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Abstract. We present preliminary results of a GPU porting of all main Gad-
get3 modules (gravity computation, SPH density computation, SPH hydrodynamic
force, and thermal conduction) using OpenACC directives. Here we assign one
GPU to each MPI rank and exploit both the host and accellerator capabilities by
overlapping computations on the CPUs and GPUs: while GPUs asynchronously
compute interactions between particles within their MPI ranks, CPUs perform tree-
walks and MPI communications of neighbouring particles. We profile various por-
tions of the code to understand the origin of our speedup, where we find that a peak
speedup is not achieved because of time-steps with few active particles. We run a
hydrodynamic cosmological simulation from the Magneticum project, with 2 ·107

particles, where we find a final total speedup of ≈ 2. We also present the results of
an encouraging scaling test of a preliminary gravity-only OpenACC porting, run in
the context of the EuroHack17 event, where the prototype of the porting proved to
keep a constant speedup up to 1024 GPUs.
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1. Introduction

The parallel N-body code Gadget3 [1,2] is nowadays one of the most used high-
performing codes for large cosmological hydrodynamic simulations [3]. Gadget3 ex-
ploits hybrid MPI/OpenMP parallelism. Each MPI task owns a region of the domain
composed by contiguous chunks of Hilbert-ordered particles, and, at each time-step com-
municates guest particles that interact with regions belonging to other MPI tasks. Dark
matter, gas and stars are sampled by particles and interact through gravity using the
Barnes-Hut [4] approximation for short-range interactions and Particle-Mesh for long
range interactions. Hydrodynamics of gas particles is modelled using an improved ver-
sion of Smoothed Particle Hydrodynamics (SPH) [5] by [6].

SPH is implemented in Gadget3 with two different modules: the first one computes
particle densities by multiple iterations and the second one computes hydrodynamic
forces. Additionally Gadget3 implements other physical processes as thermal conduction
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Figure 1. Gas projected density of a portion of the cosmological simulation Magneticum Box4/hr (2 · 107

particles). Left panel shows the gas distribution of the initial conditions of the simulation; central panel shows
particles in the middle of a simulation (where dark matter haloes start forming); right panel show particles at
the end of the simulation. Color values are log-scaled.

and sub-resolution models for star formation and black hole evolution. Star particles in-
teract only through gravity, however, they are created based on properties of gas particles
as in [7].

Each of the above mentioned modules share the same pattern: they compute the
force acting on a list of active particles by performing a tree walk over groups of one
or more active particles and find all neighbouring particles within a given distance [8].
Being Gadget3 a parallel code, when searching for neighbours, the code will also identify
regions of the tree that belongs to a different MPI rank. After this identification, MPI
ranks will exchange neighbouring particles. In the second phase of each module, MPI
ranks will compute forces acting on guest particles due to local contributions. When a
MPI rank has computed the interactions over the received guest particles, it will send
the results back to their original MPI rank, which will merge the received contributions
with the one from local neighbours. Gadget3 uses a relatively small exchange buffer
(≈ 300MB per node) compared to the memory occupied by particles in a large simulation
(> 20GB per node), and for this reason, it is not possible to exchange boundary particles
all at one time: first and second phases must be repeated until all active particles have
been processed.

Figure 1 shows the projected gas density in three different phases of a simulation.
While the initial conditions of a simulation (left panel) contains nearly homogeneous
matter distribution, as simulation time increases (from left to right panels), dark mat-
ter forms haloes and filaments. Particles inside a clustered region are driven by much
stronger accelerations than particles outside these regions, thus Gadget3 uses an adaptive
time-stepping scheme where active particles are updated with a kick-drift-kick solver[2].

Since small time-steps have only few active particles, to improve the performance
during the neighbour search, the code drifts only tree-nodes and non-active particles that
are encountered during such neighbour search. The previously mentioned drift and filling
of the export buffer are not thread-safe and are encapsulated inside OpenMP critical
regions.

The most time consuming modules are Gravity (≈ 15%, of the time), SPH (≈ 30%
of the time) and thermal conduction ( ≈ 14%. of the time). The remaining time is mostly
taken by the domain decomposition (≈ 16% of the time) and the so called halo finder
[9] (≈ 8% of the time).

In this work we present a porting of all main Gadget3 modules (gravity computation,
SPH density computation, hydrodynamic force, and thermal conduction) on GPUs using
OpenACC [10].
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We decided to port these modules, because, besides being the most time consuming
modules, they are the ones that spend most time in loops of kernel functions, and thus
are suitable for GPUS.

Our approach overlaps computations between the host and the CPU. GPUs asyn-
chronously compute physical interactions between particles within the same computing
node while CPUs perform tree walks, fills the export buffer and communicates particles.
Because of memory limitations, we offload a module per time to the GPU. We test our
porting using the Magneticum1 suite of simulations. In particular we use Box4/hr with
2 · 107 particles and Box3/hr with 3.8 · 108 particles. We also test our code with differ-
ent architectures, as P100 and V100 GPUs with NVLink technology [11], with the PGI
compiler with and without CUDA [12] Unified Memory [13].

In Section 2 we discuss the obstacles that prevent an easy porting of the Gadget3
code and our choices of GPU porting. In Section 3 we profile the code and show the
speedup of our porting over different portions of a cosmological hydrodynamic simula-
tion. In Section 4 we draw our conclusions and discuss future projects.

2. Challenges and Strategies in Accelerating Gadget3

Here below we list various limitations that prevent an easy porting of the whole code
Gadget3 to the GPUs:

• The code do not benefit from vectorisation because it stores data in arrays of large
data structures (≈ 500B each) that do not fit modern architecture caches. Chang-
ing the data layout to a structure of arrays would require a massive refactoring ef-
fort and introduce additional memory movement (of packing and unpacking data)
in the domain decomposition.

• The use of blocking MPI communications (to exchange neighbouring particles
between MPI ranks) poses a limit in fully utilising GPUs and CPUs.

• Time-steps with too few active particles won’t fully exploit GPU parallelism, thus
preventing the code to speedup;

• There are thread-locking operations at each tree walk (drift of particles and fill of
shared export buffer for communications).

• GPUs memories have less capacity than their host memories, thus simulations
that keeps all data in GPUs will require more computing nodes than CPU only
runs.

• Gadget3 has been built over a decennial effort of developers who implemented
various flavours of gravity, SPH solvers, and sub-resolution models that have
been extensively tested; rewriting these modules using CUDA/OpenCL languages
would imply a massive rewrite of portions of such modules with associated risks
of adding mistakes.

For these reasons, a directive-based approach that uses OpenACC [10] has been
adopted. This reduces modifications of the ongoing development of Gadget3 and further-
more makes it possible to still run the code on CPU-only systems.

1http://www.magneticum.org

A. Ragagnin et al. / Gadget3 on GPUs with OpenACC 211

http://www.magneticum.org
http://www.magneticum.org


2.1. Memory Transfer

To minimize communication between CPUs and GPUs, one would ideally load the initial
conditions of the simulation in the memory of the GPU and run the whole simulation on
GPUs. This solution has two problems: first of all, time steps with few active particles
won’t perform on the GPUs, and since current GPUs typically have less memory than
their hosts, one would need more nodes than a CPU-only run.

To clarify the last point, let’s consider the case of a very large cosmological simu-
lation that was run within the LRZ Extreme Scaling Workhop in 2015 [14]. Such simu-
lation (Magneticum Box0/mr) had 1.2 ·107 particles per node, each node was allocating
4GB for the Barnes Hut tree, 22GB for the basic quantities used in gravity (e.g. position,
mass, acceleration ecc..), and additional 14GB for the SPH-only part (that is split in den-
sity computation and hydro-force computation), 0.6GB for the metal evolution and an
additional amount of 4GB for the active particle list and to store the Hilbert space-filling-
curve keys, for a grand total of 40GB per node.

It is clear that a 16GB GPU system (as for instance, the ones in Piz Daint2) would not
be able to store the same number of particles of its underlying host. On the other hand,
it has enough memory to store the particle properties of each single Gadget3 module at
a time.

To solve this issue and to be able to exploit the GPU memory at its best, we decided
to only upload, for each Gadget module, the properties that are necessary for such module
(or for other successive modules) in the current time step. With this technique we are
able to upload more particles per timestep, but we can upload only the minimal set of
properties required by each module at time. The drawback of this approach is that at each
timestep we need to download the data back to the GPU, with its associated overhead.

To further minimise the data transfer of the particle properties, we send separately
properties that are read-only (masses, positions, ecc..) and download only updated prop-
erties (e.g. acceleration).

Additionally, with this approach we minimise the amount of code we have to write/-
modify: we use the same Gadget routines used to process guest neighbouring particles
coming from a different MPI rank. We set up the code so GPUs use the already exist-
ing routines to exchange data, but in this case, particles are exchanged between host and
GPUs.

2.2. Adaptive Timesteps

Large, high resolution, cosmological simulations have both void regions and clustered
regions. Particles in void regions evolve with large timesteps because of the small force
acting on them, compared to clustered regions where the stronger force requires very
small timesteps.

After nearly half of the simulation time, it is very common to have timebins with
only one or very few active particles. Since time-steps with such a low amount of active
particles won’t benefit from the single instruction multiple thread (SIMT) paradigm of
GPUs, we decided to keep small timebins (with less than a given threshold Nmin active
particles) to run on the CPU only.

2https://www.cscs.ch/computers/piz-daint/
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The reason behind this choice is twofold: (i) with a high number of active particles,
the offload time is small compared to computations and (ii) it is possible to drift all
particles and tree-nodes of the simulated volume at the beginning of these time-steps in
the host, with OpenMP.

OpenACC turned out to be the best tool to implement this decision because it makes
it possible to use the same code on both GPU and CPU with a small effort.

2.3. MPI Communication

One of the main advantages of our porting is that it overlaps CPU work with the GPU
computation. We decided to overlap the CPU and the GPU computation in the following
way: while the GPU loops over the active particles and computes local interactions, the
CPU takes care of walking the tree for each active particle in order to perform all MPI
send/receive of guest particles.

When the host receives a list of guest particles it decides to queue it to the GPU
computation or to process it on the CPU, based on the facts that (i) the GPU did finish
local interactions or not and (ii) the number of received particles is less than Nmin.

2.4. Barnes-Hut, SPH and Thermal Conduction Differences

Although SPH, thermal conduction and Barnes Hut algorithms have many similarities,
there are some main differences to take into account when porting Gadget on GPUs.
First of all, in a Barnes-Hut solver, particles interact with distant tree nodes as they were
point-like pseudo particles, in contrast with SPH and conduction solvers where there are
only particle-particle interactions within a pre-defined distance. As a consequence, the
implementation of Barnes-Hut algorithm embed the particle-particle interaction compu-
tation in the tree walk itself. On the other hand, in SPH and thermal conduction solvers,
neighbours are collected in a list and processed in a separate step. Additionally, SPH
and thermal conduction need to find a set of neighbours within a fixed distance, while
Barnes-Hut operates with a so-called opening criteria, namely the angle between the
target particle and the tree cells.

In our OpenACC porting, this implies that gravity acceleration computation will be
inside a tree walk branch, which will limit the peak GPU performance. While in the
SPH and conduction modules it is possible to disentangle the tree walk from the force
computation. The drawback is that it is not well known a priori the amount of neighbours
of a given SPH particle (especially in zoom-in simulations). The CPU implementation
overcomes this problem by allocating a neighbour buffer for each thread of a size that
is equal to the number of local particles. Since it is practically impossible to allocate
such a long buffer on each GPU thread, our porting performs a tree walk and neighbour
interactions in chunks of Nchunk neighbours.

3. Profiling

We tested our implementation over different setups and architectures, were we found the
values of Nmin = 103 and Nchunk = 32 to be optimal in always maximizing the speedup.
Time steps with a number of active particles less than 103 tipically performs better in the
CPU than in the GPU.
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Figure 2. Timeline of the profiling obtained with the nvToolsExt library of the OpenACC code: upload and
download to GPU (green and blue bars), GPU computation (yellow and purple bars), CPU tree walk (orange
bar) and MPI communications (red bar). The full iteration takes 2.4s, while the CPU version of the code, run
with the same setup, took 11.4s.

The value of Nmin do not need to be extremely accurate. In fact the number of parti-
cles between one time bin and the other changes exponentially, from our experience, the
number of particles between a small step and the next one goes from few hundreds to
few thousands.

3.1. Tests of One Density Iteration

Figure shows a time-line of the profiling (obtained with the nvToolsExt library ) of3

a SPH density iteration over all particles of the Magneticum/Box4/hr simulation (2 ·107

particles) on a Power9 system with 2 MPI ranks per node, each with 20 OpenMP threads
plus one Tesla V100 GPU. With this setup we used all cores of a node (and without using
hyper-threading). Each socket has NVLink interconnection technology between CPUs
and GPUs.

In this setup, upload and download timings (green and blue bars) sums up to 0.053s
(for a total of 1.2GB) and are negligible compared to the GPU computation time (yellow
and purple bars), that take up to 2.4s. CPU tree walks (orange bar) takes 2.9s and MPI
communications (red bar) take 0.04s and overlaps the GPU computations.

The whole density iteration took 3.2s, while the same set-up, when run completely
on CPUs, took 11.4s. Of which 11s spent in computation and the remaining 0.4s spent
in MPI communications.

Thus, a SPH density iteration over all active particle have a speedup of 4.5. However,
the speedup of the full simulation will be lower because a number of iterations have only
very few active particles and do not perform well on GPUs.

We then briefly tested the possibility of using Unified Memory for our OpenACC
porting. In particular, we run Magneticum Box4/hr simulations with 2 MPI rank, each
using one V100 GPU connected with NVLink.

The iteration without Unified Memory took 1.9s, where 0.4s were spent in memory
transfer, while the run with Unified Memory: 2.0s. They pratically takes the same time.
The advantage of Unified Memory is that one does not have to manually write code to
restrict the transfer of data to its minimum necessary amount.

3https://docs.nvidia.com/gameworks/content/developertools/desktop/nsight/nvtx_

library.htm

2
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Figure 3. Time consumed by SPH and gravity for a simulation with 3.8 · 108 particles. Left panel shows the
time consumed by the standard version, run over 3 nodes, each with 4 MPI ranks and each with 40 threads.
Right panel shows the same configuration for the OpenACC porting where each MPI rank had one Tesla V100
GPU connected with NVLink.

3.2. Tests of One Timestep

Figure 3 shows the timing of a whole timestep of the various Gadget modules. In this
test, to maximize the number of particles for a given node, we run Magneticum Box4/hr
simulation, that has 3.8 · 5733 = 1.2 · 108 particles. We run this simulation on a Power9
system with 4 sockets per node, each with 10 cores and one V100 GPU. We used 3 nodes,
each with 4 MPI ranks, and each MPI rank with 40 OpenMP threads (thus using Power
architectures hyper threading).

Here we can see how, at least for the first time-step, most of the speedup is consistent
over both the Barnes-Hut solver and the full SPH computation to a factor of 3 for SPH
and ≈ 4 for the gravitaty computations.

In particular, all SPH density iterations within the timestep took 1600s for the GPU
version and 5400s (with a speedup of 3.3) for the CPU version. While the SPH com-
putation of hydrodynamic forces tooks 200s for the GPU version and 700s for the CPU
version (with a speedup of 3.5).

The speedup of this test case is lower than the one obtained in the previous test case
because in a whole timestep there are density iterations that have a very low number of
particles.

3.3. Tests of Full Run

We then run a whole simulation with Barnes-Hut, SPH and thermal conduction ported
with OpenACC. As described above, we offload these modules to the GPU only when
the number of active particles is greater than the treeshold Nmin = 103.
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We run such simulation on the Piz Daint system. Here we used 8 MPI tasks in 1
node, 4 OpenMP threads and one Tesla P100 for each MPI task. In such system, GPUs
are connected to the host with PCI Express technology. At the end of a simulation, the
speed-up (compared to the same set-up of the Gadget3 standard version) are as follows:

• Barnes-Hut speedup: 1.8
• SPH speedup: 2.6
• Thermal conduction speedup: 3.0
• Total speedup: 2.1

Noteworthy, SPH speedup is lower than the speedup obtained for a single timestep
as in the previous sub section (and for a single iteration of a density computation). The
reason behind this slowdown is twofold: the number of density iterations that contains a
small number of active particles increases as the simulation time evolves. For this reason
we found a final total speedup to be lower than the one obtained for the first timestep.

After porting Gravity, SPH and thermal conduction to the GPU, one of the upcom-
ing bottlenecks became the cooling and star formation module, taking ≈ 5% of the com-
puting time. Here we upload the cooling tables to the GPUs and keep them there as long
as needed. We then run the whole cooling and star formation process in the GPU, which
have a speedup of ≈ 1.6, when comparing a run with P100 GPUs and a run with 12
Haswell CPUs4.

3.4. Scaling Test of Gravity Only

Figure 4 shows the results of a scaling obtained at the EuroHack17 at CSCS5. At that
time the preliminary version of the code was able to run over one GPU per computing
node, and we ported only the first phase of the Barnes-Hut gravity solver. In this test we
run a gravity-only run with increasing particle sizes in order to occupy more and more
computing nodes, and varied the number of MPIranks up to 1024. Where the data point
with the largest number of CPUs (and GPUs) is simulation is Magneticum Box2/hr, that
has with 2 · 15843 = 7.9 · 109 particles. Both the OpenACC and the standard runs uses
the same amount of CPUs.

4. Conclusions and Outlook

We presented a porting of all main Gadget3 modules (gravity computation, SPH density
computation, hydrodynamic force, and thermal conduction) on GPUs using OpenACC.

We justified our choices of the porting as:

• the use OpenACC minimizes the rewriting of code and to let the community keep
working on both CPU and GPU;

• OpenACC is also useful since we offload to the GPU only timesteps with a high
number of active particles (as they won’t perform well in a GPU);

• during a simulation, and at every timestep, we offload to the GPU only one mod-
ule per time as to maximize the number of particle per each host;

4https://www.cscs.ch/publications/stories/2018/conradin-roffler-my-internship-at-cscs/
5https://github.com/fomics/EuroHack17/wiki/GadgetACC
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Figure 4. Scaling of a preliminary Gadget3 OpenACC porting of the gravity module, done at the EuroHack17
at CSCS. Y-axis show the speedup with respect to the CPU only version over 12 cores. Black (bottom) lines
show the data by varying the number of MPI ranks (X axis) for a CPU-only run. Red (upper) lines show data for
the OpenACC version, on the same number of CPUs and one additional GPU for each MPI rank. Continuous
lines show the tree-walk speedup, dotted-dashed lines show the speedup for the gravity module, dashed lines
show the speedup of the whole time step.

• by doing so, we exploit the host machine by overlapping GPU and CPU compu-
tations (as the CPU takes care of neighbour exchanges).

We used the same kind of porting paradigm on all Gadget modules, and showed
how it keeps its speedup over different architectures (e.g. V100+NVLink or P100+PCI
Express) and number of devices. This points to the direction that this kind of porting,
which involves CPU/GPU computational overlap, is stable over different modules and
architectures and may be useful for other multi-node N-body solvers.

Although we performed only one test that executes all modules up to the end of the
simulation (Sec. 3.3), the various tests gave us the possibility to probe the performance
on different configurations: with V100+NVLink technology (Sec. 3.1), with P100+PCI
Express (Sec. 3.2), and over a large number of GPUs (Sec. 3.4). The EuroHack17 scaling
in particular, showed how our approach (although it tests only one module, namely the
gravity module) is capable of keeping its speedup up to a thousand of GPUs.

These tests were also useful to investigate the origin of the speedup by gradually
increasing the profiled region of simulations, here we found that: (i) a single SPH density
iteration, where we found a speedup of ≈ 4.5; (ii) a full time step, where we found a
timestep of ≈ 3.5; (iii) to a full simulation and to a large number of GPUs where we
found a total speedup of ≈ 2.

We briefly tested Unified Memory and found that, in our preliminary tests, this
technology reaches the same performance of our explicit memory management. Unified
Memory is a solution we will explore further because one does not have to manually set
up the data transfer (which is not trivial in Gadget, since every timestep has only a subset
of active particles).
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Additionally, from that experience we found that the Domain Decomposition and
the Tree Build are the new bottleneck of very large runs, once one speeds up the other
modules with our OpenACC porting.

An initial step towards porting other modules of Gadget have been done, where we
ported the cooling and star formation module. The other upcoming bottlenecks are the
domain decomposition and the tree build algorithms, which by now are neither MPI
parallel nor OpenMP parallel.
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