
On Superlinear Speedups of a Parallel
NFA Induction Algorithm

Tomasz JASTRZĄB a,1

a Institute of Informatics, Silesian University of Technology, Gliwice, Poland

Abstract. The parallel induction algorithm discussed in the paper finds a mini-
mal nondeterministic finite automaton (NFA) consistent with the given sample. The
sample consists of examples and counterexamples, i.e., words that are accepted
and rejected by the automaton. The algorithm transforms the problem to a fam-
ily of constraint satisfaction problems solved in parallel. Only the first solution
is sought, which means that upon finding a consistent automaton, the remaining
processes terminate their execution. We analyze the parallel algorithm in terms of
achieved speedups. In particular, we discuss the reasons of the observed superlin-
ear speedups. The analysis includes experiments conducted for the samples defined
over the alphabets of different sizes.

Keywords. parallel algorithm, superlinear speedup, nondeterministic automata
induction, constraint satisfaction

1. Introduction

Deterministic and nondeterministic finite automata play a crucial role in various practical
applications, including artificial intelligence, grammatical inference, and bioinformatics
[1,2,3]. The last field of application is particularly interesting, as also stated in [4], since
the automata can be used to detect patterns hidden in bioinformatics data. In this con-
text, automata can act as classifiers for previously unseen sequences, or as generators,
producing new sequences that may bear some biological meaning.

A nondeterministic finite automaton (NFA) is given by a tuple A = (Q,Σ,δ ,q0,QF),
where Q is a finite set of states, Σ is an alphabet, δ : Q×Σ→ 2Q is a transition function,
q0 ∈ Q is an initial state and QF ⊆ Q is a set of final states [5]. A sample S = (S+,S−)
consists of two sets of words, where a word w is a finite sequence of symbols defined
over the alphabet Σ, set S+ contains examples, while set S− contains counterexamples.

The aim of the parallel induction algorithm is to find a minimal NFA consistent with
the given sample S. The automaton is consistent with S iff it accepts all the examples and
rejects all the counterexamples. A word w is accepted by the automaton A iff there exists
a sequence of transitions between state q0 and at least one state q ∈ QF on which the
word is read. Otherwise, the word is rejected. The automaton is consistent and minimal
iff no two states can be merged together without losing the consistency.

1Corresponding Author: Tomasz Jastrząb, Institute of Informatics, Silesian University of Technology,
ul. Akademicka 16, 44-100 Gliwice, Poland; E-mail: Tomasz.Jastrzab@polsl.pl.

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200039

179

The induction of minimal consistent NFA is known to be hard. It was shown that
NFA minimization is impossible from polynomial time and data [6]. It was also shown
that even if the sample is given in the form of a deterministic finite automaton, the prob-
lem is PSPACE-complete [7]. Hence, the use of parallel computing is vital for efficient
solving of the problem at hand.

In the paper, we study a parallel algorithm for solving the minimal NFA induction
problem. The algorithm constructs first a set of independent constraint satisfaction prob-
lems (CSP), described in detail in Section 2, and then solves them in parallel. We also
consider a modified version of the algorithm in which each CSP is solved independently
according to a number of different variable orderings. Furthermore, we discuss the im-
plications of the use of shared and distributed memory models, including the issues of
distributed computation termination and the overhead of interprocess communication.

The main contribution of the paper is the analysis of the achieved speedups. We
focus in particular on the superlinear speedups2 observed for certain samples. We provide
explanations of the anomalies. We analyze the speedups in the function of the number
of processes, but also with respect to the input samples. They differ in the sizes of the
alphabets, the lengths of the examples and counterexamples and the sizes of the resulting
automata. We consider different samples including the ones presented in the literature
[9] and randomly generated based on the publicly available resources [10].

The rest of the paper is organized as follows. In Section 2 we present the problem
formulation considered in the paper. In Section 3 we discuss the basic and modified
parallel induction algorithms. Section 4 contains the results of the experiments and the
discussion of the superlinear speedups. Finally, in Section 5 we present the conclusions.

2. Problem Formulation

The problem of minimal consistent NFA induction can be viewed from two different
perspectives. Namely:

1. It is an optimization problem, if we first induce any consistent NFA, and later
reduce it by merging redundant states.

2. It is a decision problem, if we first fix the number of states, and later search for a
consistent automaton with the given number of states.

Note that in the first case, the final size of the automaton depends on the order in which
the merges are performed. As a consequence, the resulting automaton need not be mini-
mal. With the second approach, by taking the number of states to be k = 1,2, . . ., we not
only find the consistent automaton for the given k, but we can also prove that it is indeed
minimal, if no consistent NFA exists for k− 1 states. However, even for the decision
problem, the solution (i.e., the induced NFA) does not have to be unique.

There exists a number of algorithms following the first approach towards NFA in-
duction mentioned above. They include the DeLeTe2 algorithm [11], Nondeterministic
Regular Positive Negative Inference (NRPNI) [12], and the state merging algoriths based
on the notions of unambiguous [13] or universal [14] automata. The algorithm discussed
in [14] has been extended in [15], to produce an algorithm that is independent of the or-

2A superlinear speedup occurs when the achieved speedup is greater than the number of used processes. For
more information see [8].

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm180

der in which the merges are performed. Yet another approach was taken in [16], in which
subautomata consistent with the set S− were generated for each member of the set S+,
and were later removed when an example was accepted by a different subautomaton.

The decision problem formulation was pursued in [17], in which the basic encoding
of the induction problem as a CSP was proposed. The encoding was later improved in
[18,19], which allowed for a significant reduction of the solution space size. The impact
of the selected variable ordering schemes on the performance of parallel induction algo-
rithms was also investigated in [20,4]. Finally, some considerations related to the possi-
bility of using multiple variable orderings at the same time were presented in [21]. In the
current paper, we further elaborate on this possibility in terms of achieved speedups.

Let us now recall the CSP-based formulation of the induction problem solved by the
parallel algorithms described in Section 3. The description is based on [19] and corre-
sponds to the decision problem stated before. Let k be the given number of states and l
be the size of the alphabet. We assume two types of binary variables y and z. Variables
yi, i = 0,1, . . . ,k2l−1, denote the elements of the transition function δ , and variables z j,
j = 0,1, . . . ,k−1, mark the states as final or non-final. Let Σ be ordered lexicographically
and let loc(a) denote the zero-based position of a symbol a within Σ. Then each index i
of a variable yi, corresponding to a transition qm

a→ qn, qm,qn ∈ Q, is given by [17]:

i = k2 · loc(a)+ k ·m+n. (1)

Given the variables defined above, the consistency of the automaton with the sample
S = (S+,S−) is defined as follows:

1. If set S+ or set S− contains the empty word λ , then z0 = 1, for λ ∈ S+ (the empty
word is accepted), and z0 = 0, for λ ∈ S− (the empty word is rejected).

2. For all examples, the word w is accepted by the NFA iff there exists a sequence
of transitions over which word w is spelled out, provided that this sequence ends
in a final state. Therefore, for each w ∈ S+ \{λ}, it holds that:

∨

j=0..k−1

⎛

⎝ ∨

1..k|w|−1

(yi1 ∧ yi2 ∧ . . .∧ yi|w|)

⎞

⎠∧ z j = 1, (2)

where i1, i2, . . . , i|w| are the indices of yi variables computed according to Eq. (1),
for 0≤ m,n < k and a ∈ Σ appearing in word w.

3. For all counterexamples, the word w is rejected by the NFA iff no sequence of
transitions over which word w is spelled out exists, or such a sequence ends in a
non-final state. Therefore, for each w ∈ S− \{λ}, it holds that:

∨

j=0..k−1

⎛

⎝ ∨

1..k|w|−1

(yi1 ∧ yi2 ∧ . . .∧ yi|w|)

⎞

⎠∧ z j = 0, (3)

where i1, i2, . . . , il are defined as before.

Example 1. To clarify Eqs. (2) and (3) let us consider the following example. Let the
sample be S = ({a,aa,ba,bba},{λ ,b,ab}) and let k = 2. Since λ ∈ S− we have z0 = 0.

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm 181

Since z1 = 0 cannot lead to a valid solution (no word would be accepted), we set z1 = 1.
Equations (2) and (3), after applying values of z0 and z1, take the following form:

for word a: y1 = 1
for word aa: y0∧ y1∨ y1∧ y3 = 1
for word ba: y4∧ y1∨ y5∧ y3 = 1
for word bba: y4∧ y4∧ y1∨ y4∧ y5∧ y3∨ y5∧ y6∧ y1∨ y5∧ y7∧ y3 = 1
for word b: y5 = 0
for word ab: y0∧ y5∨ y1∧ y7 = 0

After solving the above equations we get that y1 = 1, y4 = 1, y0 ∨ y3 = 1, y5 =

0, and y7 = 0. It means that the resulting automaton contains the transitions q0
a→ q1,

q0
b→ q0 and at least one of the transitions q0

a→ q0 or q1
a→ q1. Moreover, the automaton

cannot contain the transitions q0
b→ q1 and q1

b→ q1. The existence of transitions related
to variables y2 (transition q1

a→ q0) and y6 (transition q1
b→ q0) cannot be determined

based on the given sample S. The example solutions are shown in Figure 1.

a, b

a
q0 q1

b a

a
q0 q1

Figure 1. Automata consistent with sample S, in which y0 = 1, y1 = 1, y4 = 1 (left), and y1 = 1, y3 = 1, y4 = 1

3. Parallel Algorithms

Let us now discuss the basic parallel algorithm for solving the induction problem [21].
As already stated, it aims at solving independent CSPs in parallel to speed up the com-
putation. Note that the algorithm, shown in Figure 2, searches for one solution only.

The algorithm BASICPARINDUCTION starts by checking if the value of variable
z0 can be established based on the presence of the empty word (line 2). Depending on
the outcome of this check, it sets the number of possible CSPs n as follows: (i) n =
2k−1, for λ /∈ (S+∪S−), (ii) n = 2k−1, for λ ∈ S+, (iii) n = 2k−1−1, for λ ∈ S−. These
CSPs are then distributed among processes (line 3). Each process employs a backtracking
procedure (lines 5–10), to find the assignments of values to y variables.

There are a few points about the algorithm shown in Figure 2 that are worth men-
tioning. First of all, structure Zs is a k-element vector of z j variables’ values. Based on
these values, Eqs. (2) and (3) are simplified by removing the terms for which z j = 0
(see Example 1). Secondly, the way in which the CSPs are distributed among processes
in the parfor loop (line 3) depends on the used memory model. For a shared memory
model, new processes may be forked by a master process, while for a distributed memory
model, the processes may be assigned to the Zs vectors based on their ranks. In either
case the interprocess communication overhead at this point is minimal. Thirdly, for each
CSP both the yi variables and their values are selected according to the given ordering
scheme (line 6), which is the same for each CSP (see [21] for a discussion of other pos-
sibilities). Finally, since we search for the first solution, upon finding it the computation

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm182

1: procedure BASICPARINDUCTION(S,k)
2: if λ ∈ (S+∪S−) then set z0 accordingly
3: parfor s← 1to n do

4: Zs ← assignment of values to z j variables, 0≤ j < k
5: � start backtracking procedure
6: select next yi and assign value according to the given ordering
7: evaluate Eqs. (2) and (3)
8: if contradition found then change value or return to the previous yi
9: if solution found then notify other processes and terminate

10: � end backtracking procedure
11: end parfor

12: end procedure

Figure 2. The basic parallel induction algorithm

terminates. The way in which the termination procedure is realized, depends again on the
memory model used. In case of the shared memory model, it is enough to use a global
Boolean flag protected against simultaneous read-write access by a mutex. In case of the
distributed memory model, a message has to be sent to other processes, indicating that
they may terminate their execution. However, to receive the message, each process has
to periodically check for message arrival. Hence, the distributed memory model incurs
some time overhead resulting from channel probing and interprocess communication.

The modified version of the parallel induction algorithm is shown in Figure 3. It
applies multiple ordering schemes to each of the analyzed CSPs. The intuition behind
this approach is that the “best” ordering is not known in advance, and it may differ
between respective CSPs. Thus, to increase the chances for efficient computation, we
employ multiple orderings to the same instance of the CSP. This way we also capitalize
on the negative results, i.e., when the process using some ordering determines that no
solution exists for the given CSP (given Zs), it notifies the other processes working on
the same CSP, that they should terminate their execution. This way, the time to solve a
given CSP is shorter, and equal to the run time of the process using the “best” ordering.

Let us discuss the effects of the memory models on the MULTIVOPARINDUCTION

algorithm. The distribution of computation ocurrs in lines 3 and 5. Let n be the number of
CSPs and m be the number of ordering schemes. Then in the shared memory model, we
can fork nm processes, divide them into n groups working on the Zs vectors and for each
process in the given group apply a different ordering scheme for the same Zs. In case of
the distributed memory model, we can still use the process ranks, but this time we have
to group the processes working on the same vector Zs. As to the termination procedure,
for the shared memory model, we need a set of global Boolean flags, one for each group
of processes working on the same CSP, to indicate negative results. For the distributed
memory model, we need to introduce a different message type for each group of pro-
cesses, to indicate group termination, as opposed to global termination when the solution
is found. Therefore, the overhead of interprocess communication does not change for the
distributed memory model, while it increases for the shared memory model, due to the
need for access synchronization to the group termination flag.

Figures 4 and 5 show the work distribution and interprocess communication related
to the termination procedure for the two parallel algorithms. For the basic algorithm, we

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm 183

1: procedure MULTIVOPARINDUCTION(S,k)
2: if λ ∈ (S+∪S−) then set z0 accordingly
3: parfor s← 1to n do

4: Zs ← assignment of values to z j variables, 0≤ j < k
5: parfor t ← 1to m do

6: � start backtracking procedure
7: select next yi and assign value according to the given ordering t
8: evaluate Eqs. (2) and (3)
9: if contradition found then change value or return to the previous yi

10: if solution found then notify other processes and terminate
11: � end backtracking procedure
12: end parfor

13: if solution not found then notify other processes working on Zs and terminate
14: end parfor

15: end procedure

Figure 3. The modified parallel induction algorithm

assumed that the number of processes is equal to n, while for the modified version, this
number is equal to nm.

Process P1 Process P2 Process Pn

Z1 Z2 Zn

global termination flag

. . .

Figure 4. Work distribution and computation termination procedure for BASICPARINDUCTION algorithm

4. Experiments

The parallel algorithms were implemented in Java and executed on a pair of 12-core Intel
Haswell 2.3 GHz processors with 128 GB RAM. The read-write access to the shared
memory was protected using the ���������	
� keyword. The time measurements were
performed using ���

���������
�� function.

The experiments were conducted for the selected Tomita languages [9] and for the
samples built from the peptides listed in WALTZ-DB database [10]. The Tomita lan-
guages are defined over the alphabet {0,1}, while the peptides are based on an alphabet
of up to 20 symbols, representing amino acids. The summary of the differences between
these two sample sources is shown in Table 1.

The experiments aimed at observing the speedups obtained by the basic and mod-
ified parallel algorithms. The algorithms used three different ordering schemes, namely

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm184

Process P
(1)
1 Process P

(1)
m Process P

(n)
1 Process P

(n)
m

Z1 Z1 Zn Zn

group termination flag group termination flag

global termination flag

.

Figure 5. Work distribution and computation termination procedure for MULTIVOPARINDUCTION algorithm

Table 1. Comparison of sample characterisitcs based on Tomita languages and WALTZ-DB samples

Sample characteristic Tomita languages WALTZ-DB samples

Number of samples N 10 50
Number of states k 3–4 2–3
Alphabet size |Σ| 2 18–20
Sample size |S+|+ |S−| 20–25 50
Word length |w| 0–18 5–6
Contains empty word λ ∈ (S+ ∪S−) yes no

the deg scheme [22], as well as the min-max-ex and min-max-cex schemes [4]. The deg
scheme uses static ordering based on variable degree, while the other two schemes use
dynamic ordering based on the examples and counterexamples, respectively.

In the first experiment we compared the basic parallel algorithm executed by a single
process and by the number of processes corresponding to n. The distribution of obtained
speedups, for different variable orderings, is shown in Figure 6. The box plots show the
minimum and maximum speedup values (marked by the lines extending from the box),
together with the first, second, and third quartile (marked by the box itself).

Based on the results shown in Figure 6 we noticed two kinds of anomalies. On the
one hand, we observed slowdowns present mostly for the Tomita languages. On the other
hand, we noted the superlinear speedups (up to 8500) in case of WALTZ-DB samples.

0.6

1.2

1.8

2.4

3.0

deg min-max-ex min-max-cex

S

100

101

102

103

104

deg min-max-ex min-max-cex

S

Figure 6. Speedups achieved by the BASICPARINDUCTION algorithm for the Tomita languages (left) and
WALTZ-DB samples

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm 185

The reason for the negative anomalies is that when the solution found during the
sequential and parallel execution of the algorithm is the same, the latter approach intro-
duces an overhead resulting from parallelism. Since the processes read from and write to
the shared memory, access synchronization occurs. Furthermore, the NUMA architecture
of the processors also affects the distribution of memory access times. This in turn intro-
duces certain delays to the overall execution time. The reasons for positive anomalies are
two-fold. Either there exists more than one solution for the given sample, or the solution
is found for a CSP that is not the first one analyzed. In the former case, the algorithm
executed in parallel allows to find the “simplest” solution, i.e., the solution that can be
found in the shortest time. In the latter case, the parallel algorithm is able to bypass the
“hard” CSP instances that have to be solved during the sequential run of the algorithm.

Example 2. Let us assume that a two-state automaton is sought. We consider three
different CSPs resulting from the pairs of assignments Z0 = 〈0,1〉, Z1 = 〈1,0〉, and Z2 =
〈1,1〉. Let us assume that the execution times are τ0 = 10 s, τ1 = 1 s, and τ2 = 25 s,
and that a solution exists for the cases Z0 and Z1. The sequential execution takes 10 s
(solution for Z0 found), while the parallel execution for n = 3 processes takes only 1 s
(solution for Z1 found), which gives a speedup of 10.

Example 3. Let us assume that a two-state automaton is sought. We consider three
different CSPs resulting from the pairs of assignments Z0 = 〈0,1〉, Z1 = 〈1,0〉, and Z2 =
〈1,1〉. Let us assume that the execution times are now τ0 = 25 s, τ1 = 1 s, and τ2 = 10 s,
and that a solution exists for the case Z1. The sequential execution takes 26 s (cases Z0
and Z1 considered), while the parallel execution for n = 3 processes takes only 1 s (after
solution for Z1 is found all processes terminate), which gives a speedup of 26.

In the experiments performed for the WALTZ-DB samples, we counted 25, 34, and
34 cases in which a different solution was found by the sequential and parallel algorithm
using deg, min-max-ex, and min-max-cex, respectively. Out of these cases, there were 12,
19, and 11 cases which resulted in superlinear speedups. Additionally, for the cases in
which the sequential and parallel execution provided the same solution, there were 13,
14, and 5 cases, in which we observed superlinear speedups.

In the second experiment we used the MULTIVOPARINDUCTION algorithm to ob-
serve how the use of multiple ordering schemes affects the execution times. In particular,
we compared the run times of the modified algorithm with the sequential executions of
the basic algorithm. The summary of obtained speedups is shown in Table 2.

Based on the results shown in Table 2, we note that the use of multiple orderings
sometimes fails to bring any improvement in the execution time, regardless of the type of
sample (see min columns). It is caused by even more frequent synchronization between
processes, occurring also within the groups solving the same CSP. However, we observe
that the MULTIVOPARINDUCTION algorithm allows also for large superlinear speedups

Table 2. Speedups achieved by the MULTIVOPARINDUCTION algorithm with respect to the basic algorithm

deg min-max-ex min-max-cex

Sample source min max avg min max avg min max avg

Tomita 0.1 2.8 0.7 0.2 17.6 2.8 0.2 23.1 3.8
WALTZ-DB 0.1 115.1 13.6 0.9 38101.7 2688.8 0.5 96.8 11.6

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm186

(see max columns in WALTZ-DB row). These speedups are observed for the ordering
schemes different than the one that found the solution. It is so because, the “best” order-
ing can produce the solution in much shorter time than the other orderings, bypassing
also their problems in solving certain CSPs.

We noted that in case of the WALTZ-DB samples, the deg ordering scheme was
usually the one that allowed to find the solution in the shortest time (for 30 out of 50
samples). The same trend was also preserved for Tomita languages, for which the deg
ordering scheme was the fastest in 7 out of 10 cases.

5. Conclusions

We analyzed the speedups obtained by the basic and modified parallel algorithms for
NFA induction. For the Tomita languages, defined over two-symbol alphabet, we usually
observed negative anomalies, i.e., the algorithms slowed down with the increase of the
number of processes. Furthermore, these samples turned out to be easy enough to be
solved efficiently even by a single process. For the peptide-based samples of WALTZ-
DB database, the parallelism was expolited to a larger extent. Firstly, there were 3 cases
in which the sequential execution of the algorithm failed to find the solution within the
time limit of 8 hours. And secondly, we observed superlinear speedups of up to 8500 for
no more than 7 processes, and over 38000, for up to 21 processes.

To explain the differences between the two kinds of samples, let us note that the
solution space is given by 2k2l , where k is the number of states and l is the alphabet size.
Therefore, for the Tomita languages we need to consider at most 232 ≈ 4 · 109 different
assignments of values to y variables. For the WALTZ-DB samples, we get 2180 ≈ 1018

possible assignments. Therefore, the bigger solution space allows for better use of the
parallelism and increases also the probability that more than one solution exists. Hence,
it allows to achieve superlinear speedups in the cases discussed in Examples 2 and 3.

In the future, we plan to investigate the performance of the algorithms in the cases
in which more than one solution is sought. In particular, we are interested in analyzing
how the number and types of used variable ordering schemes would affect the speedups.
Moreover, we plan to investigate deeper the reasons for the observed slowdowns.

Acknowledgments

The research was supported by National Science Centre Poland, project registration no.
2016/21/B/ST6/02158. The computations were carried out using the computer cluster
Tryton at the Academic Computer Center in Gdańsk.

References

[1] C. de la Higuera. A bibliographical study of grammatical inference. Pattern Recognition, 38(9):1332–
1348, 2005.

[2] W. Wieczorek and O. Unold. Induction of directed acyclic word graph in a bioinformatics task. In
A. Clark, M. Kanazawa, and R. Yoshinaka, editors, Proceedings of the 12th International Conference on
Grammatical Inference, volume 34 of JMLR Workshop and Conference Proceedings, pages 207–217.
Proceedings of Machine Learning Research, 2014.

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm 187

[3] W. Wieczorek and O. Unold. Use of a novel grammatical inference approach in classification of amy-
loidogenic hexapeptides. Computational and Mathematical Methods in Medicine, 2016:1–10, 2016.

[4] T. Jastrząb. A comparison of selected variable ordering methods for NFA induction. In J.M.F. Rodrigues
et al., editors, Computational Science – ICCS 2019, volume 11540 of LNCS, pages 741–748. Springer,
Cham, 2019.

[5] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[6] C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine Learning, 27:125–
138, 1997.

[7] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on Computing, 22(6):1117–
1141, 1993.

[8] S. Ristov, R. Prodan, M. Gusev, and K. Skala. Superlinear speedup in HPC systems: why and when? In
Proceedings of FEDCSIS, pages 889–898. IEEE, 2016.

[9] M. Tomita. Dynamic construction of finite automata from examples using hill-climbing. In Proceedings
of the 4th Annual Conference of the Cognitive Science Society, pages 105–108. University of Michigan,
USA, 1982.

[10] J. Beerten, J. Van Durme, R. Gallardo, E. Capriotti, L. Serpell, F. Rousseau, and J. Schymkowitz.
WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics, 31(10):1698–1700,
2015.

[11] F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using RFSAs. Theoretical Computer
Science, 313(2):267–294, 2004.

[12] G.I. Alvarez, J. Ruiz, A. Cano, and P. Garcia. Nondeterministic regular positive negative inference
NRPNI. In J.F. Diaz, C. Rueda, and A. Buss, editors, Proceedings of the XXXI Latin American Infor-
matics Conference, pages 239–249. 2005.

[13] F. Coste and D. Fredouille. Unambiguous automata inference by means of state merging methods. In
N. Lavrac et al., editors, Proceedings of the 14th European Conference on Machine Learning, volume
2837 of LNAI, pages 60–71. Springer-Verlag, Berlin, Heidelberg, 2003.

[14] P. Garcia, M. Vazquez de Parga, G.I. Alvarez, and J. Ruiz. Universal automata and NFA learning.
Theoretical Computer Science, 407(1–3):192–202, 2008.

[15] P. Garcia, M. Vazquez de Parga, G.I. Alvarez, and J. Ruiz. Learning regular languages using non-
deterministic finite automata. In O.H. Ibarra and B. Ravikumar, editors, Proceedings of the 13th In-
ternational Conference on Implementation and Application of Automata, volume 5148 of LNCS, pages
92–101. Springer-Verlag, Berlin, Heidelberg, 2008.

[16] M. Vazquez de Parga, P. Garcia, and J. Ruiz. A family of algorithms for non deterministic regular lan-
guages inference. In O.H. Ibarra and H.-C. Yen, editors, Proceedings of the 11th International Confer-
ence on Implementation and Application of Automata, volume 4094 of LNCS, pages 265–274. Springer-
Verlag, Berlin, Heidelberg, 2006.

[17] W. Wieczorek. Induction of non-deterministic finite automata on supercomputers. In J. Heinz, C. de
la Higuera, and T. Oates, editors, Proceedings of the 11th International Conference on Grammatical
Inference, volume 21 of JMLR Workshop and Conference Proceedings, pages 237–242. Proceedings of
Machine Learning Research, 2012.

[18] T. Jastrząb, Z.J. Czech, and W. Wieczorek. Parallel induction of nondeterministic finite automata. In
R. Wyrzykowski et al., editors, Proceedings of the 11th International Conference on Parallel Processing
and Applied Mathematics, volume 9573 of LNCS, pages 248–257. Springer, Cham, 2016.

[19] T. Jastrząb. On parallel induction of nondeterministic finite automata. In I. Altintas et al., editors, Pro-
ceedings of the International Conference on Computational Science, volume 80 of Procedia Computer
Science, pages 257–268. Elsevier, 2016.

[20] T. Jastrząb. Performance evaluation of selected variable ordering methods for NFA induction. In Pro-
ceedings of the 14th International Conference on Grammatical Inference – Extended Abstracts. 2018.

[21] T. Jastrząb. Two parallelization schemes for the induction of nondeterministic finite automata on PCs.
In R. Wyrzykowski et al., editors, Proceedings of the International Conference on Parallel Processing
and Applied Mathematics, volume 10777 of LNCS, pages 279–289. Springer, Cham, 2017.

[22] R. Dechter and I. Meiri. Experimental Evaluation of Preprocessing Techniques in Constraint Satisfaction
Problems. In Proc. of IJCAI’89, pages 271–277, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc.

T. Jastrząb / On Superlinear Speedups of a Parallel NFA Induction Algorithm188

