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Abstract. This paper investigates the use of invasive computing to enforce the
power budget in an HPC infrastructure. Invasive MPI along with the Invasive Re-
source Manager (IRM) provides an infrastructure for developing malleable/inva-
sive applications. In IRM, a power model is used to predict the power consumption
of each application. If a violation in power corridor is predicted, IRM reconfig-
ures the node allocation among the applications to keep the whole system back into
the power corridor. Since development of invasive applications is a complex task,
a new programming model called Elastic Phase Oriented Programming (EPOP)
is developed to simplify the invasive programming. This model is also capable of
collecting and sharing power usage metrics as well as performance metrics to IRM.
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1. Introduction

Current contracts between energy companies and compute centers are written in ac-
cordance to the so called power corridor. Therefore, the power consumption must be
bounded by certain upper and lower limits. If the compute center goes beyond those lim-
its (i.e., if consumes less or more than what it is stipulated in the contract) some fines
could be applied by the energy company. The compute center can act as well as a power
stabilizer for the grid load [1]. This means that dynamic adaptions of the power corridor
might be part of the electricity contract, and could be requested by the electricity com-
pany. The compute center will have economic incentives for doing so, decreasing the
electricity costs. To enforce the upper limit it is possible to use well-known techniques
such as power capping; nevertheless these cannot be used to enforce the lower limit (i.e.,
to increase the system power consumption). In this work we show how a new paradigm
for parallel computing, namely invasive computing, can be used for such case.

Invasive computing is a paradigm introduced by Teich [2]. A program that follows
this paradigm, called henceforth ”invasive program”, should be able to request, use and
finally free processing, communication, and memory resources in the neighborhood of
its computing environment.

An invasive program is by definition malleable. This in turn means that certain op-
timizations, which would be otherwise hindered, are now possible. A nice example that
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comes to hand is MPI, which usually has a very static view of the application. All the
tasks that are created at the beginning of the application run when the batch scheduler has
distributed the resources. The resources are exclusively reserved for this job and the tasks
continue running until the end of it. In contrast, the resources assigned to an invasive
program could change at runtime.

Within the Transregio Special Research Centre Invasic (TRR89), TUM investigates
invasive resource management for HPC systems. We developed an MPI extension called
iMPI [3,4] which allows through three new MPI functions writing invasive MPI appli-
cations. In combination with an extension of the Slurm batch scheduler, nodes can be
dynamically redistributed among running MPI applications. This enables reducing idle
nodes by more flexible scheduling, increased energy efficiency by redistributing nodes
according to application efficiency, and supporting novel, dynamic applications, such as
a Tsunami simulation that can use the resources more efficiently.

Development of invasive applications presents certain challenges. For example, the
developer must take care of defining where an adaptation is possible, handling the newly
joining processes, redistribution of data, among others. This results in a complex control
flow which makes the development of invasive application difficult.

This paper reports on our two contributions. First contribution is a high level pro-
gramming model on top of iMPI called EPOP (Elastic Phase Oriented Programming
model) that simplifies the programming of iMPI applications by providing explicit con-
trol flow between elastic and rigid program phases. Second contribution is a power corri-
dor management infrastructure using extensions we made to iMPI, IRM and EPOP sys-
tem to collect power measurements, compute a power model and use it to keep the sys-
tem inside the power corridor by redistributing resources. The presented work is based
on an early prototype developed in [5,6] which was consolidated and extended.

This paper is divided into 6 sections. Section 2 will give an overview about the re-
lated work. Section 3 acts as an introduction to create invasive applications using our in-
frastructure. Section 4 explains in detail how the power corridor mangement was imple-
mented followed by section 5 which presents the evaluation of the infrastructure. Finally,
section 6 presents the conclusions.

2. Related work

EPOP is a programming model that provides malleability to MPI applications using the
invasive infrastructure provided by iMPI and IRM. Charm++ and Adaptive Message
Passing Interface (AMPI) [7] also supports the malleability of jobs by checkpoint restart
along with the task migration and dynamic load balancing. AMPI abstracts the MPI pro-
cesses as migratable threads and the runtime system of Charm++ deals with the schedul-
ing and migration of these threads. Standard MPI is extended to support the Charm++
runtime system. AMPI follows a message-driven execution model and there is oversub-
scription due to the threading. In contrast, EPOP is based on the invasive properties of the
iMPI and uses the standard MPI execution model with no oversubscription. EPOP can
also provide application specific profiling information like the node level power usage
and mpi time to IRM.

There are several techniques employed by supercomputing centers to control the
system-wide power consumption. One such notable technique is dynamically shutting
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down the jobs when a power budget is reached [8]. There is an approach where scheduler
decides the future job allocation based on an application’s power efficiency in the past
runs. Another technique is the usage of Intelligent energy-aware backfilling algorithms
along with stoppage of a node to control the total power usage [9]. In some techniques,
idle nodes are selectively powered down to meet the power requirements [10]. Another
power management approach is to utilize the power capping mechanisms supported by
the hardware as well as forcing a system to operate at specified frequencies. There are
plenty of researches [11] focussing on power capping as well as dynamic frequency scal-
ing techniques to bring down the power usage of the system. One such approach is us-
ing CPU and memory Dynamic Voltage and Frequency Scaling (DVFS) for system-wide
power capping [12]. One important difference between our work and these techniques is
that ours use invasive computing for dynamic power corridor management. Also, most
of these systems are using a reactive approach, which means that they only act once the
system is out of the power corridor. In contrast, we use a proactive approach where re-
source adaptations are performed based on the power usage predictions. Additionally,
our system can also handle dynamic power budget requirements.

3. Programming Invasive MPI Applications

Invasive applications can be developed using an invasive infrastructure, which in this
case is constituted by the Invasive Resource Manager (IRM) along with the Invasive
MPI (iMPI). IRM provides dynamic resource management and iMPI provides routines
to utilize this dynamism.

IRM is an extension of the Simple Linux Utility for Resource Management (Slurm)
[13]. IRM decides to expand/shrink an application based on its performance. IRM in-
forms iMPI of the decision. iMPI[4] is an extension to MPICH [14], where the following
new operations have been added to bring dynamism:

MPI Init adapt(...) signals the resource manager that the application will be adaptive.

MPI Probe adapt(...) is used to check whether there are any resource changes.

MPI Comm adapt begin(...) is called to begin the adaptation window.

MPI Comm adapt commit() finalizes resource adaptation.

Pseudocode for creating an iMPI application is shown in Listing 1. In the beginning,
MPI_Init_adapt() is used to signal IRM that the application is invasive. It is also
used to distinguish whether a process was created as part of a resource change or
was it created at the start of application (Listing 1, lines 4-7). This is essential since
MPI_Comm_adapt_begin() should immediately be called by the newly joining process
to start the adaptation(Listing 1, lines 8-11). This call will notify IRM that the newly
created processes are ready and IRM then notifies the existing processes about resource
redistribution.
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1 . . .
2 M P I I n i t a d a p t ( . . . , mytype )
3 / / I n i t i a l i z a t i o n b l o c k
4 i f mytype = s t a r t i n g p r o c e s s {
5 s e t p h a s e i n d e x = 0
6 }
7 e l s e { / / Newly j o i n i n g p r o c e s s e s
8 MPI Comm adapt begin ( . . . ) ;
9 / / R e d i s t r i b u t e da ta

10 MPI Comm adapt commit ( ) ;
11 }
12 / / Begin e l a s t i c b l o c k 1
13 i f ( p h a s e i n d e x == 0){
14 whi le ( b l o c k c o n d i t i o n ){
15 M PI P r o b e ada p t ( . . . )
16 i f r e s o u r c e c h a n g e {
17 MPI Comm adapt begin ( . . . )
18 / / R e d i s t r i b u t e da ta
19 MPI Comm adapt commit ( )
20 }
21 i t e r a t i o n n u m b e r ++;
22 / / Compute I n t e n s i v e p a r t
23 }
24 p h a s e i n d e x ++;
25 }
26 / / End e l a s t i c b l o c k 1
27 . . .
28 / / Begin e l a s t i c b l o c k n
29 i f ( p h a s e i n d e x == n ){
30 . . .
31 }
32 / / End e l a s t i c b l o c k n
33 / / F i n a l i z a t i o n b l o c k
34 . . .

Listing 1: Pseudocode of a simple iMPI
program

1. . .
2void i n i t b l o c k ( . . . ) {
3/ / Code i n i n i t i a l i z a t i o n b l o c k
4}
5s e t I n i t ( i n i t b l o c k ) ;
6
7
8
9void e l a s t i c b l o c k 1 ( . . . ) {
10/∗ Compute i n t e n s i v e p a r t o f
11e l a s t i c b l o c k 1 ∗ /
12}
13bool b l o c k c o n d i t i o n ( . . . ) {
14/ / Looping o f e l a s t i c b l o c k
15}
16void r e s o u r c e c h a n g e ( . . . ) {
17/ / R e d i s t r i b u t e da ta
18}
19s e t E l a s t i c ( e l a s t i c b l o c k 1 ,
20b l o c k c o n d i t i o n ,
21r e s o u r c e c h a n g e ) ;
22
23
24. . .
25
26s e t E l a s t i c ( e l a s t i c b l o c k n , . . . ) ;
27
28. . .
29
30void f i n a l i z e b l o c k ( . . . ) {
31/ / Code i n f i n a l i z a t i o n b l o c k
32}
33s e t R i g i d ( f i n a l i z e b l o c k , . . . ) ;
34. . .

Listing 2: Pseudocode in Listing 1 as an
EPOP program

Meanwhile, the existing processes should frequently check for the resource change
using MPI_Probe_adapt() during the computation. In case of a resource change,
MPI_Comm_adapt_begin() is called in order to take part in the adaptation (Listing 1,
lines 15-19).

Once all the processes are at the adaptation window, the entry point, required data,
etc. can be distributed (Listing 1, line 9 and 18) among new processes. Entry point refers
to the application region where the new processes can safely join the existing processes.
In the lines 13 and 29 of Listing 1, phase_index is used to identify these phases/entry
points. As seen in Listing 1, the application is logically divided into different elastic
blocks (parts of code where resource redistribution is possible) for creating suitable entry
points for the joining processes. MPI_Comm_adapt_commit() is then called to finalize

J. John et al. / Invasive Computing for Power Corridor Management 389



the adaptation. After this point, all the processes continue the computation.
One of the issues with such an invasive application is the multiple control flows. As

seen from Listing 1, the pre-existing processes should identify the entry points, probe
for resource changes, enter the adaptation window, redistribute the data and entry points,
etc while the newly joining processes should immediately enter the adaptation window
and wait for the entry points, data, etc. This complicates the invasive application devel-
opment.

The Elastic Phase Oriented Programming model (EPOP) simplifies this application
development process by providing the concept of ”Phases” to mark different parts of an
application. A simple invasive application can have three logical parts/phases: an initial-
ization part, a compute intensive part that can be benefited from the resource adaptation
and a finalization part to write the results. EPOP provides different ”Phases” to represent
these parts. They are:

Init phase : to represent initialization part of an application.

Elastic phase : to represent compute intensive part of the application that can benefit
from resource adaptation.

Rigid phase : to represent parts of an application that does not need resource adaptation.

Branch phase : to switch between different phases.

A simple EPOP version of the application in Listing 1 is shown in Listing 2. The
EPOP driver, which is in charge of control flow in EPOP applications, will call iMPI
routines in the background (not shown in the listing) to make it invasive.

Elastic block in Listing 1 (lines 13-26) contains a looping construct (line 14) that
determines how many times the main compute part (line 22) will be called. It also con-
tains a resource change probing part (line 15), which checks for a resource change and
does data distribution, and an entry point transfer in case of a resource change (lines
16-20). These parts can be represented as a collection of simple functions like in Listing
2 (lines 14-26) and can be marked as an elastic phase using setElastic(...). EPOP
will probe for resource change and will call the resource_change function correspond-
ing to the elastic phase whenever there is a resource redistribution. Whenever the newly
joining processes are available, EPOP will bring it into the resource_change function
of the current elastic phase. As a result, phase_index used in lines 13 and 29 of Listing
1 is not needed in EPOP. The phases are executed in the same order as they are declared
(In Listing 2, lines 5,19,25 and 33 will declare phases).

EPOP and iMPI only provide methods to simplify the addition/removal of processes
into/from an application. In addition EPOP will also bring all the processes to a common
entry point specified by the developer. During resource change, a developer is responsi-
ble for maintaining the topological properties of the application (for example; create a
new topology with a new number of processes) as well as redistributing the data among
existing and joining/leaving processes. This design decision was made because each ap-
plication has its own data distribution, which might be based on number of processes,
threads, and other things known by the developer. For iMPI/EPOP application, users can
redistribute the data among all processes during the adaptation window and hence after
adaptation every process has the required data to do the computation.
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4. Power corridor management

4.1. Measurements

Since we were using proactive approach for power management, we needed to predict
whether the system will go out of power corridor. This prediction is done using the
time series analysis techniques described in Section 4.2 which in turn require previous
power measurements. On Intel systems, such as the one used for the testing, energy
consumption estimations are done through the Running Average Power Limit (RAPL)
sensors [15], and these values can be accessed via the Model Specific Registers (MSR).
The power can then be derived by dividing this value by the time between measurements.
There are multiple libraries that can be used to access these registers. For this case, we
chose to use LIKWID [16].

The infrastructure was deployed on a job allocation in SuperMUC [17]. There was
no cluster level measurement infrastructure available to us, and thus using RAPL was
the only possible way to obtain power measurements. This also meant that we had to
focus on the power consumed on the nodes, omitting the cooling system, networking
components, storage system, etc. Nevertheless, measuring only the power consumed by
the nodes is still enough to demonstrate the effectiveness of using resource redistribution
as a power corridor management technique. Additionally, if a cluster wide tool becomes
available, then the input power values can be taken from it instead of RAPL.

IRM communicates to the EPOP driver the frequency and number of measurements
to be taken. Next, one rank per node will create a thread in charge of taking power mea-
surements. Once it has accumulated the required number, they are aggregated by the
leading node, and then sent to the scheduler. At this point, IRM receives the measure-
ments and stores them. Once it has enough data, the forecast module comes into play.
The main purpose of this module is to predict the future maximum and minimum power
consumption of the system. They represent the worst case scenarios, i.e., the cases where
the system could go out of the power corridor.

4.2. Forecasting

Using time series analysis one can try to find an underlying structure of some data, such
as power consumption values. Two things are required: 1. a valid time series to work
with. 2. A specific method to analyse the data. For the latter, we have chosen to use
three techniques, the AutoRegressive Integrated Moving Average (ARIMA), Seasonal
ARIMA with exogenous regressors (SARIMAX) and the Holt-Winters method.

ARIMA is a ”classical model”, in the sense that it has been studied extensively. It is
composed of an Integrated component, which is in charge of making data stationary, and
an ARMA component, which models this stationary data. The latter can again be sub-
divided into an AutoRegressive component (AR), which captures the relation between
the current value of the time series and some of its past values, and a Moving Average
component (MA) that represents the influence of an often unexplained random shock.
Using both of them, plus the Integrated component, one can derive the ARIMA model.
SARIMAX is an extension of ARIMA that supports time series with a seasonal com-
ponent. The third method used in this work, called Holt-Winters or Third Exponential
Smoothing, assigns exponentially decreasing weights to past observations. It is capable
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of model data with both trend and seasonality, distinguishing for the latter the case of
additive and multiplicative seasonality.

4.3. Decision Making

Every time the controller predicts that the system might go outside the power corridor, it
is necessary to redistribute the nodes to try to prevent it. This problem is expressed more
formally in Equation 1, where we have K applications running on a system with N nodes
(K ≤ N). We assume that every idle node consumes pidle power. The idea is to minimize
the power consumed f (kidle) by the idle nodes, such that both the upper U and lower L
boundaries are fulfilled.

MINIMIZE

f (kidle) = kidle ∗ pidle

SUBJECT TO

l ≤
K−1

∑
i=0

ki ∗ p(i)min + kidle ∗ pidle

u ≥
K−1

∑
i=0

ki ∗ p(i)max + kidle ∗ pidle

1 ≤ ki ≤ N, ki ∈ N\{0}, i = 0, · · · ,K −1

0 ≤ kidle < N, kidle ∈ N

(1)

The solution to the system is found via Pulp, a Python Integer Programming Solver
module [18]. In turn, Pulp acts as an interface to several solvers. In this case we have
used Coin-or Branch and Cut (CBC). We tested Pulp with systems with K = 2,4,8 and
16, and the solving time was always under 0.5 seconds. Considering that a decision has
to be made from one schedule pass to the next, Pulp is fast enough. Once a valid node
distribution is found, an adaptation occurs (see Section 3).

4.4. Guarantees

In an infrastructure with a size of N Nodes, where K applications are running:
Our system will enforce upper power corridor U , if and only if the power consump-

tion of the system when each application runs in only one node is less than the power
corridor upper bound U , as expressed in Equation 2.

U ≥
K

∑
i=1

p(i)max +(N −K)∗ pidle (2)

Similarly, our system will enforce lower power corridor L, if and only if, the power
consumption of the system is greater than the lower power corridor boundary when the
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most power consuming application A is running on N − (K −1) nodes. This is shown in
Equation 3.

L ≤
K−1

∑
i=1

p(i)max +(N − (K −1))∗ kA ∗ pA (3)

5. Evaluation

The power corridor management infrastructure was run as a standard Load Leveler job in
SuperMUC Phase 2 [17]. The infrastructure was run on 32 nodes (896 processes) for the
forecasting and upper power corridor enforcement tests while the remaining tests were
performed on 16 nodes (448 processes). Three EPOP applications (2D Jacobi heat sim-
ulation, LU decomposition and Pi calculation) were used to evaluate the infrastructure.
This evaluation is a proof-of-concept that the dynamic resource management can be used
for enforcing the power corridor on a system with varying power constraints.

5.1. Forecasting

Power consumption predictions from three different models are shown in Figure 1a.
These models were trained on-the-fly and the one with the highest accuracy was cho-
sen by IRM for forecasting. As observed in Figure 1a, the SARIMA model produced
more accurate predictions among the different models and was used by IRM to make the
scheduling decisions. Accuracy of the model was determined using the Mean Absolute
Percentage Error (MAPE).

5.2. Upper and Lower Power Corridor Enforcement

Figure 1b and 1c shows the effect of dynamic resource adaptation on system wide power
usage. Initially, two EPOP applications were started with 12 nodes for Application 1 and
20 for Application 2. The power corridor was set between 3000 and 4000 Watts. It can be
seen from Figure 1b that the upper power bound has already been violated from the start
of the applications. Therefore, during the first scheduler pass, the system redistributes
the number of nodes. As a result, application 1 was reduced to 3 nodes and application
2 was expanded to 24 nodes. This lead to the reduction of power usage, bringing back
the system to the power corridor after 300 seconds. During the next scheduler passes, the
forecast module predicts no violation of the power corridor and as a result, the resource
configuration remained same.

Similarly, the lower power corridor enforcement is shown in Figure 1c. The power
corridor was set between 1500 and 2500 watts. Two applications (Jacobi heat simulation
and LU decomposition) were started with 4 nodes each. It can be observed that the lower
power corridor of the system was violated from the beginning. To enforce the power
corridor, IRM shrunk Application 1 to 2 nodes and expanded Application 2 to 14 nodes
during the first scheduler pass. As a result, the system was back in the power corridor.
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(a) Forecasting the power usage (b) Upper power corridor enforcement

(c) Lower power corridor enforcement (d) Dynamic power corridor enforcement

Figure 1. Power Corridor Management

5.3. Dynamic Power Corridor Enforcement

Dynamic power corridor enforcement is shown in Figure 1d. Initially, the power corridor
was set between 100 and 600 watts. An invasive Pi calculation application was started on
a single node. It can be observed that the system is in the power corridor. Then the power
corridor was shifted to 700 and 1200 watts. IRM expanded the application to 9 nodes and
brought back the system into the power corridor. The power corridor was then increased
to 1300 and 1900 watts. We can observe from Figure 1d that IRM again redistributed the
resources to bring the system back in the power corridor. This test simulates dynamically
changing power constraints and how the system is responding to it.

6. Conclusion and Outlook

Power corridor management is crucial for supercomputing centers. As more and more
renewable energy sources are used for power generation, HPC centers must be flexible
in adapting to the energy requirements, since the supply of renewable energy will be
varying due to external factors. Resource dynamism and flexible scheduling can be used
to accommodate such dynamic scenarios. We have shown in this paper that invasive
computing can be used as a mechanism to enforce the power corridor. We were able
to regulate power consumption without taking drastic measures, such as killing power-
hungry applications. One of the shortcomings of this invasive approach is that frequent
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resource redistributions can be expensive. Our ongoing work, a hybrid system which can
use DVFS along with invasive computing to manage power requirements, addresses this
shortcoming.
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