
A GPU-CUDA Framework for Solving
a Two-Dimensional Inverse

P. De Luca a, A. Galletti b, H. R. Ghehsareh c, L. Marcellino b and M. Raei c

a University of Salerno, Department of Computer Science, Fisciano, Italy
b University of Naples Parthenope, Department of Science and Technology, Italy

c Malek Ashtar University of Technology, Department of Mathematics, Isfahan, Iran

Abstract. This paper deals with the solution of an inverse time fractional diffu-
sion equation described by a Caputo fractional derivative. Numerical simulations,
involving large domains, give rise to a huge practical problem. Hence, by starting
from an accurate meshless localized collocation method using radial basis func-
tions (RBFs), here we propose a fast algorithm which exploits the GPU-CUDA ca-
pabilities. More in detail, we first developed a C code which uses the well-known
numerical library LAPACK to perform basic linear algebra operations in order to
implement an efficient sequential algorithm. Then we propose a GPU software
based on ad hoc parallel CUDA-kernels and efficient usage of parallel numerical
libraries available for GPUs. Performance analysis will show the reliability and the
efficiency of the proposed parallel implementation.

Keywords. Fractional calculus; GPU computing; parallel algorithms; CUDA

1. Introduction

In recent decades, fractional calculus theory received high interest due to its applica-
tion in several fields in science and engineering. Indeed, fractional models are beneficial
and powerful mathematical tools to describe the inherent properties of processes in me-
chanics, chemistry, physics, and other sciences [1,2,3]. Main methods to solve fractional
models include meshless and radial basis functions based methods which represent reli-
able and efficient techniques, specially suitable for high-dimensional and irregular com-
putational domains [4,5]. This choice is because they allow to avoid the expensive task
related to the mesh construction. However, as is well-known, the use of global RBFs
in such cases gives rise to very ill-conditioned discrete problems. Moreover, practical
problems with large domains increase the computational cost dramatically. Therefore,
the use of fast algorithms and parallel computational kernels becomes unavoidable and
necessary. So, in this work, by starting from an accurate meshless localized collocation
method using local radial point interpolation (LRPI), we propose a fast algorithm which
exploits the GPU-CUDA capabilities. More in detail, we first developed a C code based

Anomalous Diffusion Problem

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200056

311

on the numerical library LAPACK to perform all basic linear algebra operations. Then,
we moved on a GPU-parallel software based on ad hoc parallel CUDA-kernels and ef-
ficient usage of parallel numerical libraries available on CUDA (Compute Unified De-
vice Architecture) environment. To be specific, to improve performances, we introduce
a parallel approach which implements parallel modules by using the CUDA computing
platform for GPUs [6] (a massively parallel architecture, also know as Graphic Cards,
for general purpose computing). Moreover, this GPU-parallel software involves the use
of the cuSOLVER library [7], which in turn provides all the functions of LAPACK for
the GPU environment, and it includes a easy-to-use interface making possible to vary
both the main parameters of the problem and the blocks and threads configuration which
are required by the parallel execution.

The rest of the paper is organized as follows: section 2 briefly describes the problem
we deal with and the numerical procedure to discretize the related inverse time fractional
diffusion equation; in section 3 the description of both sequential and parallel implemen-
tation details of the algorithms is given; in section 4 the experimental results highlight the
performance gain, in terms of execution times and speed-up, compared to the sequential
version; finally, conclusions close the paper in section 5.

2. Mathematical model and numerical procedure details

In the current work we deal with the solution of a two-dimensional inverse time fractional
diffusion equation [8,9,10], defined as follows:

c
0Dα

t v(x, t) = κΔv(x, t)+ f (x, t), x = (x,y) ∈ Ω ⊆ R2, t ∈]0,T], (1)

with the initial and Dirichlet boundary conditions:

v(x,0) = ϕ(x), x ∈ Ω,

v(x, t) = ψ1(x, t), x ∈ Γ1, t ∈]0,T],

v(x, t) = ψ2(x)ρ(t), x ∈ Γ2, t ∈]0,T], (2)

and the non-local boundary condition:

∫∫
Ω

v(x, t)dx = h(t), t ∈]0,T], (3)

where v(x, t) and ρ(t) are unknown functions and c
0Dα

t = ∂ α

∂ tα denotes the Caputo frac-
tional derivative of order α ∈]0,1]. The numerical approach to discretize the problem (1)
is summarized as follows [8,9].

2.1 The time discretization approximation

Let us choose a time step τ > 0 and set tn = nτ , for n = 0, . . . ,T/τ (assume T/τ be an
integer). By substituting t = tn+1 in the equation (1), the following relation is obtained:

c
0Dα

t v(x, tn+1) = κΔv(x, tn+1)+ f (x, tn+1), (x, tn+1) ∈ Ω× (0,T]. (4)

P. de Luca et al. / A GPU-CUDA Framework312

Therefore, we exploit the following second-order time discretization for the Caputo
derivative of v(x, t) at point t = tn+1 [11,12]:

[
c
0Dα

t v(x, t)
]

t=tn+1
=

n+1

∑
j=0

ωα(j)
τα v(x, tn+1− j)− t−α

Γ(1−α)
v(x,0)+O(τ2), (5)

where:

ωα(j)=

⎧⎪⎨
⎪⎩

α +2
2

pα
0 , j = 0,

α +2
2

pα
j −

α
2

pα
j−1, j > 0,

and pα
j =

⎧⎨
⎩

1, j = 0,(
1− α +1

j

)
pα

j−1, j ≥ 1.

By substituting the equation (5) in (4) the following relation is obtained:

ωα(0)
τα vn+1 −κΔvn+1 =−

n

∑
j=1

ωα(j)
τα vn+1− j +

t−α

Γ(1−α)
v0 + f n+1, (6)

with f n+1 = f (x, tn+1) and vn+1− j = v(x, tn+1− j) (j = 0, . . . ,n+1).

2.2 The meshless localized collocation method

This section describes the meshless localized collocation approach. This choice is be-
cause, in last decades, meshless methods have been employed successfully in several
fields of science and engineering [4] and allow to avoid the expensive task related to the
mesh construction. In the meshless localized collocation method, the global domain Ω is
partitioned into local sub-domains Ωi (i = 1, . . . ,N) corresponding to every point. These
sub-domains ordinarily are circles or squares and cover the entire global domain Ω. Then
the radial point interpolation shape functions, φi, are constructed locally over each Ωi by
combining radial basis functions and the monomial basis function [10] corresponding to
each local field point xi. In the current work, it is used one of the most popular RBFs,
i.e., the generalized multiquadric radial basis function (GMQ-RBF) φ(r) = (r2 + c2)q

(q=2.5) where c is the shape parameter. The local radial point interpolation shape func-
tion generates the N ×N sparse matrix Φ. Therefore v can be approximated by:

v(x) =
N

∑
i=1

φi(x)vi (7)

where φi(x) = φ(‖x−xi‖2) (the norm ‖x−xi‖2 denotes the Euclidean distance between
x and field point xi). Substituting formula (7) in equations (6), (2) and (3) yields:

N

∑
i=1

[
ωα(0)

τα φi(x j)−κ
[

∂ 2φi

∂x2 +
∂ 2φi

∂y2

]
(x j)

]
vn+1

i =−
n

∑
j=1

ωα(j)
τα

N

∑
i=1

φi(x j)v
n+1− j
i

+
t−α

Γ(1−α)

N

∑
i=1

φi(x j)v0 + f n+1, j = 1, . . . ,NΩ (8)

N

∑
i=1

φi(x j)vn+1
i = ψn+1

1 (x j), j = NΩ +1, . . . ,NΩ +NΓ1 , (9)

P. de Luca et al. / A GPU-CUDA Framework 313

N

∑
i=1

φi(x j)vn+1
i = ψn+1

2 (x j)ρn+1, j = NΩ +NΓ1 +1, . . . ,NΩ +NΓ1 +NΓ2 , (10)

N

∑
i=1

(∫
Ω

φi(x)dΩ
)

vn+1
i = hn+1. (11)

The collocation equations (8) are referred to the NΩ interior points in Ω, while the NΓ1
equations (9) and the NΓ2 equations (10) (involving also the unknown ρn+1 = ρ(tn+1))
arise from the initial and Dirichlet boundary conditions. Finally, a further equation is
obtained by means of 2D Gaussian-Legendre quadrature rules of order 15. Therefore,
the time discretization approximation and the local collocation strategy construct a linear
system of N+1 linear equations with N+1 unknown coefficients (N = NΩ+NΓ1 +NΓ2).
The unknown coefficients v(n+1) = (vn+1

1 , . . . ,vn+1
N ,ρn+1) are obtained by solving the

sparse linear system:

A v(n+1) = B(n+1), (12)

where A is a (N + 1)× (N + 1) coefficient matrix and B(n+1) is a (N + 1) vector. Let
us notice that, unlike B(n+1), the coefficient matrix A does not change its entries along
time steps. Moreover, due to the local approach the coefficient matrix A is sparse.
Previous discussion can be summarized through the following scheme, Algorithm 1,
which describes the main steps of the numerical procedure.

Algorithm 1 Pseudo-code for problem (1)
Input: κ,α,T,τ ,ϕ,Ψ1,Ψ2,h,

{xi}NΩ
i=1, % interior points

{xi+NΩ}
NΓ1
i=1 % Γ1 boundary points

{xi+NΩ+NΓ1
}NΓ2

i=1 % Γ2 boundary points

Output:
{
{vn+1

i }N
i=1

}T/τ−1

n=0
,

{ρn+1}T/τ−1
n=0

1: build A % by following (8,9,10,11)

2: for n = 0,1, . . . ,T/τ −1 % loop on time slices

3: build B(n+1) % by following (8,9,10,11)

4: compute v(n+1) : % solution of A v(n+1) = B(n+1) in (12)

5: endfor

3. Sequential and parallel implementation

In order to implement the Algorithm 1, we need to define: a 2D regular grid, called
CenterPoints and the sub-sets center I, center b1 and center b2, the interior
points and the boundary points of the CenterPoints, respectively. Therefore, we find
for each fixed interior point (i = 1, . . . ,size(center I)) its local neighbors and, by eval-

P. de Luca et al. / A GPU-CUDA Framework314

uating the Laplacian of the local RBF interpolating function, we build the i-th row
of A total (i.e. A). We highlight that this step requires to solve multiple linear sys-
tems of small size (number of neighbors) for each point in center I. Thus we build
next size(center b1) + size(center b2) rows of A total (by using (9) and (10))
and we build last row of A total by evaluating the integral in (3) by means of 2D
Gaussian-Legendre quadrature rules of order 15. Finally, after, a discrete 1D time inter-
val tt= [0 : τ : T], with step τ , generation, for each time in tt, we build the right-hand
side vector B (i.e. B(n+1)) and we solve the sparse linear system A total · sol = B,
where sol is the computed value of v(n+1).
Algorithm 2 illustrates the necessary steps in detail. Observe that, our sequential imple-
mentation provides the multiple linear systems solution, at lines 9, 10 and 11 by using
the routine dgesv of the LAPACK library based on the LU factorization method, while
to solve the sparse linear system, at line 16, a specific routine of the CSPARSE library
is employed [14], i.e. the cs lusol routine, typical for linear systems characterized by
sparse coefficient matrices.

Algorithm 2 Sequential algorithm
1: STEP 0: input phase

2: generate CenterPoints

3: find Center I % interior points

4: find Center b1 % boundary points

5: find Center b2 % boundary points

6: STEP 1: construction of the coefficient matrix

7: for each point of CenterPoints

8: find its local neighbors

9: solve multiple linear systems % one for each point of center I

10: solve multiple linear systems % one for each point of center b1

11: solve multiple linear systems % one for each point of center b2

12: endfor

13: STEP 2: loop on time

14: for n = 0;n < T/τ;step = 1 do

15: build B % (by using results of lines 8,9,10,11)

16: solve A total · sol = B

17: set sol M[n+1]:=sol

18: end for

19: STEP 3: output phase and condition number evaluation

20: reshape matrix sol M

Starting from some preliminary and interesting results obtained in [13], where a
multicore strategy was used, here we propose a different parallel approach that exploits
the powerful of modern GPU architectures. This new implementation comes from the
idea of increasing the threads number (using all cores available on the GPU architecture)
in order to observe the optimal gain obtained by using last generation parallel machines.

Firstly, to achieve a satisfying execution of our code (in terms of execution time
but, above all, to ensure that the software reaches the highest performance) we car-

P. de Luca et al. / A GPU-CUDA Framework 315

ried out an ad-hoc configuration of the CUDA environment, because for large input a
high number of bytes are needed to be allocated with respect to the number of oper-
ations. So, for each thread, the local stack and heap size have increased by using the
cudaThreadSetLimit(op, size) routine and by setting parameters:

– op:=cudaLimitMallocHeapSize

– size:=1024*1024*1024.

This routine has to be called before the CUDA environment starts. In this way, we tried
to overcome, as possible, the well-known problem of the limited memory inherent to the
GPU architectures. Moreover, with this arrangement it is possible to allocate memory
dynamically on a GPU and, as explained later, to reduce the transfer of host-device data.
About the decomposition approach, we combine the classical domain decomposition
with a more sophisticated functional decomposition, following this schema: each sub-
domain of work is demanded to a set of threads, using one-dimensional blocks and grid,
if the chosen number of threads is less or equal than 1024; otherwise the blocks and the
grid are set as two-dimensional structures. Therefore, following the domain decomposi-
tion approach, each thread is linked at a single input point and it performs all the oper-
ations needed to build the final sparse matrix; while in accordance with the functional
decomposition, a pool of threads, based on a fixed configuration, works on different tasks
of the overall algorithm in a parallel way.
More in detail, we describe our GPU-parallel approach STEP by STEP referring to the
serial version showed in Algorithm 2.

The input phase, in STEP 0, uses a domain decomposition-based parallelization
strategy. The local neighbors are defined by considering a sub-set of the CenterPoint

set. In particular, for each point the thread associated with it builds the sub-domains cor-
responding to the inner points and the boundary points. In this way, the construction of
local structures becomes very simple and faster.
In STEP 1 the build of the sparse matrix coefficient is designed following the domain de-
composition criterion and the functional decomposition approach: for each sub-domain
of the CenterPoint set the local neighbors are found, as in the STEP 0, therefore, each
thread (linked at one input point) builds the local corresponding multiple linear systems
whose solutions will be computed by a pull of threads, asynchronously, and then col-
lected in the global matrix A total.

In order to avoid the copy overhead, a suitable workload distribution is performed
by using Algorithm 3.

Algorithm 3 Compute global matrix for each thread
1: index = threadIdx.x + (blockDim.x * blockIdx.x) % thread index defi-

nition
2: g Mats[], g Terms[] % allocation on the host
3: FOR ALL thread
4: g Mats[index] % local matrix building
5: g Terms[index] % local note terms computation
6: ENDFOR ALL

P. de Luca et al. / A GPU-CUDA Framework316

Observe that, at lines 4, 5, 6 the values are computed and stored in the local memory of
each thread in a one-dimensional array following the row-major order method.
Now, to solve the local multiple linear systems a specific technique has been imple-
mented, because CUDA are not able to directly call the routines of the cuSOLVER li-
brary from the device. More precisely, firstly the local matrices are transferred on the
host and collected in a global array whose the rows size is equal to the thread number.
In this array each portion, related to a single thread, contains the local matrix. A similar
approach is used to build and store the right-hand side vectors of each linear system.
Therefore, from the host each local portion of the global matrices g Mats and g Terms

are used as parameters for the routine cusolverDnDgetrs of the cuSOLVER-Dense
library, called to solve each linear system, as shown in Algorithm 4.

Algorithm 4 Solving local Linear Systems - Host code
1: start cuSOLVER & cuBLAS environments
2: index = threadIdx.x + (blockDim.x * blockIdx.x) % thread index defi-

nition
3: FOR ALL thread-pull
4: call cuSOLVER routine with g Mats[index] and g Terms[index]

5: syncthreads()

6: copy result in the A total sparse matrix
7: ENDFOR ALL

The solutions, returned by the cuSOLVER routine are inserted in the A total sparse
matrix. During this phase we perform a synchronization by using the syncthreads()

routine, in order to avoid any memory contention. The final STEP 2 provides the sparse
linear system solution. It is executed in a similar way to what described in the STEP 1,
i.e. following the scheme showed in Algorithm 3 to manage the host-device data transfer.
For this last STEP only the domain decomposition approach has been used. To be spe-
cific, the loop for, related to time discretization, runs in parallel on T threads (correspond-
ing to the time interval size). However, before to compute this final STEP, a copy of the
A total sparse matrix is stored in the local memory of each thread using the CSR for-
mat, [16]. Everything described is shown in detail in Algorithm 5. More in details, each
thread builds the local B vector by using the cublasDgemv() routine of the cuBLAS
library [15], for solving a matrix-vector multiplication, at line 6. Hence, the main sparse
linear system is solved by the host with the cusolverSpDcsrlsvlu() routine of the
cuSOLVER library, at each time step.

4. Numerical tests

The GPU-parallel algorithm, described in the previous section, has been implemented on
a computer machine with the following technical specifications:

• two CPU Intel Xeon with 6 cores, E5-2609v3, 1.9 Ghz, 32GB of RAM, 4 chan-
nels 51Gb/s memory bandwidth

• two NVIDIA GeForce GTX TITAN X, 3072 CUDA cores, 1 Ghz Core clock for
core, 12 GB DDR5, 336 GBs as bandwidth

P. de Luca et al. / A GPU-CUDA Framework 317

Algorithm 5 Solving the sparse linear system
1: start a CUDA pool of T threads
2: on the device:
3: index = threadIdx.x + (blockDim.x * blockIdx.x) % compute index

thread
4: allocation g B[] % contains i-th B vector
5: FOR ALL thread
6: build B

7: g B[i th] = B

8: ENDFOR ALL
9: return to host:

10: for n = 0;n < T ;step = 1/τ do

11: solve A total · sol = g B[n]

12: set sol M[n+1]:=sol

13: end for

In the following we show some numerical tests in order to highlight the performance gain
in terms of execution times and memory occupancy. In Table 1 some executions of our
software are shown, by varying both the input size and the threads configuration. Time
values are obtained by averaging ten test runs for all each considered case.

Table 1. Execution times in seconds (s) achieved, by varying the CUDA configuration: block × threads and
the problem input size.

input size serial times 1 × 256 1 × 512 1 × 1024 2 × 256 2 × 512 2 × 1024

3.6 ×103 1.6 ×103 5.48 1.40 2.30 3.66 4.32 7.50
8.1 ×103 1.2 ×104 7.60 1.86 3.45 5.42 6.72 13.22
1.0 ×104 3.19 ×104 13.30 3.60 4.56 7.88 8.24 18.77

1.69 ×104 1.66 ×105 17.25 5.20 6.28 10.62 12.32 23.00
1.98 ×104 2.46 ×105 19.89 8.12 9.10 13.4 16.20 27.82
2.25 ×104 3.9 ×105 26.80 8.12 14.22 17.65 21.20 32.10

As we can see, a significant gain with respect to the serial version is achieved. This is
essentially due to a suitable choice for the memory setup and to the adaptive combination
of the different parallel strategies considered. As illustrated in the previous section, these
options allow us a good workload balance. More in details, the execution time of the
sequential algorithm grows considerably as the input point number increases. However
a noticeable speed up is observed in the GPU-parallel version. To be specific, the better
execution is reached by using 1×512 threads. A probable simple reason which explains
this result should be that for our graphic card, according the rules for a correct configu-
ration of the CUDA environment (that depend on the relationship between the maximum
size of the allocable constant memory and the number of CUDA cores per multiproces-
sor) the optimal number of threads per block is 512. Moreover, we highlight that, for all
last executions where the input is very large, the execution time increases, because of the
high bandwidth required during the computation. In fact, using a large number of threads
execution times grow for the spurious threads given but not used for the computation.
We just observe this phenomenon looking at the different ways of increasing the times
by comparing the second last column and the last one.

P. de Luca et al. / A GPU-CUDA Framework318

In Table 2 the execution times, for each single kernel by varying the input size and
fixing as CUDA configuration: 1×512, are shown. As expected the most expensive ker-
nel, in terms of execution time, is the cusolverDnDgetrs() routine, which is the ker-
nel used to solve the multiple linear system needed to build the sparse matrix A total.
This task, despite the parallel decomposition/functional approach combination, remains
the most expensive in the computation.

Table 2. Time execution analysis for each CUDA Kernel: the first lines corresponding to the execution times
of computational kernels are expressed in milliseconds, while the execution times of transferred data (the last
two lines) are reported in microseconds.

cudaKernel 3.6×103 8.1×103 1.0×104 1.69×104 1.98×104 2.25×104

firstKernel() 394.12 938.03 1095.78 1860.17 2167.66 2634.25

computeMatrix() 9.47 22.40 27.34 44.42 52.09 59.18

computeCenterb1b2 4.22 9.45 11.72 21.81 24.85 28.37

computeCenterI 3.04 6.85 9.53 14.77 17.82 19.02

cusolverDnDgetrs 962.32 1132.71 2306.38 2910.57 3729.67 5305.31

cublasDgemv() 1.89 4.95 5.25 8.87 11.42 13.81

cusolverSpDcsrlsvlu 205.81 464.50 571.69 966.14 1132.28 1328.66

CUDA memcpy HtoD 808.33 2117.74 2245.36 3814.86 4142.87 5082.12

CUDA memcpy DtoH 640.22 1667.41 1887.38 2809.85 3151.21 4002.37

Time values in previous table positively confirm the efficiency of the proposed soft-
ware by showing the low weight of host-device-host communications with respect to the
computational workload. Conclusive considerations on the performance of our algorithm
can be made by analyzing Table 3.

Table 3. Memory usage in MBytes (MB) - configuration blocks/threads = 1×512.

N MB

3.6 × 103 1165

8.1 × 103 1183

1.0 × 104 1215

N MB

1.69 × 104 1251

1.98 × 104 1332

2.25 × 104 1491

From this table, we deduce that the GPU version allows us to obtain a very good mem-
ory occupation, typical of the use of CUDA architectures. In fact, the low use of global
CUDA memory (for our graphic card maximum 12213 MBytes) is due to the high uti-
lization of local threads memory, which in addition to reducing the time of device-host-
device copy limits the use of the global memory, stemming all the work in the local
thread work-space.

5. Conclusions

In this paper, we proposed a GPU-parallel algorithm to solve a two-dimensional in-
verse time fractional diffusion equation. The algorithm implements a numerical proce-
dure based on the discretization of the Caputo fractional derivative and on the use of a
meshless localized collocation method exploiting the radial basis functions properties.

P. de Luca et al. / A GPU-CUDA Framework 319

The parallel approach, based our CUDA-kernels efficient implementation and on a reli-
able use of ad-hoc parallel numerical libraries available on CUDA, provides a significant
performance gain in terms of execution times and memory occupancy.

Acknowledgement

This paper has been supported by project Algoritmi innovativi per interpolazione, ap-
prossimazione e quadratura (AIIAQ) and project Algoritmi numerici e software per il
trattamento di dati su larga scala in ambienti HPC (LSDAHPC).

References

[1] Mohebbi, Akbar, Mostafa Abbaszadeh, and Mehdi Dehghan. ”The use of a meshless technique based
on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation
arising in quantum mechanics.” Engineering Analysis with Boundary Elements 37.2 (2013): 475-485.

[2] Piret, CéCile, and Emmanuel Hanert. ”A radial basis functions method for fractional diffusion equations.”
Journal of Computational Physics 238 (2013): 71-81.

[3] Aslefallah, Mohammad, and Elyas Shivanian. ”Nonlinear fractional integro-differential reaction-diffusion
equation via radial basis functions.” The European Physical Journal Plus 130.3 (2015): 47.

[4] Cuomo, S., Galletti, A., Giunta, G., Marcellino, L., Reconstruction of implicit curves and sur-
faces via RBF interpolation (2017) Applied Numerical Mathematics, 116, pp. 157-171. DOI:
10.1016/j.apnum.2016.10.016

[5] Fasshauer, Gregory E. Meshfree approximation methods with MATLAB. Vol. 6. World Scientific, 2007.
[6] https://developer.nvidia.com/cuda-gpus
[7] https://docs.nvidia.com/cuda/cusolver/index.html
[8] L. Yan, F. Yang, The method of approximate particular solutions for the time-fractional diffusion equation

with a non-local boundary condition, Computers and Mathematics with Applications, 70 (2015) 254-264.
[9] S. Abbasbandy, H. R. Ghehsareh, M. S. Alhuthali, H. H. Alsulami, Comparison of meshless local weak

and strong forms based on particular solutions for a non-classical 2-D diffusion model, Engineering Anal-
ysis with Boundary Elements, 39 (2014) 121-128.

[10] Q. Liu, Y. T. Gu, P. Zhuang, F. Liu, Y. F. Nie, An implicit RBF meshless approach for time fractional
diffusion equations, Comput Mech, 48 (2011) 1-12.

[11] W.Y. Tian, H. Zhou, W.H. Deng, A class of second order difference approximations for solving space
fractional diffusion equations, Mathematics of Computation, 84 (2015) 1703-1727.

[12] A. Kilbas, M.H. Srivastava, J.J. Trujillo, Theory and Application of Fractional Differential Equations,
North Holland Mathematics Studies, 204 (2006).

[13] De Luca, P., Galletti, A., Giunta G., Marcellino, L., Raei, M. Performance analysis of a multicore im-
plementation for solving a two-dimensional inverse anomalous diffusion problem (2019) Lecture Notes in
Computer Science - Proceedings of NUMTA2019, THE 3RD INTERNATIONAL CONFERENCE AND
SUMMER SCHOOL

[14] http://faculty.cse.tamu.edu/davis/suitesparse.html
[15] https://docs.nvidia.com/cuda/cublas/index.html
[16] https://docs.nvidia.com/cuda/cusparse/index.html#csr-format

P. de Luca et al. / A GPU-CUDA Framework320

