Parallel Computing: Technology Trends 241
L Foster et al. (Eds.)

© 2020 The authors and IOS Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200047

Design of an FPGA-Based Matrix
Multiplier with Task Parallelism

Yiyu TAN®!, Toshiyuki IMAMURA?, and Daichi MUKUNOKI ?
ARIKEN Center for Computational Science, Kobe, Hyogo, Japan

Abstract. Matrix multiplication requires computer systems have huge computing
capability and data throughputs as problem size is increased. In this research, an
OpenCL-based matrix multiplier with task parallelism is designed and implemented
by using the FPGA board DE5a-NET to improve computation throughput and
energy efficiency. The matrix multiplier is based on the systolic array architecture
with 10 x 16 processing elements (PEs), and all modules except the data loading
modules are autorun to hide computation overhead. When data are single-precision
floating-point, the proposed matrix multiplier averagely achieves about 785
GFLOPs in computation throughput and 66.75 GFLOPs/W in energy efficiency.
Compared with the Intel’s OpenCL example with data parallelism on FPGA, the
SGEMM routines in the Intel MKL and OpenBLAS libraries executed on a desktop
with 32 GB DDR4 RAMs and an Intel i7-6800K processor running at 3.4 GHz, the
proposed matrix multiplier averagely outperforms by 3.2 times, 1.3 times, and 1.6
times in computation throughput, and by 2.9 times, 10.5 times, and 11.8 times in
energy efficiency, respectively, even though the fabrication technology is 20 nm in
the FPGA while it is 14 nm in the CPU. Although the proposed FPGA-based matrix
multiplier only delivers 6.5% of the computation throughput of the SGEMM routine
in the cuBLAS performed on the Nvidia TITAN V GPU, it outperforms by 1.2 times
in energy efficiency even though the fabrication technology of the GPU is 12 nm.

Keywords. Matrix multiplication, FPGA, OpenCL

1. Introduction

Matrix multiplication is one of the fundamental building blocks of linear algebra, and
has been widely applied in high performance computing (HPC) to solve scientific and
engineering problems, such as deep learning, data analytics, and so on. In general, matrix
multiplication requires computing systems to have huge computation capability and
memory bandwidth as problem size grows. Nowadays, many methods and algorithms
have already been developed to speed up computation through parallel programming
techniques or improving the efficiency of memory hierarchy to reduce data access
overhead in supercomputers, GPUs, multicores, many-cores, and cluster systems. On the
other hand, power problems become more and more serious in HPC systems, and
heterogeneous architectures are becoming the mainstream, in which GPUs or FPGAs are
tightly integrated with multicore processors as accelerators to reduce power consumption,
especially FPGAs. FPGAs deliver much higher energy efficiency through data
parallelism and pipelining parallelism using a sea of individually PEs running at low

! Corresponding Author: Yiyu Tan, RIKEN Center for Computational Science, 7-1-26 Minatojima-
minami-machi, Chuo-ku, Kobe, Hyogo, Japan; E-mail: tan.yiyu@riken.jp.

242 Y. Tan et al. / Design of an FPGA-Based Matrix Multiplier with Task Parallelism

clock frequency. In recent years, an FPGA contains thousands of hardened floating-point
arithmetic units and million-byte on-chip block RAMs (BRAMs). Furthermore, high-
level synthesis tools let developers shift their focus from low-level HDL-based designs
to C, C++, or OpenCL codes annotated with directives, which makes the system
development much easier and development time being shortened. All these lead FPGAs
to become attractive in HPC.

FPGA-based acceleration on matrix multiplication has received much attention in
industry and academics. Zhuo et al. [1] and Dou et al. [2] proposed a matrix multiplier
with PEs being one-dimensional linear array architecture. Zhuo et al. analyzed the design
tradeoffs and optimized the design based on the hardware constraints. Dou et al. proposed
a parallel block algorithm to improving performance by exploiting the data locality and
reusability. Based on their work, Wu et al. [3] developed an I/O and memory optimized
blocking algorithm to improve memory efficiency and reduce the required hardware
resources. Kumar et al. [4] also presented a one-dimensional array architecture of PEs
and applied the rank-1 update algorithm to schedule input data to PEs. Different with the
architectures proposed by Dou and Zhou, this architecture distributes the same elements
of the first matrix to all PEs through broadcasting. Pedram et al. [5][6] introduced a two-
dimensional linear array architecture for matrix multiplication, in which data exchange
between PEs was performed through row/column broadcasting buses. Such two-
dimensional architecture provides benefits in scalability, addressing, and data movement
over one-dimensional array architecture.

There are other FPGA-based accelerators on matrix multiplication for different
purposes. Giefers et al. [7] presented an FPGA-based accelerator for matrix
multiplication on a hybrid FPGA/CPU system to study energy efficiency. Jiang et al. [8]
introduced a scalable macro-pipelined accelerator to perform matrix multiplication to
exploit temporal parallelism and architectural scalability. Wang et al. [9] integrated
multiple matrix accelerators with a master processor and built a universal matrix
processor. Z. Jovanovic et al. [10] presented an accelerator to minimize resource
utilization and maximum clock frequency by returning the computation results to the
host processor as soon as they were computed. Andrade et al. [11] adopted high-level
synthesis approach to generate two-dimensional embedded processor arrays for matrix
algorithms. Holland [12] proposed high-level synthesis optimization strategies to
maximize the utilization of the DSPs and BRAMs in blocked matrix multiplication. In
this research, an FPGA-based matrix multiplier with task parallelism is presented for
large-scale matrix multiplication. The major contributions of this work are as follows.

(1) Design and implementation of a matrix multiplier with task parallelism. The matrix
multiplier is based on the systolic array architecture with 10 x 16 PEs, and data
reuse and optimization techniques are applied to improve computing performance
and energy efficiency.

(2) Task parallelism and data vectorization. The system is partitioned into different
single-work-item kernels according to dataflow, and most of the kernels work at the
autorun mode to reduce computation overhead. High-speed and high-bandwidth
buffers are adopted to exchange data between PEs and kernels. Data vectorization
is applied to compute the dot product of multiple data inside a PE to enhance the
computation capability. The proposed system averagely achieves about 785
GFLOPs in computation throughput and 66.75 GFLOPs/W in energy efficiency in
the case of data being single-precision floating-point.

The remainder of this paper is organized as follows. The system design and
implementation are introduced in Section 2. In Section 3, performance evaluation results
are presented, followed by conclusions drawn in Section 4.

Y. Tan et al. / Design of an FPGA-Based Matrix Multiplier with Task Parallelism 243
2. System Design and Implementation

A matrix multiplication C = A X B is generally defined as follows:
P-1

Clillj] = ZA[i,k] xBlk,jl] (0<i<M, 0<j<N)
k=0

Where A, B, and C are M X P, PX N, and M X N matrices, respectively. The
computations from the above formula can be described by the pseudocode shown in
Figure 1. In Figure 1, a matrix multiplication consists of three loops, and their positions
can be changed. The computations require 2xMxPXN floating-point operations and
MXP+PxN+MxN memory accesses. To speed up the computations, firstly, the
computation load in a clock cycle should be maximized, which means more floating-
point multipliers and adders are involved into computation and work in parallel to get
one or more of the scalar product Cj; at a clock cycle. This may be achieved by unrolling
the inner loop (k) and outer loops (i and j) to get more parallel iterations at arithmetic
level. At circuit level, it is achieved using deep pipelining of floating-point multiplication
and addition units inside a PE, and many PEs are applied to calculate Cjj. Although the
loops can be unrolled completely, they are limited by the number of DSP blocks inside
an FPGA, which are applied to implement the floating-point arithmetic units. Secondly,
parallel data stream is needed to feed the pipeline and shorten the overhead of data access.
Thus, on-chip buffers are demanded to store the elements of matrices A and B in advance.
In general, multiple-port and large-size buffers can read/write data in parallel and keep
more data, but they are constrained by the size of BRAMs inside an FPGA. In addition,
the overheads to writing data from external memory to on-chip buffers are affected by
memory bandwidth. To address these, the blocked matrix multiplication algorithm is
applied to partition the matrices into smaller blocks (sub-matrices), and parallelisms,
such as data parallelism and task parallelism, are put on the sub-matrix multiplications.
In this research, the matrix multipliers based on such two parallelisms are designed using
OpenCL programming language and implemented using FPGA, respectively.

fori=0;i<M;itt+
for j=0;j<N; j++ {
sum = 0.0;
for k=0; k <P; k++
sum = sum + A[i][k] x B[K][j];
C[i][j] = sum;}

Figure 1. Pseudocode of a matrix multiplication.
2.1 Matrix Multiplier with Data Parallelism

The matrix multiplier with data parallelism is referenced from the Intel’s OpenCL design
example [13], and the related code is shown in Figure 2. Both matrices A and B are stored
by row-major in the host, and two local buffers, A local and B_local, are defined to store
the block data of matrices A and B, respectively (lines 4 and 5). Matrices A and B are
written into the on-board DDR memory from the host machine before computation, and
then a block of A and a block of B are read into A local and B_local to perform the
product of two blocks by the computation engine, which is defined by the N-dimensional
index space (NDRange) in the OpenCL execution model through the attribute option

244 Y. Tan et al. / Design of an FPGA-Based Matrix Multiplier with Task Parallelism

_attribute((reqd_work group size(BLOCK SIZE,BLOCK SIZE,1))). The calculated
product CJ[i][j] is written into the on-board DDR memory (line 24), and finally
transferred to the host machine after all computations are finished. Along with data
reading from the external memory (lines 14 - 17), the block data of B are transposed
before they are stored in the local buffer (line 17) to ensure consecutive data access
during computation (line 21). Furthermore, the inner loop in Figure 1 is fully unrolled
by adding the directive (line 19) to instruct the OpenCL compiler to implement
parallelism by using more DSP blocks, and the outer loop in Figure 1 is parallelized and
realized through introducing the two-dimensional computing engine defined by the
NDRange. The main disadvantage of this matrix multiplier is that system will be stalled
until computations in a block are completed (line 22) and new blocks are fed into the
local buffers (line 18) to maintain data synchronization.

OpenCL code for blocked matrix multiplication

1: _ kernel void matrixmult (__global float *restrict C, __ global float *A,

2: __global float *B, int A_width, int B_width) {

3: //define local storage for a block of input matrices A and B

4: _ local float A_local[BLOCK_SIZE][BLOCK_SIZE];

5: _ local float B_local[BLOCK_SIZE][BLOCK_SIZE];

6: int block_x = get_group_id(0); //define block index: row

7: intblock y = get group id(1); //define block index: column

8: intlocal x = get local id(0); //define local index: row

9: int local y = get local id(1); //define local index: column

10: inta_start= A_width*BLOCK_SIZE=block y; //loop start and stop points

11: inta end=a start + A width - 1;

12: int b_start = BLOCK_SIZE * block x;

13: float sum = 0.0f;

14: for (int aa=a_start, bb=b_start; aa<=a_end; aat=BLOCK_SIZE, bb+= (BLOCK SIZE*B_width)) {
15: //load the matrices into local memory, and perform B<=B"

16: A local[local y][local x]=A[aa+A width*local y+local x];

17: B_local[local_x][local_y]=B[bb+B_width*local y+local x];

18: barrier(CLK_LOCAL_MEM_FENCE); // wait for the entire block to be loaded.
19: #pragma unroll

20: for (intk = 0; k< BLOCK_SIZE; ++k) {

21: sum += A_local[local y][k]*B local[local x][k]; }

22: barrier(CLK_ LOCAL MEM FENCE); // wait for completion of computation.
23: 1}

24 C[get_global id(1)*get global size(0)+get global id(0)]=sum; // store result in matrix C
25: }

Figure 2. OpenCL code for blocked matrix multiplication with data parallelism.

As shown in Figure 2, blocks of both matrices are read into the local buffers at each
iteration, and multiplications are then carried out by the computation engine. The number
of iterations is determined by the block size and matrix scale. The required hardware
resources are affected by the complexity of the kernel shown in Figure 2, and not
associated with the dimensions of matrices A and B, which only affect the number of
iterations. In Figure 2, the consumed hardware resources are mainly determined by the
size of local buffers (A _local and B local), the unrolling of inner loop, the scale of the
arithmetic array defined by the NDRange, and the kernel vectorization to specify the
number of work items within a work group to execute in a single instruction multiple
data (SIMD) fashion. Except for the kernel vectorization and the unrolling of inner loop
being specified individually, the size of local buffers and the scale of the arithmetic array
are determined by the block size. Consequently, the block size has great impacts on the
required hardware resources and system performance.

Y. Tan et al. / Design of an FPGA-Based Matrix Multiplier with Task Parallelism 245
2.2 Matrix Multiplier with Task Parallelism

In the matrix multiplier with task parallelism, the system is divided into different function
modules in accordance to the data flow, and each function module is described as a kernel
in OpenCL. As illustrated in Figure 3, the system consists of the computing kernel, data-
feeding modules (feed mat A_kernel and feed_mat B_kernel), matrix-loading modules
(load_mat A kernel and load mat B kernel), and data output module. Each kernel
works with single work-item. Except for the matrix-loading modules, other kernels run
at the autorun mode to reduce computation overhead. The function of each module is
described as follows in detail.

e Matrix-loading modules. The matrix-loading modules read data from the on-board
DDR memory into buffers according to the data vectorization, block size, block
position, and data reuse.

e Data-feeding modules. The data-feeding modules read data from the buffer and feed
the related data to the computing kernel. As shown in Figure 3, the number of data-
feeding modules for matrices A and B equals to the number of rows and columns of
the systolic array in computing kernel, respectively. Each data-feeding module will
check and feed the corresponding data to the specific row or column of the computing
kernel, and then forward the other data to the next neighbor data-feeding module.

e Computing kernel. The computing kernel is a systolic array with 10 x 16 PEs, and
high-speed and high-bandwidth channels are applied to connect PEs and kernels. In
the computing kernel, data of matrix A are shifted from the left to right while data of
matrix B are moved from the top to bottom in the systolic array to reuse data.

e PE. The PE is the arithmetic unit to perform computation. The block diagram of a PE
is presented in Figure 4, which consists of eight arithmetic units to compute the dot
product of eight data at a clock cycle through pipelining, namely the data
vectorization is eight. In Figure 4, each arithmetic unit is generated by the IP
generator from the Quartus Prime Pro to perform different operations, and is
implemented by using the hardened DSP blocks inside FPGA. In the current design,
each arithmetic unit consumes one DSP block, which contains an adder and a
multiplier with single-precision.

e Data output module. The data output module outputs the computation results to the
on-board DDR memory. Similar as the data-feeding module for matrix B, several
data output modules will be applied in accordance to the column of the systolic array
in the computing kernel.

2.3 System Implementation

The matrix multipliers with data parallelism and task parallelism are compiled by using
the Intel FPGA SDK for OpenCL 16.1 and implemented by using an FPGA board DE5a-
NET from Terasic [16], which includes an Intel Arria 10 GX FPGA
10AX115N2F45E1SG and 8 GB on-board DDR3 memory. The FPGA contains 1518
hardened single-precision floating-point units, 427,200 ALMs, and 53 Mb M20K
memory. The on-board memory is arranged at two independent channels with each being
4 GB. The matrices A and B are written into different banks of the on-board memory
through PCle bus, and they are accessed independently through different channels. The
product, namely the matrix C, is firstly stored into the same memory bank as the matrix
A, and finally written back to the host machine. In the matrix multiplier with data

246 Y. Tan et al. / Design of an FPGA-Based Matrix Multiplier with Task Parallelism

parallelism, the block size is 128 X 128 and the kernel vectorization is four. In contrast,
in the matrix multiplier with task parallelism, the data vectorization is eight, and the
block size of matrix A is 320 X256 while the block size of matrix B is 256 X 512.

ch_data_row_loader
_to_first_feedsr_fifa b_bounaryl_fifo b_bounaryl_fifo b_busnarg?_filn b_bounanyd5_fifo

ch_data_row_fee ch data bOL0 Tife
der_chaindl_fito

a_baunaryl_fifa h_data_sO11 {1 hdata_adiz_fl ch_data_s0115_fi
. (T -

a Imuraryg fite ch dma 2031 fi h_ data _a092_fify ch_data_a0oLs_fi

IID]]} N . {1111~

feed_mat_A
_kernel_01

load_mat_A_kernel

feed_mat_A
kernel 09

Figure 3. System block diagram.

mult_add a2 E D] mult add ' p_vector? adb4ra3b3 sp_vector]
sum A It |b2 A 7re5u|t |— A; It A J
| AX result X X resu X
a1, A a3, A P
b1 | Y MACL | a1p1 Y mac1 b3 | Y MAC1 ba MAC1
221 Az chainout Az chainout 22{AZ chainout| P4{D}—|Az chainout
chainin chainin 21b143353 chainin | a3p3— chainin —‘
albl+a2b2+adb4+a3b3

a8b8+a7b7+abb6+aShs

sp_vector2 mult_add - a8h8+a7b7 .
result_out
Ax Ax AX Ax result

: result 5 result a7 result |

al a a8

bs | Y MaC ble AY vact b7 | Y mact bs@ :"' mACt

b5 A:, chainoutl 1P| Az chamout—l—— :. chainout o} r:: chainout
chainin chainin 25b5+a666 1 © ainin m_ chainin

mult_add: result= chainout= Ay * Az + chainin
sp_vectorl: result= Ay * Az + chainin; chainout = Ax
sp_vector2: result = Ax + chainin; chainout = Ay * Az
Vectorization: 8

Figure 4. Block diagram of a PE.

The kernel code is compiled into the intermediate representations, applied necessary
optimizations, converted to the Verilog files, and then performed synthesis, placement
and routing to generate the final FPGA bitstream by the Intel FPGA SDK for OpenCL.
Table 1 presents the hardware resource utilization in the two matrix multipliers in the
case of data being single-precision floating-point. As shown in Table 1, the matrix
multiplier with task parallelism utilizes more DSP blocks and gains much higher clock
frequency over the matrix multiplier with data parallelism on FPGA. In both systems,
the system performance is constrained by the size of on-chip BRAM blocks. Although
the matrix multiplier with data parallelism consumes less DSP blocks (34%), if the block
size is increase further to use more DSP blocks to improve system performance, such as
256 X 256, the on-chip BRAM blocks will be exhausted and the system cannot be
synthesized because the block size affects the utilization of the BRAM blocks and DSP

Y. Tan et al. / Design of an FPGA-Based Matrix Multiplier with Task Parallelism 247

blocks. On the other hand, in the matrix multiplier with task parallelism, the systolic
array and data vectorization are determined by the available DSP blocks and BRAM
blocks inside the FPGA. In the current design, the optimal systolic array contains 10 x
16 PEs, and the data vectorization is eight, which means each PE consumes eight DSP
blocks. Therefore, the matrix multiplier requires 1280 (10x16%8) DSP blocks. Although
the systolic array can be scaled up to 11 x 16 PEs according to the available hardware
resources of the FPGA, the system is not synthesizable by the Intel FPGA SDK for
OpenCL. In addition, the clock frequency of the proposed matrix multiplier with task
parallelism is much higher than the matrix multiplier with data parallelism because of
more optimized data path in accordance to the dataflow.

Table 1. Hardware resource utilization

Hardware resource
Logic utilization | DSP blocks |RAM blocks|Clock frequency
Task parallelism | 237128(56%) 1280(84%) | 2529(93%) 305 MHz
Data parallelism 92002(22%) 520 (34%) | 1774(65%) 235 MHz

Matrix multiplier

3. Performance Evaluation

The proposed matrix multiplier is implemented by using the FPGA board DE5a-NET,
and its performance is evaluated and compared with the matrix multiplier with data
parallelism on FPGA [14-15], the SGEMM routine in the cuBLAS performed on the
Nvidia TITAN V GPU [17], the SGEMM routines in the Intel MKL(version:2018.0.128)
and OpenBLAS (version: 0.2.20) executed on a desktop machine with 32 GB DDR
RAMs and an Intel i17-6800K processor running at 3.4 GHz. The operating system of the
desktop machine is CentOS 7.0, and the compiler for the OpenBLAS is gcc 4.9.4. The
compiler for the OpenCL is Intel FPGA SDK for OpenCL 16.1. In the GPU system, the
host machine contains an Intel Xeon W-2123 processor with CentOS 7.4, CUDA 10.0,
and the GPU driver version being 410.73. The fabrication technology in the FPGA Arria
10 is 20 nm while it is 14 nm and 12 nm in the Intel i7-6800K processor and TITAN V
GPU, respectively. The execution time and power consumption are measured, and the
computation throughput and energy efficiency are estimated. During estimation, the
matrices are square and data are single-precision.

3.1 Computation throughput

Figure 5 shows the computation performance in the case of different matrix scales. The
computation throughput is almost fixed on the FPGA system as the matrix scale is
increased because the operations become computation-bound. However, it fluctuates in
the SGEMM routines on the GPU with cuBLAS and the desktop machine with the MKL
and OpenBLAS libraries. For example, when the matrix scale is increased from 7680 x
7680 to 20480 x 20480, the computation throughput in the FPGA-based matrix
multiplier with data parallelism and task parallelism is about 240 GFLOPs and 780
GFLOPs, respectively. But the computation throughput of the SGEMM routine on the
GPU is decreased from 13.47 TFLOPs to 11.28 TFLOPs. Similarly, the computation
throughput is firstly increased from 586.23 GFLOPs to 631.03 GFLOPs, and then
dropped to 532.43 GFLOPs in the SGEMM routine on the desktop machine with the
MKUL library. In Figure 5, the proposed matrix multiplier with task parallelism averagely

248 Y. Tan et al. / Design of an FPGA-Based Matrix Multiplier with Task Parallelism

offers about 785 GFLOPs in computation throughput, which is about 3.2 times, 1.3 times,
1.6 times, and 6.5% in average over the matrix multiplier with data parallelism on FPGA,
the SGEMM routines in the MKL and the OpenBLAS executed on the desktop machine,
and the SGEMM routine in the cuBLAS performed on the TITAN V GPU, respectively.
In addition, the block size of matrices A and B impacts on the computation throughput.
If matrices A and B are 5120 x 4096 and 4096 x 8192, and the block sizes of A and B
are 160 x 128 and 128 x 256, the computation throughput of the matrix multiplier with
task parallelism is increased to about 868 GFLOPs.

FPGA_task_parallelism —@—FPGA_data_parallelism OpenBLAS
MKL —0— GPU
© 900.00 13.11 13.47 ~ ~ 14.00 o
= 12.56 780.53 780.59 %
g 800.00 (12.00 2
% 70000 794.38 798.46 780.18 780.37 =)
=R . 11.40 11.28 =
ElS 10.00 2
23 600.00 S
~ d Q
=3 500.00 8.00 2
=Y 483.91 516.90 508.42 522.06 517.65 g
(U; § 400.00 462.17 6.00]
[) =
= A 300.00 400 Ei
S @ nd d @ @ : 2
g 200.00 23959 240.40 24060 240.57 24056 Ro.60 s
& 10000 2.00 %
0.00 0.00 #
2560 5120 7680 10240 15360 20480
Matrix Scale
Figure 5. Computation throughput.
3.2 Energy Efficiency

To estimate the energy efficiency, the input current and voltage of the FPGA board and
the desktop machine with the MKL and OpenBLAS libraries are measured every 200 ms
by using a digital multimeter PC720M from the Sanwa when the FPGA system and the
desktop machine are idle and active, respectively. The power consumption is calculated
by multiplying the voltage and the current difference. The energy efficiency is computed
by using equation 1.

efficiency =
Vx (Iactive -]idle)
where E is the computation throughput, ¥ is the voltage, and [is the current. I, 1S the
current when the SGEMM routine is performed or the FPGA board is active, and I;4, is

the system current without computation. The term I,¢ipe — I;q;. denotes the actual
consumed current by computations in the FPGA and the desktop machine with the

SGEMM routine. The [

active

computation _throughput (1)

and [.. are the average of the measured values. In the

GPU, the energy consumption is obtained through the
“nvmlDeviceGetTotalEnergyConsumption” function provided by the Nvidia
management library.

Y. Tan et al. / Design of an FPGA-Based Matrix Multiplier with Task Parallelism 249

Figure 6 shows the energy efficiency of the FPGA-based matrix multipliers, the
SGEMM routines in the MKL and OpenBLAS executed on the desktop machine, and
the SGEMM routine in the cuBLAS performed on the GPU. The energy efficiency of
the proposed matrix multiplier with task parallelism ranges from 71.74 GFLOPs/W to
63.32 GFLOPs/W, and is about 66.75 GFLOPs/W in average, which is about 2.9 times,
1.2 times, 10.5 times, and 11.8 times, over the FPGA-based matrix multiplier with data
parallelism, the SGEMM routine on the GPU, and the SGEMM routines on the desktop
machine with the Intel MKL and the OpenBLAS, respectively, even though the
fabrication technology of the FPGA (20 nm) is significantly lagged behind that of the
CPU (14 nm) and the GPU (12 nm). In addition, the proposed system gains much higher
energy efficiency in the case of small problem size because the computation throughput
is almost fixed while the consumed current by the FPGA is increased as the problem size
grows.

FPGA_task_parallelism FPGA_data_parallelism —@—MKL
—0— GPU OpenBLAS
80.00 71.74
67.83
70.00 66.63 65.06 65.92 63.32
2 60.00
% 57.90
: 57.24
2 50.00 57.54 5499 56.45
<} 51.22
2 40.00
5
2 3000
m
>
20 20.00
Q
Lﬁ 6.34 6.30 6.31
.34 3 3
10.00 ’ﬂ 7’_ 04 - 654 574
0.00
2560 5120 7680 10240 15360 20480

Matrix Scale

Figure 6. Energy efficiency.

4. Conclusions

Matrix multiplication is one of the basic building blocks of linear algebra, and widely
applied in the HPC to solve scientific and engineering problems. Its performance
significantly affects the whole system performance, especially when the problem size is
large. In addition, power problem becomes more and more serious in HPC systems. In
this research, an FPGA-based matrix multiplier with task parallelism is developed to
improve system performance and energy efficiency for large-scale matrix multiplication,
in which system is divided into different kernels in accordance to the data flow, a systolic
array is adopted to carry out computations, and high-speed and high-bandwidth buffers
are used to connect PEs in the systolic array and different kernels. It outperforms the
FPGA-based matrix multiplier with data parallelism and the SGEMM routines in the
highly optimized MKL and OpenBLAS libraries executed on a desktop machine in

250 Y. Tan et al. / Design of an FPGA-Based Matrix Multiplier with Task Parallelism

computation throughput and energy efficiency. Compared with the SGEMM routine in
the cuBLAS performed on the Nvidia TITAN V GPU, the proposed matrix multiplier is
significantly defeated in computing performance, but it wins in energy efficiency. In
future work, we will port and optimize the proposed design on other FPGA platforms
with more hardware resources and multiple FPGAs to evaluate its performance, and
compare the performance with the popular Xeon gold processor in HPC.

Acknowledgments

Thanks for Intel’s donation of the FPGA board DESa-NET and the related EDA tools
through University Program. This work was partly supported by the Grant-in-Aid from
Foundation for Computational Science (FOCUS). The performance on GPUs was
obtained using the GPU cluster installed in Tokyo Woman’s Christian University.

References

[1] L. Zhuo, and V. Prasanna, High-performance designs for linear algebra operations on reconfigurable
hardware, /EEE Transactions on Computers 57(8) (2008), 1057-1072.

[2] Y. Dou, S. Vassiliadis, G. Kuzmanov, and G. Gaydadjiev, 64-bit floating-point FPGA matrix
multiplication, ACM/SIGDA 13th international symposium on Field Programmable Gate Arrays, 2005,
pp. 86-95.

[3] G. Wu, Y. Dou, and M. Wang, High performance and memory efficient implementation of matrix
multiplication on FPGAs, 2010 International Conference on Field-Programmable Technology, 2010, pp.
134-137.

[4] V.Kumar, S. Joshi, S. Patkar, and H. Narayanan, FPGA based high performance double-precision matrix
multiplication, International Journal of Parallel Programming 38 (2010), 322-338.

[5] A. Pedram, A. Gerstlauer, and R. Geijn, Algorithm, architecture, and floating-point unit codesign of a
matrix factorization accelerator, IEEE Transactions on Computers 63(8), 1854-1867 (2014).

[6] A. Pedram, and R. Geijn, Co-design tradeoffs for high-performance, low-power linear algebra
architectures, I[EEE Transactions on Computers 61(12) (2012), 1724-1736.

[7] H. Giefers, R. Polig, and C. Hagleitner, Analyzing the energy-efficiency of dense linear algebra kernels
by power-profiling a hybrid CPU/FPGA system, 25th International Conference on Application-Specific
Systems, Architectures and Processors, 2014, pp. 92-99.

[8] J. Jiang, V. Mirian, K. Tang, P. Chow, and Z. Xing, Matrix multiplication based on scalable macro-
pipelined FPGA accelerator architecture, International Conference on Reconfigurable Computing and
FPGAs, 2009, pp. 48-53.

[91 W. Wang, K. Guo, M. Gu, Y. Ma, and Y. Wang, A universal FPGA-based floating-point matrix processor
for mobile systems, International Conference on Field-Programmable Technology, 2014, pp. 139-146.

[10] Z. Jovanovic, and V. Milutinovic, FPGA accelerator for floating-point matrix multiplication, /ET

Computers & Digital Techniques 6(4) (2012), 249-256.
[11] R. Andrade, C. Huitzil, and R. Cumplido, Processor arrays generation for matrix algorithms used in
embedded platforms implemented on FPGAs, Microprocessors and Microsystems 39 (2015), 576-588.
[12] E. H. D’Hollander, High-level synthesis optimization for blocked floating-point matrix multiplication,
ACM SIGARCH Computer Architecture News, (2016) 74-79.

[13] https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-

examples/design-software/opencl/matrix-multiplication.html
[14] Y. Tan and T. Imamura, Performance evaluation and tuning of an OpenCL based matrix multiplier, 24¢h
International Conference on Parallel and Distributed Processing Techniques and Applications, 2018, pp.
107-113.

[15] Y. Tan and T. Imamura, An energy-efficient FPGA-based matrix multiplier, 24th IEEE International
Conference on Electronics, Circuits and Systems, 2017.

[16] https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=231&No=970

[17] https://www.nvidia.com/en-gb/titan/titan-v/

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5677390
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5677390
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Andreas%20Gerstlauer.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Robert%20A.%20van%20de%20Geijn.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6857731
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6857731
http://digital-library.theiet.org/content/journals/iet-cdt
http://digital-library.theiet.org/content/journals/iet-cdt
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/matrix-multiplication.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/matrix-multiplication.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=231&No=970

