
On the Autotuning of Task- ased
Numerical Libraries for Heterogeneous

Architectures
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Abstract. A roadmap for autotuning task-based numerical libraries is presented.
Carefully chosen experiments are carried out when the numerical library is being
installed to assess its performance. Real and simulated executions are considered to
optimize the routine. The discussion is illustrated with a task-based tile Cholesky
factorization, and the aim is to find the optimum tile size for any problem size,
using the Chameleon numerical linear algebra package on top of the StarPU run-
time system and also with the SimGrid simulator. The study shows that combin-
ing a smart exploration strategy of the search space with both real and simulated
executions results in a fast, reliable autotuning process.

Keywords. autotuning, linear algebra, task-based programming, heterogeneous
computing, simulation

1. Introduction

The complexity of modern computers makes the design of high performance numerical
libraries extremely challenging. Task-based programming paradigms have been proved
to alleviate the exercise, as part of the burden is delegated to a third party software, com-
monly referred to as a runtime system. Nonetheless, the resulting libraries are often left
with one or more parameters to be carefully set up in order to achieve high performance.
This work describes an approach on how to use autotuning techniques to select the best
values for some algorithmic parameters of the linear algebra routines of these kinds of
libraries.

The proposed approach is applied to routines of Chameleon [1]. The computational
kernels of the library are used as building blocks for higher-level routines designed for
heterogeneous platforms composed of multicore CPUs with one or more GPUs. This
dense linear algebra library is derived from PLASMA [2] and internally uses StarPU [3],
a runtime system which enables us to express parallelism through sequential-like code
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and which schedules the different tasks over the hybrid processing units. These tasks are
executed by using optimized implementations of linear algebra libraries, such as Intel
MKL [4] for multicore CPU and MAGMA [5] or cuBLAS [6] for GPU. In previous
works, several frameworks have been developed which focus on how to optimize linear
algebra kernels on heterogeneous platforms [7,8]. Other approaches are proposed to pre-
dict the performance of a dynamic task-based runtime system for heterogeneous multi-
core architectures [9]. In contrast with those previous works, we propose the application
of tuning strategies to obtain the best value of the algorithmic parameters of the routines
for an efficient use of the hybrid components in the computational node. The application
of these strategies is illustrated with the Cholesky routine, a fundamental and represen-
tative linear algebra algorithm, with the focus on the selection of the value for the tile
size.

The rest of the paper is organized as follows. Section 2 introduces the Cholesky
routine of Chameleon and how it is executed by using the StarPU runtime system. Sec-
tion 3 describes the training strategies proposed for selecting the best values for the tile
size. Experimental results are shown in Section 4 for a heterogeneous platform. Possible
extensions of the methodology are discussed in Section 5. Section 6 concludes the paper.

2. Cholesky Routine of Chameleon

The Cholesky factorization (or Cholesky decomposition) of an n×n real symmetric pos-
itive definite matrix A has the form A = LLT , where L is an n× n real lower triangular
matrix with positive diagonal elements. This factorization is mainly used as a first step
for the numerical solution of linear equations Ax = b, where A is a symmetric, positive
definite matrix.

The reference implementation of the Cholesky factorization for machines with hier-
archical levels of memory is part of the LAPACK library [10]. It consists of a succession
of panel (or block column) factorizations followed by updates of the trailing submatrix.

In the Chameleon library, the Cholesky routine follows a tile-based scheme in which
the n×n matrix to be factorized is split in multiple submatrices, or tiles, of size nb×nb
[1]. To enable the concurrent use of all the computational units on a heterogeneous plat-
form, the Chameleon library splits the work into smaller tasks, which correspond to the
computational kernels involved in performing the decomposition: potrf, trsm, gemm
and syrk. The complexity of scheduling these tasks, solving data dependencies and of
data consistency is delegated to StarPU [3]. By default, it uses the lws scheduler, because
it provides correct load balancing and locality, and also takes into account priorities, al-
though different scheduling policies can be selected, such as eager, prio, ws,. . . However,
none of them considers the selection of the best value to use for the tile size, nb, in the
Cholesky routine. Therefore, it is necessary to develop optimization strategies to suitably
select the best value for nb.

Figure 1 shows the steps for executing a linear algebra routine of Chameleon (such
as the Cholesky decomposition) using the StarPU runtime system. Each routine is com-
puted following a tile-based algorithm. Then, a direct acyclic graph is created with the
dependencies between tasks and, finally, these tasks are scheduled using the StarPU run-
time system, which executes each of the tasks in the different computational units with
the use of optimized implementations of the basic linear algebra routines.
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Figure 1. Execution of a linear algebra routine in Chameleon.

3. Training Strategies

Our study focuses initially on applying training strategies to select the value for the tile
size, nb, of the Cholesky routine for a number of selected and representative problem
sizes. Empirical and simulated approaches are combined with exhaustive and pruned
searching methods. So, four resulting training strategies are considered:

S1: Empirical+Exhaustive

A naive approach for tuning the library would be to collect empirical data exhaustively
from a large set of experiments for representative problem sizes. The routine is exper-
imentally executed on the heterogeneous platform using a set of tile sizes for each se-
lected problem size, n. As a result, the performance for each pair (n,nb) is obtained and
stored for further use.

S2: Empirical+Pruned

Usually the time employed by S1 approach is very high. So, to reduce the experimenta-
tion time, ensuring at the same time results close to the exhaustive ones, a pruned strat-
egy of the search space can be used. It exploits the fact that the tile size nb trades off
the performance of an individual task (the higher the nb, the higher the performance of
the task) with the concurrency between tasks (the smaller the nb, the wider the DAG of
tasks). We therefore consider a strategy similar to the one employed on multicore-only
platforms [11]. In the proposed approach, the search starts with the lowest problem size
(e.g, n = 2000) and seeks the optimum tile size nb. Once a given problem size n has been
explored, the next problem size (n = 4000,8000, . . ., in that order) is investigated. The
key idea is that the search continues with the next problem size using as its starting-point
the best tile size selected for the previous problem size. For instance, if the optimum tile
size for n = 4000 is nb = 256, the pruned strategy directly assesses nb = 256 (not evalu-
ating the previous value for the tile size) for n = 8000 and, then, the next tile size (in in-
creasing order) is considered until it reaches a tile size with which the performance is not
improved. Then, the process continues with the next problem size using as starting-point
the best nb obtained for the previous problem size, and so on.
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S3: Simulated+Exhaustive

The S1 and S2 strategies require access to a heterogeneous platform for the experiments.
Instead, we can use a simulator and apply an off-line training strategy on a separate
laptop. For this purpose, we use the SimGrid simulator [9]. During an empirical phase,
for each tile size and set of problem sizes, a very quick sampling of data is collected for
each of the routine kernels and the generated information is stored in files called codelets.
The information stored is based on performance models of the execution time, which can
be history-based or regression-based, and is used by the simulator to estimate the duration
of a task. After that, the simulator could be used over these codelets on a personal laptop
to estimate the performance for each pair (n, nb), so reducing the experimentation time
with respect to the empirical approaches.

S4: Simulated+Pruned

This strategy is applied in the same way as S2, but using the information collected after
applying the S3 strategy. The goal is to further reduce the search time required to obtain
the tile size for each problem size while maintaining a good performance estimation.

4. Experimental Results

The experiments were carried out on a heterogeneous node with 12 CPU cores (2
hexa-core) and 6 NVIDIA GPUs (4 GeForce GTX590 and 2 Tesla K20c) using
the set of problem sizes {2000,4000,8000, . . . ,32000} and a fixed set of tile sizes
{208,256,288,320,384,448,512,576}.

4.1. Searching the Tile Size

The results obtained for the Cholesky routine of Chameleon using the exhaustive strate-
gies (S1 and S3) are shown in Figure 2. Figure 2a shows the results obtained with the em-
pirical S1 strategy. The performance (y-axis) for each problem size significantly depends
on the tile size nb, reaching the asymptotic value when using the highest tile sizes in
larger problem sizes. Figure 2b, instead, shows the results when using the simulated S3
strategy. The performance achieved for each problem size is very similar to that obtained
with the empirical strategy, especially for large matrix and tile sizes.

If we consider the empirical and simulated approaches using the pruned strategy,
satisfactory results are obtained. Figure 3 shows that the performances obtained with the
S1 and S2 strategies perfectly overlap, but both approaches use the actual platform to
perform the search for the tile-size values. The simulated S3 and S4 strategies, however,
return very decent tuning without (almost) using the actual compute node during the
training phase, achieving performance results similar to the empirical ones.

The results obtained with the four strategies are similar in terms of performance, but
not in terms of the search time required. Table 1 compares the nb value selected for each
problem size using each one of the strategies (values also shown in Figure 3) and the time
employed in finding each value during the search process. In the empirical approaches
(S1 and S2 strategies) the selected values for the tile size are identical, but the search time
employed is lower when using the pruned strategy. The S1 strategy uses 30 minutes of
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2a. Empirical Performance

nb = 576 nb = 512
nb = 448 nb = 384
nb = 320 nb = 288
nb = 256 nb = 208
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2b. Simulated Performance

nb = 576 nb = 512
nb = 448 nb = 384
nb = 320 nb = 288
nb = 256 nb = 208

Figure 2. Empirical (2a) and simulated (2b) performance of the Cholesky routine of Chameleon using a fixed
set of nb values for each problem size.
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Figure 3. Performance of the Cholesky routine of Chameleon after applying each of the four considered
strategies (the selected nb value by each strategy is also displayed).

platform time to find the nb values. However, by using the S2 pruned strategy, the time is
reduced to 154 seconds. With the simulated approaches (S3 and S4 strategies), the values
obtained for the tile size are similar to those obtained with the empirical approaches,
but with much less search time, and the search can be done on a separate laptop. For
small and medium problem sizes, the nb values differ slightly from those obtained with
the empirical approaches due to small variations in the performance estimated by the
simulator, but the time employed in searching for the nb values is reduced. With the
S3 strategy, the simulation time is about 30 minutes and with the S4 pruned strategy it
is reduced to only 84 seconds. There are some entries in the table for the S2 and S4
pruning strategies for which the time is not displayed (represented as ‘-’). This is because
when the search reaches the highest value considered for nb, this value is used for higher
problem sizes, so no time is spent searching for them.
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Table 1. Value for the tile size (nb) for each problem size using the different strategies and execution time (in
seconds) employed during the search for each strategy and problem size.

S1 S2 S3 S4
n nb time nb time nb time nb time

2000 208 67 208 17 208 2 208 1
4000 256 71 256 25 208 5 208 3
8000 448 89 448 67 256 24 256 13
12000 576 125 576 45 576 67 576 67
16000 576 184 576 - 576 143 576 -
20000 576 273 576 - 576 321 576 -
24000 576 400 576 - 576 470 576 -
28000 576 581 576 - 576 753 576 -

4.2. Testing the Training Strategies

Once the routine has been trained for a set of problem sizes and different values for the
tile size, we test the validity of the training with a set of experiments for an intermediate
set of problem sizes. This testing process consists of applying an interpolation process
to the information stored for the tile size during the search process performed by each
of the training strategies. The goal of this tuning strategy is to analyze how far the re-
sults obtained (in terms of Gflops) with the tile size selected are with respect to the ex-
perimental optimum. Table 2 compares the results obtained. In general, the selected nb
value (nb column) differs slightly from the optimum (nb opt column). Furthermore, the
deviation of the performance with the tuning strategy with respect to the experimental
optimum (dev column) is quite small, mainly for large problem sizes (between 1% and
5%). Nevertheless, this interpolation process can be considered a valid tuning strategy
because it allows fast prediction of a good value for nb for a given problem size.

Table 2. Comparison of the tile size (nb) selected by applying an interpolation process with respect to the
experimental optimum. The dev column shows the deviation of the performance (in %) obtained with each
tuning strategy with respect to the highest experimental performance.

S1 S2 S3 S4
n nb opt nb dev nb dev nb dev nb dev

3000 240 232 5 232 5 208 2 208 2
6000 288 352 12 352 12 232 15 232 15
10000 512 512 0 512 0 416 5 416 5
14000 672 576 3 576 3 576 3 576 3
18000 672 576 3 576 3 576 3 576 3
22000 896 576 1 576 1 576 1 576 1
26000 896 576 1 576 1 576 1 576 1

5. Extensions to the Experimental Study

So far, the experiments have been carried out considering a fixed set of values for the tile
size and using all the computing units of the heterogeneous node. Results are satisfactory
for the proposed training strategies, but when an intermediate set of problem sizes is used
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(e.g, by a user), the decisions in the selection of the value for the algorithmic parameters
are not always the best ones [12,13]. In this section we analyze how to improve the tuning
process, either by adjusting the search for the tile size or by selecting the appropriate
number of computing units to use.

5.1. Other Values for the Tile Size

Experimental results show that when an interpolation process is applied for some prob-
lem sizes, the deviation in Gflops with the selected nb is a little too far from the opti-
mum. Rather than searching for the optimum value for nb, we can consider neighboring
values and analyze the variability obtained in terms of performance in order to decide the
best value for nb. Table 3 shows the deviation obtained for each one of the intermediate
problem sizes when considering three values to the left and to the right of the interpo-
lated one (nb column). The value used to obtain the next (or previous) neighbor is set
according to the problem size. For n ≤ 5000 a value of 8; for 5000 < n < 10000 a value
of 16 and for n ≥ 10000 a value of 32. Therefore, the distance value used for nb could
be automatized according to the range of problem sizes considered. A positive value in
the deviation means an increase in performance over that achieved with the selected nb
by the interpolation process, and a negative value means a decrease in the performance.
In general, when n ≤ 10000, the lowest deviation (or best improvement) is achieved with
the immediately previous neighbor to nb. Instead, when n > 10000, the best neighbor
is usually the third in increasing order with respect to nb. Therefore, the interpolation
process could be slightly adjusted for a better selection of the tile size to use for a given
problem size. For that, a search process could be applied, starting from the interpolated
values for nb and considering both the distance value for nb in function of the problem
size, and a percentage value for cases where an extreme value for nb is reached, in order
to continue exploring in that direction until a new value decreases the performance.

Table 3. Comparison of the performance variability (in %) obtained with several neighbors with respect to the
selected tile size (nb).

n nb1 dev nb2 dev nb3 dev nb nb4 dev nb5 dev nb6 dev

3000 208 +4 216 +2 224 +3 232 240 +5 248 -10 256 -6
6000 304 +6 320 +7 336 +12 352 368 -4 384 +2 400 +1
10000 416 -5 448 -2 480 -1 512 544 -6 576 -3 608 -4
14000 480 0 512 +1 544 -2 576 608 -1 640 +1 672 +3
18000 480 -3 512 -4 544 -7 576 608 -3 640 -3 672 +3
22000 480 -6 512 -3 544 -8 576 608 -3 640 -2 672 -1
26000 480 -7 512 -3 544 -8 576 608 -3 640 -3 672 -1

5.2. Other Algorithmic Parameters

As mentioned, the StarPU runtime system is able to efficiently schedule the kernels
among the available computational units of the system, but it tends to execute them us-
ing all the devices of the node. Our proposal is to analyze whether an appropriate se-
lection of the number of computational units to use for each problem size allows better
performances with an efficient use of the computational resources. We apply a selective
search process which consists of successively adding computing units (CPU and each
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GPU), following an increasingly powerful order. It is important to notice that the current
version of StarPU does not support the data-transfer model between GPUs implemented
on the latest NVIDIA devices. So, the process starts by searching for the best tile size
for the current problem size and platform configuration (the initial device considered is
the CPU). Then, the search continues by adding the most powerful GPU, and the best
value for the tile size is searched for by applying a bi-directional guided search, using as
starting-point the best value obtained for the previous platform configuration. When the
process finishes, both the best platform configuration and tile size for each problem size
are obtained. Table 4 shows the results of applying this tuning process for a set of prob-
lem sizes on the heterogeneous node considered (12 CPU cores and 6 NVIDIA GPUs:
4 GeForce GTX590, numbered 0, 2, 3 and 4, and 2 Tesla K20c, numbered 1 and 5). It
is important to note that StarPU only uses physical cores of the CPU (without hyper-
threading), therefore, the number of CPU cores is adjusted depending on the number of
GPUs used, since one CPU core is intended to manage one GPU. For the set of prob-
lem sizes considered, the search process takes about 185 minutes, but each experiment
is performed 10 times in order to obtain representative means for the Gflops. For small
problem sizes, a subset of the computing units of the node is selected, but when the
problem size increases it tends to use all the computing units. Column ‘Tuned Gflops’
shows the performance obtained with the configuration selected by the tuning process,
and ‘Cham Gflops’ shows the performance of the routine when it is executed with the
same tile size but using the default platform configuration. For all problem sizes, the best
performance is obtained in the tuned case even when the whole platform is used, since
by default StarPU schedules the tasks among workers (each of the GPUs) based on data
dependencies, but does not take into account the computational power of the computing
units. Therefore, despite the search time employed, this tuning process is a good strategy
to consider if we want to efficiently use the computing units of the node.

Table 4. Performance obtained for each problem size with the best configuration selected (Tuned G f lops)
and using the default platform configuration (Cham G f lops).

Computing Units
n nb CPU Cores GPU IDs Tuned G f lops Cham G f lops

1000 112 12 {−} 76 46
2000 192 9 {1,5,0} 164 117
3000 192 8 {1,5,0,2} 285 196
4000 240 7 {1,5,0,2,3} 412 352
5000 256 6 {1,5,0,2,3,4} 545 465
6000 256 6 {1,5,0,2,3,4} 626 554
7000 320 6 {1,5,0,2,3,4} 687 608
8000 320 6 {1,5,0,2,3,4} 753 682
9000 304 6 {1,5,0,2,3,4} 791 713
10000 304 6 {1,5,0,2,3,4} 834 758
11000 512 6 {1,5,0,2,3,4} 880 803
12000 576 6 {1,5,0,2,3,4} 909 896
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6. Conclusions

Task-based libraries allow us to efficiently schedule and execute linear algebra kernels on
heterogeneous platforms, but they are not able to decide the best values for some algo-
rithmic parameters of the routines, such as the tile size nb. In this work we propose some
tuning strategies for selecting satisfactory values for the tile size on tile-based routines.
We also analyze the best number of computing units to use for each problem size on a
heterogeneous platform. The Cholesky routine is considered as proof of concept, using
highly optimized implementations of the Cholesky factorization both for multicore and
GPU. We focus on the tile size as the algorithmic parameter to optimize because this
routine is executed in the Chameleon library by following a tile-based algorithm. The
experimental results obtained are satisfactory, showing that the pruning strategies (both
with empirical and simulated approaches) are good options to select the value for the tile
size for each problem size in a short time, allowing us to obtain performances close to the
experimental optima. Also, we show that a good selection of the computing units of the
node for each problem size (mainly for medium problem sizes) is paramount if we want
to efficiently use the computational resources with a better exploitation of the system.
Our aim is to apply the proposed methodology to other linear algebra routines (such as
LU or QR factorization) and to integrate the tuning process inside the Chameleon library,
extending the study of selecting which computing units to use to bigger heterogeneous
platforms (with a large number of computational resources).
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