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Abstract The sparse grid combination technique can be used to mitigate the curse
of dimensionality and to gain insight into the physics of hot fusion plasmas with the
gyrokinetic code GENE. With the sparse grid combination technique, massively par-
allel simulations can be performed on target resolutions that would be prohibitively
large for standard full grid simulations. This can be achieved by numerically decou-
pling the target simulation into several smaller ones. Their time dependent evolu-
tion requires load balancing to obtain near optimal scaling beyond the scaling capa-
bilities of GENE itself. This approach requires that good estimates for the runtimes
exist.
This paper revisits this topic for large-scale nonlinear global simulations and in-

vestigates common machine learning techniques, such as support vector regression
and neural networks. It is shown that, provided enough data can be collected, load
modeling by data-driven techniques can outperform expert knowledge-based fits –
the current state-of-the-art approach.
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combination technique, machine learning

1. Introduction

The research on hot fusion plasmas remains a pressing topic, and understanding the rel-
evant processes through simulation is necessary to optimize large experimental reactors
such as ITER. While such devices in fusion research are being built, simulation results
should always be one step ahead to assist in understanding and planning experiments [1].
This does not simply happen due to Moore’s Law (and successors), because the gyroki-
netic formulation of the Vlasov-Maxwell equations is at least five-dimensional, and nu-
merical discretizations in higher dimensions suffer the so-called “curse of dimension-
ality”. We have proposed the sparse grid combination technique to mitigate the curse
of dimensionality and to gain insight into the physics of hot fusion plasmas [2] with
the gyrokinetic code GENE [1]. It replaces the computationally infeasible target solution
by a combination of many smaller solutions. Using our parallel combination technique
framework, one can compute the partial solutions in parallel process groups, where each
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process group is assigned multiple tasks, i.e., partial solutions, to solve [3]. At this point,
load balancing becomes crucial, since imbalanced task distributions will lead to unnec-
essary idle times for thousands of processors. Previous work investigated load balancing
for linear local initial-value computations with the combination technique [4]. For sim-
ulations that fully capture the global non-stationary behavior of the plasma, this is not
sufficient any more. We therefore revisit this topic, in order to facilitate computations at
scales that have not been attempted with the combination technique before.

Accordingly, this paper first gives a comprehensive introduction to the scientific
background, i.e., global nonlinear gyrokinetic simulations with GENE and decoupling via
our sparse grid combination technique framework. We discuss how load imbalances can
arise by mis-estimating simulation runtimes. As the main contribution of this paper, we
improve on the state of the art by introducing machine learning methods for load balanc-
ing. We follow Heene et al. [4] and try to find a good a-priori estimate of the runtime of
each task. Runtime data on varying tasks is collected depending on simulation parame-
ters and the degree of parallelization. We have compared different methods of predicting
the runtimes on previously unseen grids: nearest neighbor interpolation, support vector
regression and neural networks, as well as the state-of-the-art model based on expert
knowledge. The latter is still a reasonable approach for our purposes, but can be out-
performed by a neural-network based prediction. It follows that by collecting data early
on, we can save on efficiency losses and re-initialization overhead for large simulations,
while being able to extend our models as we collect more runtime data.

2. Scientific Background

2.1. Gyrokinetic Simulations with the GENE Code

The GENE code is a state-of-the-art solver for the Maxwell-Vlasov system of equations,
consisting of the Maxwell equations and the Vlasov equation
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which connects the plasma particle distribution function f to the electromagnetic
field [5]. While f is actually located in six-dimensional phase space, the gyrokinetic
transform reduces these to five, by integrating out the gyration direction of the plasma
particles. The remaining cartesian dimensions for GENE’s Eulerian approach are denoted
by x,y,z,v‖,μ . The time step integration is performed through an explicit fourth-order
Runge-Kutta scheme.

Even though the complexity of solving is drastically reduced by the gyrokinetic
transform, the computational work required for solving the integro-differential equations
still suffers the curse of dimensionality – simulations are unfeasible for high resolutions.

A simplified way of looking at the equations that GENE solves is splitting into a
linear and nonlinear part

∂ f
∂ t

= L ( f )+N ( f ). (2)
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While previous work looked at times measured for executing only the linear part of
the simulation – and for relatively low resolutions – this topic needs revisiting, now
that we are dealing with nonlinear, global large-scale simulations. The nonlinear part of
the model becomes dominant, and to capture the chaotic behavior it produces, higher
minimal resolutions are required. As the maximum resolution is further increased, more
features can be resolved [5].

At this point, we need to clearly distinguish two different effects that affect the run-
time of a GENE simulation: the time per time step is the time needed to process one
single explicit time step, which we assume to stay constant during the course of a given
simulation, and adaptive time-stepping needed to ensure stability, which will change
nonlinearly with the simulated fields [6].

This paper will focus on the time per time step needed for a given simulation grid.
This is a reasonable restriction for scenarios where we assume that a combination takes
place after all grids have progressed by one time step – more on this in the next section,
which focuses on the combination technique for sparse grids.

2.2. Massively Parallel Computation with the Sparse Grid Combination Technique

Our approach to break the curse of dimensionality is the use of the sparse grid combina-
tion technique [7]. The basic idea is that we can run the simulation on many relatively
coarse anisotropic grids in the index set I; the d-dimensional level vector ��= [�1, . . . , �d ]

defines each grid’s resolution as 2�i +1 in dimension i. I contains all�� in the convex hull
of the simplex spanned by the minimum level ��min and the corners of the cartesian hy-
percube between ��min and the maximum level ��max. The combination results in a sparse
grid representation f (c)

f (c) = ∑
��∈I

c�� f�� , c�� = ∑
�z≤�1

(−1)|�z|1 χI(��+�z). (3)

of the solution, defined on a finer (target) grid of resolution ��max. χI is the characteristic
function of I. For a thorough description of sparse grids and the combination technique
please refer to [8].

− − −+ + + =

Figure 1. Schematic of the standard sparse grid combination technique with ��min = [2,2] and ��max = [4,4]

Existing legacy solvers for cartesian grids can be used in a black-box fashion, and
they do not need to be refactored to implement the numerical operators on the sparse grid
itself. With respect to the GENE code, this means that one can start multiple instances of
GENE to compute the solution to the same physical problem on one of these grids respec-
tively [2]. We will call this combination of simulation parameters and grid resolution ��
a task. After the simulation has progressed by a defined time interval for each task, the
solution is recombined by the use of the combination technique, cf. Fig. 1, such that the
values match on all points which are shared between grids. Note that the simulation step
for one task is independent of other tasks, meaning that the tasks can be processed in an
embarrassingly parallel manner [3].
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Figure 2. Possible parallel computation scheme of the grids in Fig. 1

Since the GENE simulations considered here are far too large to fit on a single node
– usually requiring 20 to hundreds of GB in main memory – our C++ framework for the
sparse grid combination technique employs a manager-worker scheme, where a worker
consists of a whole process group using up to thousands of cores. The manager distributes
tasks to the process groups. Currently, the framework is restricted to process groups of
the same size only. Each process group will execute the assigned tasks one after the other,
each until the simulation time of the next combination step is reached. Then, the grids
of the tasks are updated with the results of the other tasks by way of the combination
technique. This usually means that some of the process groups will have to wait for the
longest-running one to finish, as illustrated by the gap in Fig. 2. If we assume the simplest
set-up where every task uses the same time step, the optimization reduces to finding the
best possible assignment of tasks to the process groups.

But what is a well-balanced assignment of tasks with respect to the process groups?
This is the core question of this paper, and the following sections will present an approach
to answer it.

3. Data-driven Load Modeling

Load balancing in HPC is often implemented by sophisticated domain decomposition
schemes [9], or by reserving resources to different parts of the algorithm, such as differ-
ent solvers [10]. We however are concerned with a particular set-up in which balance of
load is asserted at a larger scale by an approach that is offered by the sparse grid com-
bination technique. We estimate the runtime of single grids beforehand, and assign them
to process groups from “longest” to “shortest”, filling up idle times, cf. Fig. 2. At the
same time, the black box solver may use additional load balancing internally. To the best
of our knowledge, modeling the runtime of simulation time steps via machine learning
techniques has not been implemented for the combination technique before.

The problem considered here is closely connected to basic scheduling algorithms.
Let us assume, however, that re-assignment of a task to another process group is a costly
operation that should be avoided. In our set-up, this is based on the fact that, in addition
to the data on the grid, large amounts of internal simulation data are required per task –
e.g., the GENE gyro matrix. If a task were to be moved, the internal data would have to
be explicitly transferred or recomputed on the target process group, and the initialization
of GENE can take over one hundred regular time step lengths. This is in addition to the
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time required to transfer the current grid (which for high resolutions may contain a large
amount of data, up to several GB).

Note that the runtime of GENE is determined by many factors which impede the
use of a simple linear or performance model normal form ansatz: adding to the usual
caching and communication effects, the sparsity pattern of the gyro matrix, an update
algorithm with access complexity in O(n2x), and the fast fourier transform applied in
y direction influence the run time heavily. But since GENE is run on many different
machines, runtime data may be collected across many different machines and physical
problems, in order to obtain a transferable load model at no additional computational
cost.

3.1. Data Acquisition

Data was collected on the Hazel Hen supercomputer, a Cray XC40 system with Intel
Haswell processors, two sockets per node, each at 12 cores. GENE was started with pa-
rameters for a scenario with adiabatic electrons at different discretizations, i.e., the level
vector �� that lives in the gyrokinetic dimensions x,y,z,v‖,μ . Samples were randomly
selected between ��min = [6,4,3,4,3] and ��max = [14,8,6,8,6], leaving out grids that are
too small to represent the underlying physics, and also those that would be larger than
229 degrees of freedom in total. This was done for different levels of parallelization, for
power-of-two node counts from 25 to 215. We will denote the processor count for each
sample by 2p. For 215, only about half as many samples were taken as for the other 2p,
since this data was quite costly to obtain. Note that previous work [4] considered grid
sizes small enough to fit on 25 = 32 cores on Hazel Hen, such that the higher degrees of
parallelization were not a matter of discussion then.

As a simplification, the parallelization was constrained to a specific strategy depend-
ing on the level vector ��. Domain knowledge by the GENE developers is leveraged to al-
ways set a close-to-optimal parallelization: parallelize from the outer to the inner loops,
i.e., first in μ direction, then in v‖, and so on. This approach was validated on a small
subset of the space (31 samples) where exhaustive parallelization tests were run: com-
paring the optimal runtime to the runtime obtained by way of this heuristic gave an av-
erage runtime penalty of ≈ 15%. The prediction of optimal parallelizations was beyond
the scope of this work but would be interesting for future work into data-driven methods
for GENE.

To summarize, our inputs x are the level vector �� and the degree of parallelization p

xi = (�x,i, �y,i, �z,i, �v‖,i, �μ,i, pi), (4)

which means that sample i had a resolution of 2�x,i grid points in x direction, and was
run on 2pi processes. On these samples xi, GENE was run to find the resulting runtime
t∗ (averaged over 20 time steps). Out of the 2048 randomly sampled tasks, 1837 fit into
the main memory of the assigned processes. They constitute our training/validation data
set (80% or 1470 samples) and the test set, on which the comparisons in Section 4 will
be based. The corresponding outputs – the actual wall clock times – are distributed un-
evenly: the mean is at 0.957, while the median runtime is only 0.268. The long-tail shape
of the distribution is similar for the whole data set and the separate parallelizations, as
well as the test schemes discussed in Section 4.1.

In the following, we investigate how the runtime can be estimated based on this data.
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3.2. Data-Driven Methods for Load Balancing

For our purposes, data driven means that, apart from the input data, no further domain
knowledge about the physical or computational properties of the tasks need to be known
– they should be represented by the learned model that we generate from data.

We first predict the runtimes of the tasks. Based on these estimates, a descendingly
ordered list is created, and the corresponding tasks are distributed to the process groups
accordingly. Note that a good ordering is more important than an accurate prediction of
the actual runtimes. Heene et al. [4] discussed the differences between static and (initial)
dynamic load balancing. Whereas in static load balancing, the full task assignment is
given at the beginning of the simulation, the dynamic variant will wait for the currently
running task to finish before assigning the next in a work-stealing fashion. This dynamic
assignment is done for the first time step only. Here, we will focus on the dynamic variant.
We start by discussing the anisotropy-based model currently in use for the application. It
is then compared to three different machine learning approaches.

3.2.1. Anisotropy-based Fits for Runtime Estimation based on Expert Knowledge

Following up on previous work by Heene et al. [4], we tested model-based fits to predict
the runtime of tasks based on the resolutions in the different directions. The dependence
on the overall number of points r(N) is modeled based on expert knowledge by an ex-
ponential fit for each degree of parallelization p individually. These estimations are then
enriched with another least-squares fit h on the anisotropy s of the level vector ��

r(N) := mNk+ c, h(�s��) = c+
d−1
∑
i=1

cis��,i, �s��,i =
��i

|��|1
(5)

to give the overall runtime estimate

t(N,�s��) = r(N) ·h(�s��). (6)

The model is based on the observation that higher resolutions in some directions
lead to substantially higher runtime and memory footprints. This least-squares fit on
the runtime thus constitutes an expert knowledge-based baseline against which we can
compare.

3.2.2. Nearest Neighbor

The nearest neighbor estimator stores all the data in the training data set. To predict the
runtime, it takes the features of the test data and returns the value of the closest training
point (in Euclidean norm). If it is queried for a data point that has the same distance to
multiple known points, it will randomly return any of the neighbors’ values.

We can think of the nearest neighbor estimation as “zero-th order extrapolation”, the
best guess we can make without actually doing any computation on the data.
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3.2.3. Support Vector Regression

Support vector regression (SVR) is an application of support vector machines to regres-
sion problems [11]. The regressor is defined by learned weights w, which are determined
by minimizing ‖w‖ = 〈w,w〉 subject to linear constraints. The constraints are designed
to make sure that predictions which fall within an error of ε of the true value will not
contribute to the loss; the inner product 〈·, ·〉 is approximated by kernel functions k us-
ing a regularization parameter C [11]. For our tests, the (Gaussian) radial basis function
kernel exp(−γ‖�xi−�x j‖2) was employed. The SVR parameters were optimized by a grid
search algorithm employing five-fold cross validation. Results are shown in Table 1.

For both SVR and Nearest Neighbor the scikit-learn Python library [12] was
used. It was also used to perform standard feature scaling on the input data x for the SVR
and the neural network regression, which the next section is going to discuss.

Regularization / error weightC Soft margin width ε RBF kernel “pointiness” γ
450 0.01 0.05

Table 1. Optimal SVR parameters on our training / validation data set

3.2.4. Neural Network / Multi-Layer Perceptron Regression

In a feed-forward artificial neural network (ANN), a function is modelled by matrix and
bias vector weights, which transform the input linearly, followed by the application of
a (usually) nonlinear activation function φ . This is done successively, layer by layer, to
return the output, which is the modelled value. The transition of data y from layer l to
layer l+1 may be described by the matrix and vector weights w and b as

yl+1, j = φ(bl+1, j+
nk

∑
k
wl+1,k, j · yl+1,k), �y0 =�x (7)

where nk is the width of layer l. The training of the network – i.e., fitting the weights –
is done by the backpropagation algorithm, using stochastic optimization heuristics. For
a thorough description of neural networks, please refer to [13].

Hyperparameter Fitting by Genetic Algorithms We used the Tensorflow pack-
age [14] to learn the training data set with five-fold cross-validation, using the robust Hu-
ber regression loss function, cf. [13]. The training was run for 100 epochs, with no batch
processing. Since choosing the optimal hyperparameters for ANNs by hand is notori-
ously difficult, genetic techniques to select the network architecture have been shown to
work in many settings [15,16]. Here, genetic selection was applied on layer depth (1−9),
layer width (1−11), activation function, and optimizer. The fitness was the negative vali-
dation root-mean-square error (RMSE). To prevent overfitting, only those configurations
that had a maximum of 700 weights to be adjusted were considered, which amounts to
about half the size of the training / validation data set. The results are shown in Table 2.
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# hidden layers # nodes / layer activation function optimizer
6 7 tf.nn.elu tf.keras.optimizers.Adam

Table 2. Optimal neural network parameters on our training / validation data set

4. Results

The standard machine learning metric – error on previously-unseen test data (“zero-
shot test”) – returned the results shown in Table 3. The neural network was randomly
initialized before training. As additional set-up, one out of five trained networks was
selected by lowest validation error; only this one was used to capture the error on the
test sets in Section 4.1. We can see by comparing the two rightmost bars that this is
not cherry-picking good random results but that the test errors are low on every trained
network.

Anisotropy
#DOF 55

N. Neighbor
1470

SVR
1282

Neural
337

Neural best of 5
0
1
2
3
4

2.08
1.19

0.42 0.16 0.12R
M
SE

Table 3. Test errors (RMSE), based on 64 different train / test splits on the data

We observe that the estimation accuracy on the runtimes is seemingly quite good for
the learning algorithms. But note that in comparison to the output distribution discussed
in Section 3.1, which has a median runtime of 0.268, the estimation errors are still rel-
atively high. Also, the estimation accuracy of the expected runtime is only suitable for
evaluation to some extent. After all, a runtime estimate may be arbitrarily bad, but still
help us achieve optimal scheduling if the relative ordering between the tasks is correctly
represented. We will see in the next section that this leads to different outcomes if the
models are applied to an actual combination scheme data set.

4.1. Results on Full Scenarios

Let us consider a test scenario, which is an actual standard combination scheme at phys-
ically relevant scales: The scheme consists of 124 grids, with level vectors between
[7,4,3,4,3] and [11,8,6,8,6]; we are approximating a full grid with 239 unknowns with
grids between 221 and 225 unknowns. All of the grids could be processed on 256 pro-
cessors (p = 8) respectively. We also conducted a larger test case which could only be
executed on bigger process groups, yielding similar results.

The resulting graph, Fig. 3, shows the parallel efficiency of the task assignment
obtained depending on which trained model is used, how large the process groups are
chosen (p), and how many of them there are. To make this more visually graspable, they
are also averaged by method, displayed on the bottom.

We see that there are overlaps, but also a clear tendency: the neural network predicts
the ordering often nearly-optimal, followed by the anisotropy-based model. The nearest-
neighbor heuristic and the SVR still return reasonable results, considering we mostly get
parallel efficiencies above 80%. The fact that they are lower for SVR than for the other
approaches may be due to the already moderate number of input dimensions.
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Figure 3. Parallel efficiencies for the test scenario. Note that data is included for p= 8 to 13.

Note that this experiment was done analytically, by adding up the exact runtimes
off-line; actually running all these simulations would have been too costly. Accordingly,
the true memory requirements are not represented here, but it is safe to assume that

1. the curves for low levels of parallelization will only be valid for the higher numbers
of processes (as otherwise there will not be enough total memory available), and

2. high memory footprints strongly correlate with high runtimes, such that balancing
runtimes will also balance memory usage to some extent.

We can observe that loads can be estimated well by using data-driven techniques
for load balancing, despite the rather data-scarce setting. Furthermore, the data-driven
approaches outperform the baseline based on expert knowledge not only in regions with
plenty of data points, but also in those parameter regions where extrapolation dominates:
for large numbers of processes. Still, the data-driven approaches excel only if enough
data is at hand. It is therefore essential to keep track of GENE runtimes and the simulation
parameters and metadata, such as system architecture and GENE version.

This could potentially pay off even more when using process groups of different
sizes [17], which could be an interesting subject of study in the future.

5. Conclusion

In this paper, we studied the data-based prediction of runtimes for load balancing. This
enabled us to obtain good load balances for the massively parallel sparse grid combi-
nation technique with GENE. While the expert knowledge-based model used until now
is reasonable, it can be outperformed by purely data-driven methods such as neural net-
works, given enough data and automated selection of network parameters.

Based on this insight, it is now feasible to collect run time data for GENE simulations
on the job, improving data-driven load models along the way. Especially with respect
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to different resolutions, at least knowledge about a good ordering between tasks should
be possible even across compute systems. Let us note that data-driven approaches for
load balancing are most suited for situations where the concrete code is considered a
black-box. If, however, the behavior of the compute and communication systems, as well
as the algorithm and its implementation are well-understood and stable, it will be more
beneficial to use model-based approaches. In all other cases, one should use carefully
selected data-driven approaches, especially when a lot of compute time is at stake – such
as with the massively parallel sparse grid combination technique employed with GENE.
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