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Abstract. Matrix multiplication requires computer systems have huge computing 
capability and data throughputs as problem size is increased. In this research, an 

OpenCL-based matrix multiplier with task parallelism is designed and implemented 

by using the FPGA board DE5a-NET to improve computation throughput and 
energy efficiency. The matrix multiplier is based on the systolic array architecture 

with 10 × 16 processing elements (PEs), and all modules except the data loading 
modules are autorun to hide computation overhead. When data are single-precision 

floating-point, the proposed matrix multiplier averagely achieves about 785 

GFLOPs in computation throughput and 66.75 GFLOPs/W in energy efficiency. 
Compared with the Intel’s OpenCL example with data parallelism on FPGA, the 

SGEMM routines in the Intel MKL and OpenBLAS libraries executed on a desktop 

with 32 GB DDR4 RAMs and an Intel i7-6800K processor running at 3.4 GHz, the 
proposed matrix multiplier averagely outperforms by 3.2 times, 1.3 times, and 1.6 

times in computation throughput, and by 2.9 times, 10.5 times, and 11.8 times in 

energy efficiency, respectively, even though the fabrication technology is 20 nm in 
the FPGA while it is 14 nm in the CPU. Although the proposed FPGA-based matrix 

multiplier only delivers 6.5% of the computation throughput of the SGEMM routine 

in the cuBLAS performed on the Nvidia TITAN V GPU, it outperforms by 1.2 times 
in energy efficiency even though the fabrication technology of the GPU is 12 nm. 
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1. Introduction  

Matrix multiplication is one of the fundamental building blocks of linear algebra, and 

has been widely applied in high performance computing (HPC) to solve scientific and 

engineering problems, such as deep learning, data analytics, and so on. In general, matrix 

multiplication requires computing systems to have huge computation capability and 

memory bandwidth as problem size grows. Nowadays, many methods and algorithms 

have already been developed to speed up computation through parallel programming 

techniques or improving the efficiency of memory hierarchy to reduce data access 

overhead in supercomputers, GPUs, multicores, many-cores, and cluster systems. On the 

other hand, power problems become more and more serious in HPC systems, and 

heterogeneous architectures are becoming the mainstream, in which GPUs or FPGAs are 

tightly integrated with multicore processors as accelerators to reduce power consumption, 

especially FPGAs. FPGAs deliver much higher energy efficiency through data 

parallelism and pipelining parallelism using a sea of individually PEs running at low 
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clock frequency. In recent years, an FPGA contains thousands of hardened floating-point 

arithmetic units and million-byte on-chip block RAMs (BRAMs). Furthermore, high-

level synthesis tools let developers shift their focus from low-level HDL-based designs 

to C, C++, or OpenCL codes annotated with directives, which makes the system 

development much easier and development time being shortened. All these lead FPGAs 

to become attractive in HPC.  

FPGA-based acceleration on matrix multiplication has received much attention in 

industry and academics. Zhuo et al. [1] and Dou et al. [2] proposed a matrix multiplier 

with PEs being one-dimensional linear array architecture. Zhuo et al. analyzed the design 

tradeoffs and optimized the design based on the hardware constraints. Dou et al. proposed 

a parallel block algorithm to improving performance by exploiting the data locality and 

reusability. Based on their work, Wu et al. [3] developed an I/O and memory optimized 

blocking algorithm to improve memory efficiency and reduce the required hardware 

resources. Kumar et al. [4] also presented a one-dimensional array architecture of PEs 

and applied the rank-1 update algorithm to schedule input data to PEs. Different with the 

architectures proposed by Dou and Zhou, this architecture distributes the same elements 

of the first matrix to all PEs through broadcasting. Pedram et al. [5][6] introduced a two-

dimensional linear array architecture for matrix multiplication, in which data exchange 

between PEs was performed through row/column broadcasting buses. Such two-

dimensional architecture provides benefits in scalability, addressing, and data movement 

over one-dimensional array architecture.  

There are other FPGA-based accelerators on matrix multiplication for different 

purposes. Giefers et al. [7] presented an FPGA-based accelerator for matrix 

multiplication on a hybrid FPGA/CPU system to study energy efficiency. Jiang et al. [8] 

introduced a scalable macro-pipelined accelerator to perform matrix multiplication to 

exploit temporal parallelism and architectural scalability. Wang et al. [9] integrated 

multiple matrix accelerators with a master processor and built a universal matrix 

processor. Z. Jovanovic et al. [10] presented an accelerator to minimize resource 

utilization and maximum clock frequency by returning the computation results to the 

host processor as soon as they were computed. Andrade et al. [11] adopted high-level 

synthesis approach to generate two-dimensional embedded processor arrays for matrix 

algorithms. Holland [12] proposed high-level synthesis optimization strategies to 

maximize the utilization of the DSPs and BRAMs in blocked matrix multiplication. In 

this research, an FPGA-based matrix multiplier with task parallelism is presented for 

large-scale matrix multiplication. The major contributions of this work are as follows. 
(1) Design and implementation of a matrix multiplier with task parallelism. The matrix 

multiplier is based on the systolic array architecture with 10 × 16 PEs, and data 
reuse and optimization techniques are applied to improve computing performance 
and energy efficiency. 

(2) Task parallelism and data vectorization. The system is partitioned into different 
single-work-item kernels according to dataflow, and most of the kernels work at the 
autorun mode to reduce computation overhead. High-speed and high-bandwidth 
buffers are adopted to exchange data between PEs and kernels. Data vectorization 
is applied to compute the dot product of multiple data inside a PE to enhance the 
computation capability. The proposed system averagely achieves about 785 
GFLOPs in computation throughput and 66.75 GFLOPs/W in energy efficiency in 
the case of data being single-precision floating-point.  

The remainder of this paper is organized as follows. The system design and 
implementation are introduced in Section 2. In Section 3, performance evaluation results 
are presented, followed by conclusions drawn in Section 4. 
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2. System Design and Implementation 

A matrix multiplication  is generally defined as follows: 

 

Where A, B, and C are , , and  matrices, respectively. The 

computations from the above formula can be described by the pseudocode shown in 

Figure 1. In Figure 1, a matrix multiplication consists of three loops, and their positions 

can be changed. The computations require 2×M×P×N floating-point operations and 

M×P+P×N+M×N memory accesses. To speed up the computations, firstly, the 

computation load in a clock cycle should be maximized, which means more floating-

point multipliers and adders are involved into computation and work in parallel to get 

one or more of the scalar product Cij at a clock cycle. This may be achieved by unrolling 

the inner loop (k) and outer loops (i and j) to get more parallel iterations at arithmetic 

level. At circuit level, it is achieved using deep pipelining of floating-point multiplication 

and addition units inside a PE, and many PEs are applied to calculate Cij. Although the 

loops can be unrolled completely, they are limited by the number of DSP blocks inside 

an FPGA, which are applied to implement the floating-point arithmetic units. Secondly, 

parallel data stream is needed to feed the pipeline and shorten the overhead of data access. 

Thus, on-chip buffers are demanded to store the elements of matrices A and B in advance. 

In general, multiple-port and large-size buffers can read/write data in parallel and keep 

more data, but they are constrained by the size of BRAMs inside an FPGA. In addition, 

the overheads to writing data from external memory to on-chip buffers are affected by 

memory bandwidth. To address these, the blocked matrix multiplication algorithm is 

applied to partition the matrices into smaller blocks (sub-matrices), and parallelisms, 

such as data parallelism and task parallelism, are put on the sub-matrix multiplications. 

In this research, the matrix multipliers based on such two parallelisms are designed using 

OpenCL programming language and implemented using FPGA, respectively.  
 

 

 
 

 

 
 

 

Figure 1. Pseudocode of a matrix multiplication. 

2.1 Matrix Multiplier with Data Parallelism 

The matrix multiplier with data parallelism is referenced from the Intel’s OpenCL design 

example [13], and the related code is shown in Figure 2. Both matrices A and B are stored 

by row-major in the host, and two local buffers, A_local and B_local, are defined to store 

the block data of matrices A and B, respectively (lines 4 and 5). Matrices A and B are 

written into the on-board DDR memory from the host machine before computation, and 

then a block of A and a block of B are read into A_local and B_local to perform the 

product of two blocks by the computation engine, which is defined by the N-dimensional 

index space (NDRange) in the OpenCL execution model through the attribute option 

      for i = 0; i < M; i++ 

          for j = 0; j < N; j++ { 

             sum = 0.0; 
             for k = 0; k < P; k++ 

                 sum = sum + A[i][k] × B[k][j]; 

             C[i][j] = sum;} 
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__attribute((reqd_work_group_size(BLOCK_SIZE,BLOCK_SIZE,1))). The calculated 

product C[i][j] is written into the on-board DDR memory (line 24), and finally 

transferred to the host machine after all computations are finished. Along with data 

reading from the external memory (lines 14 - 17), the block data of B are transposed 

before they are stored in the local buffer (line 17) to ensure consecutive data access 

during computation (line 21). Furthermore, the inner loop in Figure 1 is fully unrolled 

by adding the directive (line 19) to instruct the OpenCL compiler to implement 

parallelism by using more DSP blocks, and the outer loop in Figure 1 is parallelized and 

realized through introducing the two-dimensional computing engine defined by the 

NDRange. The main disadvantage of this matrix multiplier is that system will be stalled 

until computations in a block are completed (line 22) and new blocks are fed into the 

local buffers (line 18) to maintain data synchronization.  

OpenCL code for blocked matrix multiplication 

1:  __kernel void matrixmult ( __global float �restrict C, __global float �A,  

2:                                             __global float �B, int A_width, int B_width)  { 

3:   //define local storage for a block of input matrices A and B 

4:     __local float A_local[BLOCK_SIZE][BLOCK_SIZE]; 
5:     __local float B_local[BLOCK_SIZE][BLOCK_SIZE]; 

6:    int block_x = get_group_id(0);   //define block index: row 

7:    int block_y = get_group_id(1);   //define block index: column 
8:    int local_x = get_local_id(0);   //define local index: row 

9:    int local_y = get_local_id(1);   //define local index: column 

10:  int a_start = A_width�BLOCK_SIZE�block_y;   //loop start and stop points 

11:  int a_end = a_start + A_width - 1; 

12:  int b_start = BLOCK_SIZE � block_x; 

13:  float sum = 0.0f; 

14:  for (int aa=a_start, bb=b_start; aa<=a_end; aa+=BLOCK_SIZE, bb+= (BLOCK_SIZE�B_width)) { 

15:     // load the matrices into local memory, and perform B<=BT  

16:     A_local[local_y][local_x]=A[aa+A_width�local_y+local_x]; 

17:     B_local[local_x][local_y]=B[bb+B_width�local_y+local_x]; 

18:     barrier(CLK_LOCAL_MEM_FENCE); // wait for the entire block to be loaded. 

19:     #pragma unroll 
20:     for (int k = 0; k< BLOCK_SIZE; ++k) { 

21:          sum += A_local[local_y][k]�B_local[local_x][k]; } 

22:     barrier(CLK_LOCAL_MEM_FENCE);  // wait for completion of computation. 
23:    } 

24     C[get_global_id(1)�get_global_size(0)+get_global_id(0)]=sum; // store result in matrix C 

25:  } 

Figure 2. OpenCL code for blocked matrix multiplication with data parallelism. 

As shown in Figure 2, blocks of both matrices are read into the local buffers at each 

iteration, and multiplications are then carried out by the computation engine. The number 

of iterations is determined by the block size and matrix scale. The required hardware 

resources are affected by the complexity of the kernel shown in Figure 2, and not 

associated with the dimensions of matrices A and B, which only affect the number of 

iterations. In Figure 2, the consumed hardware resources are mainly determined by the 

size of local buffers (A_local and B_local), the unrolling of inner loop, the scale of the 

arithmetic array defined by the NDRange, and the kernel vectorization to specify the 

number of work items within a work group to execute in a single instruction multiple 

data (SIMD) fashion. Except for the kernel vectorization and the unrolling of inner loop 

being specified individually, the size of local buffers and the scale of the arithmetic array 

are determined by the block size. Consequently, the block size has great impacts on the 

required hardware resources and system performance. 
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2.2 Matrix Multiplier with Task Parallelism 

In the matrix multiplier with task parallelism, the system is divided into different function 

modules in accordance to the data flow, and each function module is described as a kernel 

in OpenCL. As illustrated in Figure 3, the system consists of the computing kernel, data-

feeding modules (feed_mat_A_kernel and feed_mat_B_kernel), matrix-loading modules 

(load_mat_A_kernel and load_mat_B_kernel), and data output module. Each kernel 

works with single work-item. Except for the matrix-loading modules, other kernels run 

at the autorun mode to reduce computation overhead. The function of each module is 

described as follows in detail. 

� Matrix-loading modules. The matrix-loading modules read data from the on-board 

DDR memory into buffers according to the data vectorization, block size, block 

position, and data reuse.  

� Data-feeding modules. The data-feeding modules read data from the buffer and feed 

the related data to the computing kernel. As shown in Figure 3, the number of data-

feeding modules for matrices A and B equals to the number of rows and columns of 

the systolic array in computing kernel, respectively. Each data-feeding module will 

check and feed the corresponding data to the specific row or column of the computing 

kernel, and then forward the other data to the next neighbor data-feeding module. 

� Computing kernel. The computing kernel is a systolic array with 10 × 16 PEs, and 

high-speed and high-bandwidth channels are applied to connect PEs and kernels. In 

the computing kernel, data of matrix A are shifted from the left to right while data of 

matrix B are moved from the top to bottom in the systolic array to reuse data. 

� PE. The PE is the arithmetic unit to perform computation. The block diagram of a PE 

is presented in Figure 4, which consists of eight arithmetic units to compute the dot 

product of eight data at a clock cycle through pipelining, namely the data 

vectorization is eight. In Figure 4, each arithmetic unit is generated by the IP 

generator from the Quartus Prime Pro to perform different operations, and is 

implemented by using the hardened DSP blocks inside FPGA. In the current design, 

each arithmetic unit consumes one DSP block, which contains an adder and a 

multiplier with single-precision.  

� Data output module. The data output module outputs the computation results to the 

on-board DDR memory. Similar as the data-feeding module for matrix B, several 

data output modules will be applied in accordance to the column of the systolic array 

in the computing kernel. 

2.3 System Implementation  

The matrix multipliers with data parallelism and task parallelism are compiled by using 

the Intel FPGA SDK for OpenCL 16.1 and implemented by using an FPGA board DE5a-

NET from Terasic [16], which includes an Intel Arria 10 GX FPGA 

10AX115N2F45E1SG and 8 GB on-board DDR3 memory. The FPGA contains 1518 

hardened single-precision floating-point units, 427,200 ALMs, and 53 Mb M20K 

memory. The on-board memory is arranged at two independent channels with each being 

4 GB. The matrices A and B are written into different banks of the on-board memory 

through PCIe bus, and they are accessed independently through different channels. The 

product, namely the matrix C, is firstly stored into the same memory bank as the matrix 

A, and finally written back to the host machine. In the matrix multiplier with data 
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parallelism, the block size is 128 128 and the kernel vectorization is four. In contrast, 

in the matrix multiplier with task parallelism, the data vectorization is eight, and the 

block size of matrix A is 320 256 while the block size of matrix B is 256 512. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. System block diagram.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Block diagram of a PE. 

The kernel code is compiled into the intermediate representations, applied necessary 

optimizations, converted to the Verilog files, and then performed synthesis, placement 

and routing to generate the final FPGA bitstream by the Intel FPGA SDK for OpenCL. 

Table 1 presents the hardware resource utilization in the two matrix multipliers in the 

case of data being single-precision floating-point. As shown in Table 1, the matrix 

multiplier with task parallelism utilizes more DSP blocks and gains much higher clock 

frequency over the matrix multiplier with data parallelism on FPGA. In both systems, 

the system performance is constrained by the size of on-chip BRAM blocks. Although 

the matrix multiplier with data parallelism consumes less DSP blocks (34%), if the block 

size is increase further to use more DSP blocks to improve system performance, such as 

256 256, the on-chip BRAM blocks will be exhausted and the system cannot be 

synthesized because the block size affects the utilization of the BRAM blocks and DSP 
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blocks. On the other hand, in the matrix multiplier with task parallelism, the systolic 

array and data vectorization are determined by the available DSP blocks and BRAM 

blocks inside the FPGA. In the current design, the optimal systolic array contains 10 × 

16 PEs, and the data vectorization is eight, which means each PE consumes eight DSP 

blocks. Therefore, the matrix multiplier requires 1280 (10×16×8) DSP blocks. Although 

the systolic array can be scaled up to 11 × 16 PEs according to the available hardware 

resources of the FPGA, the system is not synthesizable by the Intel FPGA SDK for 

OpenCL. In addition, the clock frequency of the proposed matrix multiplier with task 

parallelism is much higher than the matrix multiplier with data parallelism because of 

more optimized data path in accordance to the dataflow.  

Table 1. Hardware resource utilization 

 

3. Performance Evaluation  

The proposed matrix multiplier is implemented by using the FPGA board DE5a-NET, 

and its performance is evaluated and compared with the matrix multiplier with data 

parallelism on FPGA [14-15], the SGEMM routine in the cuBLAS performed on the 

Nvidia TITAN V GPU [17], the SGEMM routines in the Intel MKL(version:2018.0.128) 

and OpenBLAS (version: 0.2.20) executed on a desktop machine with 32 GB DDR 

RAMs and an Intel i7-6800K processor running at 3.4 GHz. The operating system of the 

desktop machine is CentOS 7.0, and the compiler for the OpenBLAS is gcc 4.9.4. The 

compiler for the OpenCL is Intel FPGA SDK for OpenCL 16.1. In the GPU system, the 

host machine contains an Intel Xeon W-2123 processor with CentOS 7.4, CUDA 10.0, 

and the GPU driver version being 410.73. The fabrication technology in the FPGA Arria 

10 is 20 nm while it is 14 nm and 12 nm in the Intel i7-6800K processor and TITAN V 

GPU, respectively. The execution time and power consumption are measured, and the 

computation throughput and energy efficiency are estimated. During estimation, the 

matrices are square and data are single-precision. 

3.1 Computation throughput 

Figure 5 shows the computation performance in the case of different matrix scales. The 

computation throughput is almost fixed on the FPGA system as the matrix scale is 

increased because the operations become computation-bound. However, it fluctuates in 

the SGEMM routines on the GPU with cuBLAS and the desktop machine with the MKL 

and OpenBLAS libraries. For example, when the matrix scale is increased from 7680 × 

7680 to 20480 × 20480, the computation throughput in the FPGA-based matrix 

multiplier with data parallelism and task parallelism is about 240 GFLOPs and 780 

GFLOPs, respectively. But the computation throughput of the SGEMM routine on the 

GPU is decreased from 13.47 TFLOPs to 11.28 TFLOPs. Similarly, the computation 

throughput is firstly increased from 586.23 GFLOPs to 631.03 GFLOPs, and then 

dropped to 532.43 GFLOPs in the SGEMM routine on the desktop machine with the 

MKL library. In Figure 5, the proposed matrix multiplier with task parallelism averagely 

Logic utilization DSP blocks RAM blocks Clock frequency

Task parallelism 237128(56%) 1280(84%) 2529(93%) 305 MHz

Data parallelism 92002(22%) 520 (34%) 1774(65%) 235 MHz

Matrix multiplier
Hardware resource
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offers about 785 GFLOPs in computation throughput, which is about 3.2 times, 1.3 times, 

1.6 times, and 6.5% in average over the matrix multiplier with data parallelism on FPGA, 

the SGEMM routines in the MKL and the OpenBLAS executed on the desktop machine, 

and the SGEMM routine in the cuBLAS performed on the TITAN V GPU, respectively. 

In addition, the block size of matrices A and B impacts on the computation throughput. 

If matrices A and B are 5120 × 4096 and 4096 × 8192, and the block sizes of A and B 

are 160 × 128 and 128 × 256, the computation throughput of the matrix multiplier with 

task parallelism is increased to about 868 GFLOPs. 

Figure 5. Computation throughput.  

3.2 Energy Efficiency 

To estimate the energy efficiency, the input current and voltage of the FPGA board and 

the desktop machine with the MKL and OpenBLAS libraries are measured every 200 ms 

by using a digital multimeter PC720M from the Sanwa when the FPGA system and the 

desktop machine are idle and active, respectively. The power consumption is calculated 

by multiplying the voltage and the current difference. The energy efficiency is computed 

by using equation 1. 

_

( )

computation throughput
efficiency

active idle

E
P

V I I
�

� �
                                                                              (1) 

where E is the computation throughput, V is the voltage, and I is the current.  is the 

current when the SGEMM routine is performed or the FPGA board is active, and  is 

the system current without computation. The term  denotes the actual 

consumed current by computations in the FPGA and the desktop machine with the 

SGEMM routine. The activeI  and idleI  are the average of the measured values. In the 

GPU, the energy consumption is obtained through the 

“nvmlDeviceGetTotalEnergyConsumption” function provided by the Nvidia 

management library.  
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Figure 6 shows the energy efficiency of the FPGA-based matrix multipliers, the 

SGEMM routines in the MKL and OpenBLAS executed on the desktop machine, and 

the SGEMM routine in the cuBLAS performed on the GPU. The energy efficiency of 

the proposed matrix multiplier with task parallelism ranges from 71.74 GFLOPs/W to 

63.32 GFLOPs/W, and is about 66.75 GFLOPs/W in average, which is about 2.9 times, 

1.2 times, 10.5 times, and 11.8 times, over the FPGA-based matrix multiplier with data 

parallelism, the SGEMM routine on the GPU, and the SGEMM routines on the desktop 

machine with the Intel MKL and the OpenBLAS, respectively, even though the 

fabrication technology of the FPGA (20 nm) is significantly lagged behind that of the 

CPU (14 nm) and the GPU (12 nm). In addition, the proposed system gains much higher 

energy efficiency in the case of small problem size because the computation throughput 

is almost fixed while the consumed current by the FPGA is increased as the problem size 

grows. 

Figure 6. Energy efficiency. 

4. Conclusions 

Matrix multiplication is one of the basic building blocks of linear algebra, and widely 

applied in the HPC to solve scientific and engineering problems. Its performance 

significantly affects the whole system performance, especially when the problem size is 

large. In addition, power problem becomes more and more serious in HPC systems. In 

this research, an FPGA-based matrix multiplier with task parallelism is developed to 

improve system performance and energy efficiency for large-scale matrix multiplication, 

in which system is divided into different kernels in accordance to the data flow, a systolic 

array is adopted to carry out computations, and high-speed and high-bandwidth buffers 

are used to connect PEs in the systolic array and different kernels. It outperforms the 

FPGA-based matrix multiplier with data parallelism and the SGEMM routines in the 

highly optimized MKL and OpenBLAS libraries executed on a desktop machine in 
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computation throughput and energy efficiency. Compared with the SGEMM routine in 

the cuBLAS performed on the Nvidia TITAN V GPU, the proposed matrix multiplier is 

significantly defeated in computing performance, but it wins in energy efficiency. In 

future work, we will port and optimize the proposed design on other FPGA platforms 

with more hardware resources and multiple FPGAs to evaluate its performance, and 

compare the performance with the popular Xeon gold processor in HPC. 
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