
Improving the Scalability of the ABCD
Solver with a Combination of New Load

Balancing and Communication
Minimization Techniques1

Iain DUFF a,b, Philippe LELEUX a,2, Daniel RUIZ c,and F. Sukru TORUN d

aCERFACS, Toulouse, France
b Scientific Computing Dpt., Rutherford Appleton Laboratory, Oxon, England
c IRIT - Institut de recherche en informatique de Toulouse, Toulouse, France

dAnkara Yildirim Beyazit University, Ankara, Turkey

Abstract The hybrid scheme block row-projection method implemented
in the ABCD Solver is designed for solving large sparse unsymmetric
systems of equations on distributed memory parallel computers. The
method implements a block Cimmino iterative scheme, accelerated with
a stabilized block conjugate gradient algorithm. An augmented pseudo-
direct variant has also been developed to overcome convergence issues.
Both methods are included in the ABCD solver with a hybrid paral-
lelization scheme. The parallel performance of the ABCD Solver is im-
proved in the first non-beta release, version 1.0, which we present in this
paper. Novel algorithms for the distribution of partitions to processes
are introduced to minimize communication as well as to balance the
workload. Furthermore, the master-slave approach on each subsystem
is also improved in order to achieve higher scalability through run-time
placement of processes. We illustrate the improved parallel scalability
of the ABCD Solver on a distributed memory architecture by solving
several problems from the SuiteSparse Matrix Collection.

Keywords. Block Cimmino, hybrid solver, sparse matrix, distributed
memory parallelism, iterative solver

1. The iterative and augmented block-Cimmino method

The Augmented Block Cimmino Distributed Solver (ABCD Solver) is a dis-
tributed hybrid scheme designed to solve large sparse unsymmetric linear systems
of the form:

1This work was supported by the Energy oriented Centre of Excellence (EoCoE), grant
agreement number 676629, funded within the Horizon2020 framework of the European
Union. We acknowledge PRACE for awarding us access to MareNostrum at the Barcelona
Supercomputing Center (BSC), Spain.

2Corresponding author: CERFACS, Toulouse, France; E-mail: leleux@cerfacs.fr

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200052

277



Ax = b, (1)

where A is a full row rank m× n matrix, m ≤ n, x is a vector of size n and b is
a vector of size m. The approach is based on the block Cimmino row projection
method (BC) [1]. BC is applied to the system which is partitioned in p row blocks
where p < m. Starting from an arbitrary initial estimate x(0), a BC iteration
improves the estimated solution by summing the projections of the current iterate
on the subspaces spanned by the blocks of rows to converge to a solution. The
convergence rate of BC is known to be slow [2]. When looking at the fixed point
of the iterations, we obtain the following equivalent system:

Hx = k, where

⎧
⎪⎪⎨

⎪⎪⎩

H =
p∑

i=1

PR(AT
i ) =

p∑

i=1

A+
i Ai

k =
p∑

i=1

A+
i bi.

(2)

As the row blocks Ai are assumed to have full row rank, H is symmetric and
positive definite. To accelerate the convergence of the block Cimmino method,
we solve instead this system using a block conjugate gradient algorithm (BCG)
improved with stabilization of both residuals and directions [3]. The convergence
of this method stays problem dependent and in some cases, convergence profiles
with long plateaux can be observed. The eigenvalues of the matrix H are directly
linked to the principal angles between subspaces spanned by the row partitions.
If these angles are wider, the convergence becomes faster.

As an alternative, that we call ABCD, our solver also offers the possibility of

constructing a larger system

[
A C
B S

] [
x
y

]

=

[
b
f

]

where the numerical orthogonality

between partitions is enforced. As a result, the block Cimmino method converges
in exactly one iteration and x is the solution of the original system. This results
in a pseudo-direct method [4] with the solution dependent on the projections as
in BC, and on the direct solution of a system involving the matrix S. However,
the efficiency of such an approach, compared to other sparse direct solvers, de-
pends on the size or the density of the condensed system S which are problem
dependent. Implementation of both ABCD and BC are available in the ABCD
Solver3 package.

2. Hybrid parallelism

In this section, we present the parallelization scheme of the ABCD Solver us-
ing MPI and OpenMP, and the need for an optimization of the load balancing
and communication reduction. Both BC and ABCD methods perform the same
preprocessing steps. Firstly, after scaling the system, we partition the matrix so
that the principal angles between the subspaces given by the partitions are not
too small, and the sizes of the partitions are balanced. There are many ways to
construct these partitions. In the case of an iterative solution with BC, we will

3http://abcd.enseeiht.fr/

I. Duff et al. / Improving the Scalability of the ABCD Solver278



consider graph partitioners on the normal equations as they tend to reduce the
number of iterations, as illustrated in [5]. In the case of the pseudo-direct solu-
tion with ABCD, we shall consider instead the multilevel hypergraph partitioner
PaToH [6], which essentially decreases the size of the augmentation scheme, see
[7]. Secondly, the basic idea is to distribute each partition to one process, called
master, which builds an augmented system [8] used to compute the projection on
the subspace spanned by the block of rows in the partition.

Thirdly, these augmented systems are solved using the sparse direct solver
MUMPS4 [9]. This direct solver uses the well-known multifrontal method and
performs three steps: analysis (preprocessing, estimation of workload and mem-
ory), LDLT factorization, and finally solve (forward elimination and backward
substitution). Analysis and factorization must only be performed once, while one
solve is needed to compute each projection at each iteration. These local pro-
jections are then summed through non-blocking point-to-point communications
between masters. The amount of data communicated is equal to the number of
shared columns, called interconnections. Note that additionally in ABCD, the
matrix S is built in an embarrassingly parallel way by computing each column
with a projection independently, then S is given in distributed form directly to
MUMPS for a parallel solve on the global communicator (see [4] and [7] for the
details of the construction and solution of S).

The ABCD Solver is a hybrid scheme, in the sense that the method is iterative
but relies on a direct solver for each subproblem defined by the partition. The
solver also implements a hybrid parallelism in the sense that several levels of
parallelism are exploited at the same time:

1. the projections are independent and can be computed in parallel,
2. the MUMPS solver introduces two levels of parallelism: through the ex-

ploitation of its elimination tree and through the factorization of large
frontal matrices using parallel linear algebra dense kernels.

Depending on the number of processes and the number of partitions, there
are various possibilities for scheduling the computations. In the following sections
of the article, we propose and study three different approaches for this. In the
first approach, we consider an equal number of processes and partitions, in which
case each master has exactly one partition. We experiment, in Section 3, to find
the optimal number of processes per node to reduce the execution time.

In the second approach, the number of MPI processes is assumed to be less
than the number of partitions. In such a case, the idea would then be to assign
groups of partitions to the masters, which will construct one single block diagonal
system, made with the various partitions. This block diagonal system can then
be solved as before using MUMPS, and the goal is to balance the workload over
all masters when distributing the partitions. In Section 4, we propose a new
algorithm that aims to group partitions on each master so as to minimize the
overhead of communication between masters, and at the same time equilibrate
the load balance across masters.

In the third approach, we assume more MPI processes than partitions, in
which case processes with no partitions can be associated with the masters, as

4http://mumps-solver.org/

I. Duff et al. / Improving the Scalability of the ABCD Solver 279



slave processes, in order to contribute to the parallel computations in MUMPS.
The target is to set master-slaves groups with balanced workloads, by taking
into account the anticipated number of flops given by the MUMPS analysis of
each partition. In Section 5, we first present a fast and optimal assignment of
the slaves that balances the workload across subgroups of processes. Then we
introduce a new method to assign the processes, masters and slaves, in the physical
computing resources to decrease the communication overhead both within and
between master-slaves groups depending on the method used, BC or ABCD.

In the ABCD Solver, we distinguish three types of communications [7]: the
inter-communication between masters which occurs when summing the projec-
tions; the intra-communication inside master-slaves group which only occurs when
computing a projection using MUMPS; finally in ABCD, global communication
when solving the system based on S.

To illustrate the impact of our contributions, we run the ABCD Solver on
three matrices from the SuiteSparse Matrix Collection [10]. Table 1 shows charac-
teristics of the matrices. We conduct our experiments on MareNostrum4, a peta-
scale supercomputer at the Barcelona Supercomputing Center5. It is a cluster
with Intel Xeon Platinum processors. Each compute node is a 2-socket system
where the 24 cores of each processor constitute a separate NUMA (non-uniform
memory access) domain and nodes are interconnected with the Intel Omni-Path
architecture. MareNostrum4 offers 96 GB RAM memory per NUMA domain,
which means around 4 GB per core.

Table 1. Characteristics of the test matrices. n: the order of the matrix, nnz: the number of
nonzero values in the matrix.

Matrix n (×106) nnz (×106) nnz/n kind

hamrle3 1.45 5.51 3.81 circuit simulation problem

cage15 5.15 99.20 19.24 directed weighted graph

memchip 2.70 13.00 4.93 circuit simulation problem

3. Optimal node configuration

When the number of partitions equals the number of processes, we determine the
best distribution of MPI processes with respect to the execution time. With a
fixed number of 128 MPI processes and an equal number of 128 partitions, we in-
crease the number of processes per node from 2 to 64. Table 2 shows the execution
times and we see that 2 MPI processes per node yields the minimum overall times.
Although this results in more communication, because the linear algebra kernels
used throughout the code and in MUMPS are memory-bound, they benefit from
distributing the memory. Fewer processes per node implies less concurrent access
to memory and faster computation. We will allocate 2 processes per node as our
optimal configuration in the rest of the paper.
Since only a subset of nodes is used by MPI processes, when increasing the num-
ber of nodes we have the possibility of activating OpenMP parallelism but do
not study this here where we focus on workload balancing and communication
reduction.

5https://www.bsc.es/marenostrum/marenostrum

I. Duff et al. / Improving the Scalability of the ABCD Solver280



Table 2. Timings for the factorization of the augmented systems, for the BCG in BC, and for
the pseudo-direct solution in ABCD. All runs were with 128 MPI processes spread with ppn
processes per node and 128 partitions. Note that the memory required for ABCD was too large
to solve the system cage15 on MareNostrum4.

Matrix ppn nodes
BC ABCD

facto(s) BCG(s) it. facto(s) sol.(s)

Hamrle3

32 4 0.17 192 500 0.22 9.44
16 8 0.19 138 ” 0.21 9.48
4 32 0.18 79 ” 0.20 9.50
2 64 0.18 77 ” 0.22 10.10

cage15

32 4 1 550 65 17 - -
16 8 1 380 52 ” - -
4 32 1 230 40 ” - -
2 64 1 210 38 ” - -

memchip

32 4 0.44 361 500 0.42 29.60
16 8 0.31 269 ” 0.31 29.70
4 32 0.28 171 ” 0.29 28.80
2 64 0.27 168 ” 0.29 28.10

4. Load balancing: distribution of partitions

In the case where the number of partitions is higher than the number of processes,
a master process owns a group of partitions. In this section, the goal is to distribute
the partitions to the masters with the right trade-off between balancing the weight
of the local groups of partitions over all processes and minimizing the overhead
in communication between masters.

4.1. Balancing the weight of the local partitions

We first consider only balancing the weights of the partitions. The weights should
represent the future workload to compute projections. In the absence of more
precise data at this point of the solver, we simply use the number of rows as a
crude measure. Although this gives reasonable results here, it can result in bad
load imbalance. In the next section, we will use accurately estimated workloads
from a latter phase of the solver to distribute the slave processes. To balance the
weights, we use the greedy algorithm introduced in [7]. The algorithm distributes
partitions sorted in decreasing order of weights to masters. At each step, the
master with current lowest accumulated weight receives a partition. This process
results in an optimal distribution of the partitions over all masters in terms of
balancing our criterion.

4.2. Minimize the overhead of communication

Globally, balancing the weights of local sets of partitions is not the only concern,
one should also consider the overhead from inter-communication between masters
resulting from the distributed sum of local projections and, in ABCD, from the
parallel solution of the condensed system S. Therefore, the best distribution of the
partitions should find the right trade-off between this communication, i.e. mini-
mizing the number of interconnected columns between processors, and balancing
the workload over processes in order to achieve minimum parallel execution time.

I. Duff et al. / Improving the Scalability of the ABCD Solver 281



We propose a new algorithm which is based on this principle. The algorithm
first creates a graph G. The vertices of G are the partitions weighted by their
respective size. There is an edge between two vertices if the corresponding parti-
tions are interconnected, i.e. they share a nonzero column, and the cost of that
edge equals the number of such columns. In the final step, we partition G using
the multilevel graph partitioning tool METIS [11] to minimize the number of in-
terconnections between the groups of partitions for each master, with a parameter
μ that allows a certain imbalance in the accumulated weight over the groups of
partitions.

4.3. Experimental results

The experiments are conducted on the three matrices with the greedy algorithm
(Greedy) and the communication reducing algorithm where μ = 1% (Comm1 )
and μ = 10% (Comm10 ). Each matrix is partitioned into 1 024 blocks and is
solved using 128 MPI processes spread over 64 distributed nodes with no mul-
tithreading. The numerically aware partitioning [5] is applied for BC, and the
PaToH hypergraph partitioner is used for ABCD. Results are reported in Table
3. The column ‘Com. col%’ of Table 3 reports the total communication volume,
equal to the number of interconnected columns, normalized with respect to the
greedy method. The table also reports execution times for the factorization as
well as the imbalance ratio between the slowest and average factorization times
over all masters. Finally, the table gives the BCG execution time and iterations
for BC, and the time to compute the pseudo-direct solution including the solution
of the system S for ABCD.

As seen in the table, for BC, the proposed methods Comm1 and Comm10
achieve around 55% and 62% reduction in the total number of exchanged columns
for the cases of Hamrle3 and memchip, respectively. This improvement in turn
leads to faster parallel execution of BCG for Hamrle3 and memchip. Our experi-
ments show that the larger ratio μ has a limited effect on the reduction of the total
size of communication. On the other hand, for cage15, although there is consider-
able reduction in the communication values, the execution time increases slightly
because the overhead of load imbalance absorbs the gain from the minimization
of communication.

In the case of ABCD, there is only one iteration, thus each communication
is only performed once. Compared to the gain of having balanced workloads over
the MUMPS instances, the final communication overhead is low and thus the
time only increases, slightly, with the proposed algorithm.

5. Placement of masters and slaves

In this section, we consider the case where there are more processes than parti-
tions. We make use of the extra processes to act as slaves to help the master MPI
processes to parallelize the computation further. We balance the workload over all
masters by assigning more slaves to a master with a relatively higher workload.

I. Duff et al. / Improving the Scalability of the ABCD Solver282



Table 3. Impact of the distribution of partitions on the execution times. All runs were with 1024
partitions and 128 MPI processes on 64 nodes with no multithreading. (Com. col: Normalized
column reduction values with respect to the Greedy algorithm. tot: Total time in seconds. it:
Number of iterations required for convergence. imb: ratio of maximum over average factorization
times. Sol. time: Total solution time in seconds)

BC ABCD

Matrix Algo.
Com. Fact. BCG Com. Fact. Sol.

col% tot imb tot it. col% tot imb time

Hamrle3
Greedy 100 0.22 1.62 714.25 4249 100 0.24 1.21 8.17
Comm1 46 0.19 1.26 700.66 4249 42 0.25 1.35 9.12
Comm10 45 0.20 1.36 713.69 4249 41 0.20 1.36 8.79

cage15
Greedy 100 20.41 1.97 28.01 18 - - - -
Comm1 44 42.61 3.94 34.62 18 - - - -
Comm10 44 48.82 3.75 35.00 18 - - - -

memchip
Greedy 100 0.36 1.18 299.23 791 100 0.32 1.18 5.64
Comm1 38 0.33 1.22 298.89 791 32 0.34 1.27 5.74
Comm10 38 0.35 1.21 292.05 791 31 0.33 1.23 5.72

5.1. Assignment of the slaves

We consider wk the accurate estimated workload of master k ∈ {1..nb masters}
given by MUMPS, i.e. the number of flops required for MUMPS factorization.
We propose a new 2-step algorithm for the distribution of the slaves. Firstly,
considering the number of slaves corresponding to the relative workload of each
master k:
s
(theo)
k = (wk/

∑#masters
i=1 wi) × #slaves, a number of slaves equal to the floor

part of this amount is assigned to each master. Since most of the slaves are now
associated with a master, the second step only has to allocate the remaining
slaves. Secondly, we apply a greedy algorithm: at each step, one of the remaining
slaves is assigned to the master-slave group with the currently highest average
workload, until all slaves have been assigned. We obtain an optimal distribution of
the slaves in terms of average workload and, thanks to the first step, the number
of greedy searches performed is decreased.

5.2. Hierarchy of the computing architectures

The ABCD Solver is designed to solve large systems on distributed memory ar-
chitectures where the computing resources are hierarchically structured, as is the
case here with the supercomputer MareNostrum4.

When launching our distributed application, we specify a certain number of
MPI processes per node which are allocated by the batch system. As a result,
when the program starts, processes are already allocated and placed on the system
architecture in a certain way. Depending on the situation at runtime, we need to
decide which processes will be given the role of master or slave in order to minimize
the total overhead of the communication between masters (inter-communication)
on the one hand, and inside master-slaves groups (intra-communication) on the
other hand. This process consists of three steps: firstly the placement of the
masters, secondly the assignment of the number of slaves as in the last section
using the estimation of the workload with MUMPS, and thirdly choosing the
slaves for each master depending on its position in the architecture.

I. Duff et al. / Improving the Scalability of the ABCD Solver 283



Two opposite approaches emerge in this situation. We can place masters close
to each other to accelerate inter-communication, and we refer to this approach as
Compact, or we place the master-slaves group together on a node to simultane-
ously improve intra-communication, and decrease concurrent access to memory
by masters. We refer to this latter approach as Scatter.

5.3. Explicit placement of masters and slaves over nodes

The approach first implemented in the ABCD Solver, see [7], is Compact: the
first ranks of MPI make the masters and the rest of the processes are assigned
in a sequence to them as slaves depending on the rank. Although this approach
minimizes the inter-communication, both the intra-communication as well as the
sequential calls to dense kernels, known to be memory-bound, are slowed down
due to concurrent memory access among masters.

Based on the results obtained in Section 3, mainly for BC, we have seen that
spreading processes over the nodes is better because of more efficient memory
access. Thus, we propose to implement the Scatter approach to improve the ex-
ecution time of the ABCD Solver. Note that we currently use a “manual” im-
plementation of this approach, but this could be replaced by architecture aware
mechanisms in the future [12]. We define two algorithms for placement of the
masters and the slaves.

The principle of these algorithms is simple:

• To place masters, we first gather information to know which node each
process is on. We then assign one master per non-full node in a zig-zag
fashion, starting from the biggest node to smallest then alternating.

• To place slaves, we first sort the masters in descending number of desired
slaves. Then for each master, we place the slaves in the corresponding node
and, if some are left, we group the remaining ones in other nodes as closely
as possible.

In Figure 1, we illustrate the effect of the Compact and Scatter approach on
a toy example. We partition a matrix in 3 partitions solved using block Cimmino
with 12 processes. We define 3 masters each with 3 slaves and launch the solver
on 3 nodes each with 4 processes.

Figure 1. 3 nodes with 4 processes on each and we have 3 masters with 3 slaves each. Mi

corresponds to the master i and the Sj of the same colour is its slave j. (Left) Compact scheme,
(Right) Scatter scheme.

I. Duff et al. / Improving the Scalability of the ABCD Solver284



5.4. Experimental results

The results are presented in Table 4. Firstly, we observe that the execution times
for factorization remain mostly unchanged for both algorithms for memchip and
Hamrle3. In the case of cage15, which is dominated by this phase, the execution
time of factorization is decreased in Scatter, benefiting from less concurrent ac-
cess to memory. Concerning the BC method, the times for the sum of projections,
which is included in the time for BCG, can increase in some cases with the Scatter
approach, due to most master-slaves communicators being spread over the nodes.
However, the overall BCG run-times always benefit from spreading the masters
over the nodes, inducing less concurrency in memory access, and from grouping
master-slaves groups, thanks to faster intra-communication. The effects of chang-
ing the algorithm are overall very small. In the end, we only have 2 processes
per node so changing their placement does not change the global performance.
We ran the experiment for the matrices Hamrle3 and memchip again, using 16
processes per node, thus 128 MPI processes on 8 nodes. The memory required for
cage15 was too high for this configuration. Regarding the run-time of the BCG,
Hamrle3 is solved in 203s with Compact and 161s with Scatter, while memchip is
solved in 254s with Compact and 186s with Scatter. While the overall run-time
with Scatter is higher than running with only 2 processes per node, the differ-
ence is only 4.5% for both matrices. Using the Compact algorithm however, the
degradation is around 25%. This means that using the Scatter algorithm is more
robust to having multiple active cores per node, which is a big step towards gain-
ing scalability. However, in the case of ABCD the time to compute the pseudo-
direct solution no longer benefits from spreading the masters with Scatter. In this
approach, the computation is completely distributed, thus the overhead in com-
munication absorbs the improvement from lower concurrent access to memory.
Overall, the timings are not too different. Because of an implementation mixing
together multiple layers of parallelism from MUMPS and the partitioning itself,
the hybrid parallelism used is robust.

Table 4. Impact of the placement of masters and slaves on the execution times of ABCD
Solver iterative method. All runs were with 32 partitions and 128 MPI on 64 nodes with no
multithreading.

Matrix Algo.
Block Cimmino ABCD

facto(s) BCG(s) it. proj. sum(s) facto(s) Sol.(s)

Hamrle3
Compact 0.41 159 500 76.4 0.36 43.2
Scatter 0.40 154 500 77.4 0.33 45.1

cage15
Compact 567 22.7 15 14.6 - -
Scatter 560 22.3 15 14.7 - -

memchip
Compact 0.40 184 365 89.1 0.46 24.8
Scatter 0.43 178 365 85.8 0.45 28.8

6. Conclusion

We have shown the potential improvement that can be obtained in a master-slave
scheme by considering the minimization of communication on an equal footing

I. Duff et al. / Improving the Scalability of the ABCD Solver 285



with the balancing of workload. Firstly, we proposed a new distribution of par-
titions such that we decrease the communication between masters in the block
Cimmino method, thus decreasing the total execution time in a context where
many iterations are necessary with processes communicating for each iteration.
Secondly, we propose a new way of attributing the roles of master or slave to
processes depending on the run-time situation on the machine. We have identi-
fied two specific schemes : scattering the masters over the nodes is well adapted
to the block Cimmino method, especially when the number of iterations is high,
while compacting the masters in the same nodes is adapted for the augmented
block Cimmino pseudo-direct method. Furthermore, the Scatter approach is more
robust with respect to the number of processes per node, which is a big step to-
wards scalability. Finally, we demonstrate the improved parallel scalability on a
distributed memory architecture.

References

[1] Tommy Elfving. Block-iterative methods for consistent and inconsistent linear equations.
Numerische Mathematik, 35(1):1–12, 1980.

[2] Randall Barry Bramley and Ahmed Sameh. Row projection methods for large nonsymmet-
ric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(1):168–193,
1992.

[3] Daniel Ruiz. Solution of large sparse unsymmetric linear systems with a block iterative
method in a multiprocessor environment. CERFACS TH/PA/9, 6, 1992.

[4] Iain S Duff, Ronan Guivarch, Daniel Ruiz, and Mohamed Zenadi. The augmented block
cimmino distributed method. SIAM Journal on Scientific Computing, 37(3):A1248–
A1269, 2015.

[5] F. Torun, M. Manguoglu, and C. Aykanat. A novel partitioning method for accelerating
the block cimmino algorithm. SIAM Journal on Scientific Computing, 40(6):C827–C850,
2018.

[6] Umit V Catalyürek and Cevdet Aykanat. Patoh: a multilevel hypergraph partitioning
tool, version 3.0. Bilkent University, Department of Computer Engineering, Ankara, 6533,
1999.

[7] Mohamed Zenadi. The solution of large sparse linear systems on parallel computers using
a hybrid implementation of the block Cimmino method. PhD thesis, EDMITT, 2013.

[8] Åke Björck. Iterative refinement of linear least squares solutions i. BIT Numerical Math-
ematics, 7(4):257–278, 1967.

[9] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling. SIAM Journal on
Matrix Analysis and Applications, 23(1):15–41, 2001.

[10] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[11] G Karypis and V Kumar. Metis: A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices. Department
of Computer Science, University of Minnesota, 1995.

[12] Emmanuel Jeannot, Guillaume Mercier, and François Tessier. Process placement in multi-
core clusters: Algorithmic issues and practical techniques. IEEE Transactions on Parallel
and Distributed Systems, 25(4):993–1002, 2013.

I. Duff et al. / Improving the Scalability of the ABCD Solver286


