel

31 pipe.wrap_around();

32 // synchronous execution

33 if(pipe.run_and_wait_end()<0) {

34 error("running pipe\n");

35 return -1;

36 }

37 return 0;

38 }

Listing 1: A simple producer consumer program in FASTFLOW

because the ownership rule is violated by the concurrent ownership of the vector by the
two stages. In Rust, the programmer that wants to implement a similar program is forced
to declare two separated vectors and to alternatively move the vectors’ ownership through
the communication channel connecting the two nodes. Moreover, accesses outside the
boundaries of the two vectors is checked at run-time. It is worth noting that, a similar
implementation is also possible in C++ but, while in Rust there is basically no other
way to implement that program, in C++ there is nothing that may prevent a potentially
dangerous implementation using raw pointers.

Concerning the FASTFLOW parallel library, the point is that the potentially wrong
usage of the reference-passing capability approach, which is at the base of the FAST-
FLOW programming model, is not checked by the library and the potential faulty behav-
ior is not signaled to the user. The programmer must properly use the provided mecha-
nisms according to the programming model. To alleviate the burden of the programmer,
we decided to re-implement the FASTFLOW library using a language that can enforce
reference capability at compile time. In this work, we want to measure the performance
impact of using the Rust language with respect to a less-safe C++ implementation. Rust
allows static checking at a higher level of abstraction than the one used to check the C++
move semantics. Our uphold that a proper combination of a system-level language with
strong static checking features and a structured parallel programming methodology such
the one offered by the FASTFLOW parallel library can significantly help the program-
mer to produce efficient and portable code with reduced programming effort and shorter
time-to-solution.
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4. Evaluation

In this section, we show the performance evaluation of using the Rust programming
language instead of the C++ one in the implementation of two benchmarks based on two
well-known FASTFLOW parallel patterns, namely the Task-Farm and the Pipeline. We
selected these two patterns because they are used within the FASTFLOW library as basic
building blocks for the implementation of other more complex parallel patterns.

4.1. Low-level mechanisms implementation

To have a fair performance comparison between the implementations of the two bench-
marks, we need an implementation of the FASTFLOW communication channel in Rust.
Initially, we considered to use the Multi-Producer Single-Consumer (MPSC) unbounded
queue provided by the Rust standard library, but we found out that it does not deliver the
expected performance, particularly for fine-grained computation. Therefore, we decided
to port the C++-based FASTFLOW lock-free Single-Producer Single-Consumer (SPSC)
unbounded queue [2] in Rust. However, instead of writing it from scratch mimicking
the same FASTFLOW implementation, we decided to create a memory-safe Rust inter-
face to the original C++-based FASTFLOW queue. The name of the Rust interface for the
queue is ff buffer3.

Figure 3. Integration of the FASTFLOW’s unbounded SPSC lock-free queue in Rust.

Figure 3 shows the logical schema of the ff buffer library that we used to integrate
the FASTFLOW queue in Rust. The implementation is composed of two distinct parts:
the RustAPI providing a memory-safe interface of the queue, and the static C library that
exposes the “unsafe” C interface of the C++ implementation. The ff buffer library can
be directly compiled as a standard Rust library. Moreover, it is possible to use the Cross
Language Linking Time Optimization4 feature of the LLVM compiler infrastructure to
reduce the overhead of jumping back and forth between Rust and C++.

Another FASTFLOW feature we decided to use in the experiments is the ability to
automatically pin all the spawned threads to distinct machine cores to improve the ap-
plication performance when the number of threads is less than or equal to the available

3Git repository link https://github.com/lucarin91/ff_buffer
4http://blog.llvm.org/2019/09/closing-gap-cross-language-lto-between.html
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cores. For this purpose we used the Rust third-party library core affinity5 to set the
thread-to-core affinity for all Rust threads according to a simple round-robin assignment
strategy.

Figure 4. Implementation schema of the Task-Farm pattern (left-hand side) and of the Pipeline with feedback
channel pattern (right-hand side).

In Figure 4 are sketched the implementation schemes of the two FASTFLOW parallel
patterns that we used as benchmarks for comparing the performance of the C++ and Rust
versions. The one on the left-hand side is the implementation of the Task-Farm pattern
where the pool of Workers is composed of sequential nodes. Each node is implemented
as a thread. In the tests we executed, each Worker performs a configurable number of
floating-point operations on each input data element. The Emitter node is in charge to
assign data elements to the Workers according to a pre-defined or user-defined scheduling
policy. We considered a simple round-robin assignment. The data elements produced by
the Workers are all collected by the Collector node. This test aims to study the scalability
of the Task-Farm pattern by varying the number of Worker threads.

On the right-hand side of Figure 4 is shown the Pipeline with feedback pattern as
implemented in FASTFLOW. In the tests we executed, we considered a Master stage
(the first one) and a configurable set of other stages. The Master stage is in charge of
generating a fixed-length stream of data elements in batches. The other stages of the
pipeline chain only forward the input element received to the next stage. The last stage
of the pipeline is connected to the Master stage, forming a circular pipeline. This test
aims to study the maximum throughput sustained by the Pipeline pattern by varying the
number of stages.

4.2. Results

All tests reported in this section were conducted on an Intel Xeon Server equipped with
two Intel E5-2695 Ivy Bridge CPUs running at 2.40GHz and featuring 24 cores (12 per
socket). Each hyper-threaded core has 32KB private L1, 256KB private L2 and 30MB of
L3 shared cache. The machine has 64GB of DDR3 RAM, running Linux 3.14.49 x86 64
with the CPUfreq performance governor enabled and turbo boost disabled. We used the
GNU gcc compiler version 7.2.0 with the O3 optimization flag enabled and the rustc

compiler version 1.38.0 with opt-level=3.
The tests were executed ten times, and the values reported in the plots is the average

value of all runs. The standard deviation is small (less than 1%) and thus omitted for
readability reasons.

5https://crates.io/crates/core_affinity
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Figure 5. Left:) Scalability of the Task-Farm pattern implementation with two different computation granu-
larities. Right:) Throughput of the Pipeline pattern with feedback channel varying the number of stages.

For the Task-Farm pattern we considered a stream of 50,000 elements and two
different per-element computation granularities: small (about ∼5 μs), and large (about
∼5 ms). On the left-hand side of Figure 5 is shown the scalability of the Task-Farm pat-
tern written in C++ (i.e. FASTFLOW v.3.0.0) and in Rust, respectively. The results show
that the two versions have similar performance figures both for the small and large test
cases. Both versions exhibit good scalability figures when the number of total threads
used (that is equal to the number of Workers plus two) is less than or equal to the num-
ber of physical cores of the machine (this is the grey area of the plot). The Rust imple-
mentation of the benchmark uses a more simple (and aggressive) dequeueing strategy
than the one offered by the FASTFLOW library. Moreover, the Rust version leverages on
the jemalloc memory allocator. These two optimizations allow to slightly improve the
performance of the Rust version in the small test case when the number of Workers is
high. Conversely, for the large test case, the more aggressive polling approach used in
the Rust implementation produce more overhead when the number of threads is greater
than the available logical cores (i.e. the case of 48 Workers).

For the Pipeline test case, we consider a total number of 1M elements divided in an
initial batch of 1K elements and 4K small batches each one containing 256 elements.
Figure 5 shows the number of messages exchanged per second by varying the number
of stages of the pipeline chain. The performance of the two versions is almost the same,
and the throughput increases almost linearly with the number of stages with a small drop
corresponding to 24 pipeline stages because from that point more threads than physical
core are used.

The results obtained demonstrate that there is no significant performance difference
between the C++ and Rust versions for the two patterns considered.

5. Related Work and Summary

The Rust programming language is attracting increasing interest in the parallel commu-
nity because of its comparable performance with C/C++ and its memory safety.

Libraries such as rsmpi6 and Raycon7 are examples of well-known parallel program-
ming libraries that moved from C/C++ to Rust. Rsmpi is a MPI binding for Rust, and

6https://github.com/bsteinb/rsmpi
7https://github.com/rayon-rs/rayon
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it permits to use the MPI library from within Rust programs. Raycon is a data parallel
library similar to the OpenMP standard. It supports parallel computations such as map,
flap-map, filter, sorting and reduce over Rust collections.

Other research works such as [6] and [9] try to improve and extend the Rust own-
ership system to better support parallel computations. The former proposes a statically
checked communication protocol between threads. The latter proposes an extension of
the ownership system where it is possible to specify that the same thread can own mul-
tiple times the same variable. Such extension simplifies code writing, especially in an
event-based system, while maintaining the same security guarantees.

In this work, we evaluated the impact of statically enforcing the reference-passing
semantics used in the FASTFLOW parallel programming library by using the Rust lan-
guage features. We evaluated the impact on the performance of a Rust implementation
of the Task-Farm and Pipeline pattern as provided by the FASTFLOW library. The results
obtained show that the Rust language can be a valid alternative to the C++ one for imple-
menting the FASTFLOW parallel patterns with several benefits in terms of programmabil-
ity. However, more work is needed to build the entire software stack of the FASTFLOW
library.

As future work, we intend to analyze and discuss the implementation of other par-
allel patterns and in particular of the Map one which poses non-trivial implementation
problems if implemented in Rust.
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