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Abstract. The exact diagonalization is the most accurate approach for solving the
Hubbard model. The approach calculates the ground state of the Hamiltonian de-
rived exactly from the model. Since the Hamiltonian is a large sparse symmet-
ric matrix, we usually utilize an iteration method. It has been reported that the
LOBPCG method is one of the most effectual solvers for this problem. Since most
operations of the method are linear operations, the method can be executed on
CUDA GPU, which is one of the mainstream processors, by using cuBLAS and
cuSPARSE libraries straightforwardly. However, since the routines are executed
one after the other, cached data can not be reused among other routines. In this
research, we tune the routines by fusing some of their loop operations in order to
reuse cached data. Moreover, we propose the tuning strategies for the Hamiltonian-
vector multiplication with shared memory system in consideration of the charac-
ter of the Hamiltonian. The numerical test on NVIDIA Tesla P100 shows that the
tuned LOBPCG code is about 1.5 times faster than the code with cuBLAS and
cuSPARSE routines.
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1. Introduction

The Hubbard model[1][2] has attracted a tremendous number of physicists since the
model exhibits a lot of interesting phenomenon such as High-Tc superconductivity. When
we solve the ground state (the smallest eigenvalue and the corresponding eigenvector)
of the Hamiltonian derived from the model, we can understand its properties. Therefore,
a lot of computational methods for solving this problem have been proposed. The most
accurate one is the exact diagonalization which directly solves the ground state of the
Hamiltonian derived exactly from the model. Since the Hamiltonian is a huge sparse
symmetric matrix, we usually solve the eigenvalue problem with an iteration method,
such as the Lanczos method[3], the LOBPCG method[4][5], and so on.
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The graphics processing unit (GPU), which is one of the mainstream processors,
achieves an excellent performance with regular data access pattern. Since most of oper-
ations of the LOBPCG method are linear ones, the method can be executed on CUDA
GPU by using cuBLAS routines[6]. Moreover, since the Hamiltonian can be decomposed
into three matrices, whose non-zero elements are arranged regularly, by considering its
physical property[7][8], we have proposed the code for the Hamiltonian-vector multi-
plication using the non-zero patterns in the three matrices. We reported in [8] that the
code was faster than cuSPARSE routines[9] on CUDA 4.0. However, cuSPARSE rou-
tines have been tuned, and then, nowadays they are faster than our proposed codes (see
Table 1).

In this research, we focus on the shared memory whose access speed is much faster
than the local global memory’s. And then, we propose new strategy to store the matrix
data in the shared memory when performing Hamiltonian-vector multiplication. More-
over, we fuse some linear operations, which can be calculated using cuBLAS routines,
to improve the cache performance.

The rest of the paper of structured as follows. In Section 2, we briefly introduce the
algorithm of the Hamiltonian-vector multiplication and its conventional calculation strat-
egy. And we propose the tuning strategies for the multiplication using the shared mem-
ory system on CUDA GPU. Section 3 presents the tuning strategies for other operations
of the LOBPCG method. Section 4 shows the result of numerical test on NVIDIA Tesla
P100. A summary and conclusion are given in Section 5.

2. Tuning strategy for Hamiltonian-vector multiplication

2.1. Hamiltonian-vector multiplication

The Hamiltonian of the Hubbard model is given as

H =−t ∑
i, j,σ

c†
jσ ciσ +∑

i
Uini↑ni↓, (1)

where t is the hopping parameter from a site to another one and Ui is the repulsive energy
for one-site double occupation of two fermion the i-th site. Quantities ci,σ , c†

i,σ and ni,σ
are the annihilation, the creation, and the number operator of a fermion with pseudo-spin
σ on the i-th site, respectively. When we solve the ground state of the Hamiltonian, we
can understand the property of the model.

Here, the Hamiltonian is a huge sparse symmetric matrix, therefore, we usually uti-
lize an iteration method, such as the Lanczos method, the LOBPCG method, and so on.
Since the most time-consuming operation of the solvers is the matrix-vector multiplica-
tion, it is crucial to tune the Hamiltonian-vector multiplication. Therefore, the storage
formats of the Hamiltonian and the vector are crucial for high performance computing.
Here, the multiplication Hv can be split as

Hv = Dv+(I↓ ⊗A↑)v+(A↓ ⊗ I↑)v, (2)

where I↑(↓), A↑(↓), and D are the identity matrix, a sparse symmetric matrix derived from
the hopping of an up-spin (a down-spin), and a diagonal matrix from the repulsive energy,
respectively[10]. The multiplication (2) can be represented as
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i=(blockIdx%x-1)*blockDim%x+threadIdx%x
j=(blockIdx%y-1)*blockDim%y+threadIdx%y
ix=threadIdx%x; iy=threadIdx%y
V s(ix,iy)=V new(i,j)
call syncthreads()

!!
i=(blockIdx%y-1)*blockDim%x+threadIdx%x
j=(blockIdx%x-1)*blockDim%y+threadIdx%y
ix=threadIdx%x; iy=threadIdx%y
do k=iru(i), iru(i+1)-1
V s(iy,ix)=V s(iy,ix)+Au(k)*Vr(j,icu(k))

enddo
call syncthreads()

!!
i=(blockIdx%x-1)*blockDim%x+threadIdx%x
j=(blockIdx%y-1)*blockDim%y+threadIdx%y
ix=threadIdx%x; iy=threadIdx%y
V new(i,j)=V s(ix,iy)

(a) A↑V
i=(blockIdx%y-1)*blockDim%x+threadIdx%x
j=(blockIdx%x-1)*blockDim%y+threadIdx%y
do k=ird(j), ird(j+1)-1
V new(i,j)=V new(i,j)+V(i,icd(k))*Ad(k)

enddo

(b) VAT
↓

Figure 1. Schematic CUDA Fortran code of A↑V and VAT
↓ . The data of V and Vr are stored in column-major

order and row-major one, respectively. Here, V s is the shared memory array. The non-zero elements of the
matrices A↑ and A↓ are stored in the CRS format, that is, the vectors A*, ic*, and ir* store the the values of
non-zero elements, the column indexes of the elements, and the indexes where each row starts.

V new
i, j = D̄i, jVi, j +

m

∑
k=1

A↑i,kVk, j +
n

∑
k=1

Vi,kA↓k, j (3)

where the subscript i, j of the matrix is represented as the (i, j)-th element and V and D̄
are constructed from the elements of the vector v and the diagonal elements of the matrix
D in consideration of the physical property of the Hubbard model, respectively[10].

2.2. Conventional multiplication strategy

When the data of the matrix V are stored in column-major order, we can execute the
multiplication (2) with contiguous memory access on CUDA Fortran by the following:

1. Vnew ← elementwise product of D̄ and V ,
2. Vr ←V (row-major← column-major (transpose)),
3. Vnew ←Vnew +A↑Vr, (see Fig.1 (a))
4. Vnew ←Vnew +VAT

↓ . (see Fig.1 (b))

On the other hand, we can execute the multiplication (2) with cuSPARSE routines
as follows:

1. V1 ← elementwise product D̄ and V
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real(8), shared :: au s(ndim)
integer, shared :: icu s(ndim)

!
i =(blockIdx%x-1)*blockDim%x + threadIdx%y
i0=(blockIdx%x-1)*blockDim%x + 1
k =iru(i)-1
k0=k-iru(i0)
k1=iru(i+1)-iru(i)
do l=0,k1-1,blockDim%x
if (threadIdx%x+l.le.k1) then
au s(k0+l+threadIdx%x)=Au(k+l+threadIdx%x)
icu s(k0+l+threadIdx%x)=icu(k+l+threadIdx%x)

endif
enddo

!
call syncthreads()

Figure 2. Schematic CUDA Fortran code for storing the data of the matrix A↑ the shared memory. Since we
store the matrix using the CRS format, therefore, the target vectors are Au and icu, which store the values
of non-zero elements and the column indexes of the elements. In this code, the built-in variable blockDim%y
should be equal to blockDim%x. Moreover, we set the value blockDim%x so that the coalescing access can be
realized for not only this operation but also the matrix-vector multiplication A↑V .

2. V1 ←V1 +A↑V (using “cusparseDcsrmm”),
3. V2 ← A↓V T (using “cusparseDcsrmm2”),
4. Vnew ←V1 +(V2)

T (transpose and addition).

It was reported in [8] that the former algorithm (our algorithm) was faster than the
latter (cuSPARSE) on CUDA 4.0. However, the cuSPARSE routines have been tuned,
consequently, they are nowadays faster than our conventional method (see Table 1).

2.3. Tuning strategies by considering memory access

When the codes shown in Fig. 1 are executed on GPU, all threads in a block requires
the same data of the matrices A↑ and A↓. In the conventional strategy, since the data are
stored in the global memory, each thread has to access them individually. On the other
hand, GPU has the shared memory system which can be accessed by all threads even
faster than the global one. And, the target data can be stored in the shared memory just
by accessing the data stored in the global memory by any one thread, not all threads.
Therefore, it is expected that the performance improves by storing data of the matrices
on the shared memory. However, since the size of the shared memory on GPU is very
small, all data can not be stored. Then, when executing a thread block, we store only data
required for the calculation in the shared memory (see Fig. 2).

Moreover, we fuse a do-loop of the elementwise product of D̄ and V with that of VAT
↓

to improve the cache performance. Table 1 shows the elapsed time for the multiplication
on GPU system in Japan Atomic Energy Agency (see Table 2). The result indicates that
the tuned code is about 1.3 times faster than cuSPARSE routines on a recent GPU system.
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Table 1. Elapsed time of Hamiltonian-vector multiplication on GPU system in Japan Atomic Energy Agency
(see Table 2). The target Hamiltonian is derived from 2-dimensional (4×4-site) Hubbard model with 7 up-spins
and 7 down-ones. In the tuned code, the elementwise product of D̄ and V is fused with the multiplication VAT

↓ ,
therefore the table indicates the sum of their elapsed times.

Elapsed time (msec)
Conventional cuSPARSE Tuned

Elementwise product of D̄ and V 5.66 5.66
13.44

VAT
↓ 28.85 9.06

A↑V 33.70 19.07 13.11
Transpose (and addition) 4.50 7.93 4.50

Total 72.71 41.72 31.05

Dimension of A↑(A↓): 11440
Number of non-zero elements of A↑(A↓): 144144
Dimension of Hamiltonian: 130873600

Table 2. Details of GPU system in Japan Atomic Energy Agency.

Processor Intel Xeon E5-2680 v4

GPU NVIDIA Tesla P100

Fortran Compiler pgfortran 17.1-0
CUDA Version 8.0
Compile option -O3 -Mcuda=6.0 -lcublas -lcusparse -llapack -lblas

3. Tuning strategies for other operations of LOBPCG method

In this section, we propose the tuning strategies for operations other than the matrix-
vector multiplication of the LOBPCG method shown in Fig. 3.

First, we focus on the two 3×3-dimensional symmetric matrices (SA and Sb in Fig.
3). In order to construct them, we have to calculate ten inner product operations using six
vectors2. These operations can be realized by executing cuBLAS routine cublasddot

ten times. However, since these operations are executed one after the other, we can not
reuse cached data which were used in other operations. Therefore, we fuse ten operations
and store the data in the shared memory to improve cache performance. The most im-
portant operation in an inner product on GPU is sum-reduction. When the shared mem-
ory system is used appropriately, the operation can be executed efficiently on GPU[11].
However, the shared memory is too small to store all data. Therefore, we decompose the
vectors so that we can store the decomposed data in the shared memory, and we calcu-
late partial sums of ten inner products using the decomposed vectors (see Fig. 4). After
that, we calculate the global sums of partial sums using the shared memory system. The
elapsed time using cuBLAS and our proposed code for the inner product operations on
NVIDIA Tesla P100 for the same problem in Table 1 are 33.29 msec and 25.53 msec,
respectively.

Moreover, Fig. 5 shows the operations to update the vectors x, p, X , P, and w in the
LOBPCG method. Each operation can be realized using a cuBLAS routine. On the other

2Twelve inner products are required to construct the two matrices. However, since two vectors w and p are
normalized, there is no need to calculate the two inner products (w,w) and (p, p).
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xxx0 := an initial guess, ppp0 := 0
xxx0 := xxx0/‖xxx0‖, X0 := Axxx0, P0 := 0, μ−1 := (xxx0,X0), www0 := X0−μ−1xxx0
do k=0, ... until convergence
Wk := Awwwk
SA := {wwwk,xxxk, pppk}T {Wk,Xk,Pk}
SB := {wwwk,xxxk, pppk}T {wwwk,xxxk, pppk}
Solve the smallest eigenvalue μ and the corresponding vector vvv,

SAvvv = μSBvvv, vvv = (α,β ,γ)T .
μk := (μ +(xxxk,Xk))/2
xxxk+1 := αwwwk +βxxxk + γ pppk, xxxk+1 := xxxk+1/‖xxxk+1‖, pppk+1 := αwwwk + γ pppk, pppk+1 := pppk+1/‖pppk+1‖
Xk+1 := αWk +βXk + γPk, Xk+1 := Xk+1/‖xxxk+1‖, Pk+1 := αWk + γPk, Pk+1 := Pk+1/‖pppk+1‖
wwwk+1 := Xk+1−μkxxxk+1, wwwk+1 := wwwk+1/‖wwwk+1‖

enddo

Figure 3. Algorithms of LOBPCG method for the matrix A. Here, X , P, and W mean the vectors multiplied
by the matrix A, that is, Ax, Ap, and Aw, respectively.

real(8), shared :: V s(128,3)
!!
i=2*(blockIdx%x-1)*blockDim%x+threadIdx%x
ith=threadIdx%x
ibl=blockIdx%x
!!
V s(ith,1)=x(i)*x(i)+x(i+128)*x(i+128)
V s(ith,2)=x(i)*w(i)+x(i+128)*w(i+128)
V s(ith,3)=w(i)*w(i)+w(i+128)*w(i+128)
call syncthreads()
!!
do k=1,3
do j=6,0,-1
n=2**j
if (ith.le.n) V s(ith,k)=V s(ith,k)+V s(ith+n,k)
call syncthreads()

enddo
enddo
v(ibl,1)=V s(1,1);v(ibl,2)=V s(1,2);v(ibl,3)=V s(1,3);

Figure 4. Schematic CUDA Fortran code for calculating partial sums ( v(∗,1), v(∗,2), and v(∗,3)) of three
inner products (x,x), (x,w), and (w,w) from two vectors x and w using the shared memory array V s. Here,
the code is executed using partitioned vectors whose length is 256, that is, the built-in variable blockDim%x is
set as 128. After this calculation, the global sum is calculated using the partial ones. In actual execution of the
LOBPCG method, we use the code extended with a similar strategy for calculating ten inner products using six
vectors.

hand, when we consider the data dependencies, we can replace all loops of the operations
with one loop as shown in Fig. 6. In addition, it is necessary to normalize vectors p, P,
w and W using pnorm(= ||p||) and wnorm(= ||w||) before the inner product operations
mentioned above, because the more the iteration converges, the smaller the norms of p
and w become3. The normalization can be executed using a routine cublasdscal, but
their loops can be also combined with the fused loop of the inner product operations

3It is also necessary to normalize the vectors x and X . However, the norm of the vector x is theoretically
1, therefore, these normalization are executed after calculating SA and SB. And we correct the corresponding
elements of SA and SB in accordance with these normalization.
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p← γ p (cublasdscal); P← γP (cublasdscal)
p← p+αw (cublasdaxpy); P← P+αW (cublasdaxpy)
x← βx (cublasdscal); X ← βX (cublasdscal)
x← x+ p (cublasdaxpy); X ← X +P (cublasdaxpy)
w← X (cublasdcopy); w← w−λx (cublasdaxpy)
pnorm←||p|| (cublasdnrm2); wnorm←||w|| (cublasdnrm2)

Figure 5. Operations to update vectors and calculate norm of vectors in LOBPCG method. All loops of the
operations, which can be realized using cuBLAS routines, can be fused into one loop by considering data
dependencies.

real(8), shared :: V s(128,2)
!!
i=2*(blockIdx%x-1)*blockDim%x+threadIdx%x
ith=threadIdx%x
ibl=blockIdx%x
!!
p(i)=γ*p(i)+α*w(i); p(i+128)=γ*p(i+128)+α*w(i+128);
P(i)=γ*P(i)+α*W(i); P(i+128)=γ*P(i+128)+α*W(i+128);
x(i)=β*x(i)+p(i); x(i+128)=β*x(i+128)+p(i+128);
X(i)=β*X(i)+P(i); X(i+128)=β*X(i+128)+P(i+128);
w(i)=X(i)-λx(i); w(i+128)=X(i+128)-λx(i+128);
V s(ith,1)=p(i)*p(i)+p(i+128)*p(i+128)
V s(ith,2)=w(i)*w(i)+w(i+128)*w(i+128)
call syncthreads()
!!
do k=1,2
do j=6,0,-1
n=2**j
if (ith.le.n) V s(ith,k)=V s(ith,k)+V s(ith+n,k)
call syncthreads()

enddo
enddo
v(ibl,1)=V s(1,1);v(ibl,2)=V s(1,2);

Figure 6. Schematic CUDA Fortran code for fusing all operations shown in Fig. 5. We calculate the partial
sums ( v(∗,∗) and v(∗,2)) of two inner products (p, p), and (w,w) using the shared memory array V s. Here,
we set the built-in variable blockDim%x as 128. After this calculation, we calculate the two global sums using
the partial ones, and then, the square root of them.

mentioned above. It is expected that these loop fusion operations improve the cache
performance and realize speedup.

4. Numerical test

In this section, we examine the performance of the LOBPCG method for the Hubbard
model. We solve the ground state (the minimal eigenvalue and the corresponding eigen-
vector) of the eigenvalue problem derived from a 2-dimensional (4×4-site) model with 7
up-spins and 7 down-ones using the LOBPCG method on the GPU system, whose details
are shown in Table 2. Table 3 shows the number of the iterations, the elapsed time, and
the performance. The result indicates that the conventional method is slower than that us-
ing cuSPARSE routines. Moreover, it is confirmed that the performance improves by par-
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Table 3. Elapsed time and performance for exact diagonalization on NVIDIA Tesla P100. The target Hamil-
tonian is the same as Table 1. Here, the Hamiltonian-vector multiplication is executed using the conventional
code, cuSPARSE, and the tuned one. Moreover, other operations are execute using cuBLAS and the tuned
code.

Multiplication Conventional cuSPARSE Tuned Tuned

Others cuBLAS cuBLAS cuBLAS Tuned

Number of iterations 164 164 164 164

Elapsed time (sec) 30.24 24.90 23.12 16.57

Performance (GFLOPS) 69.0 83.8 90.3 125.9

tially storing the matrix elements on the shared memory and its performance is superior
to cuSPARSE’s one. And then, when other operations are also tuned, the code achieves
speedup of 1.5 times faster than the code using cuBLAS and cuSPARSE routines.

5. Conclusions

We have proposed the tuning strategy using the shared memory for Hamiltonian-vector
multiplication on the exact diagonalization method for the Hubbard model for the CUDA
GPU. Since the size of the shared memory is very small, we store only the matrix data
required by the executing block in the shared memory. The numerical result shows that
the matrix-vector multiplication using the strategy is about 1.3 times faster than that
using the cuSPARSE routines. Moreover, we also tuned other linear operations of the
LOBPCG method in order to reuse more cached data. Therefore, we fused some loops
into one loop by considering data dependencies. At a result, it is confirmed that the
LOBPCG method using the proposed tuning strategies is about 1.5 times faster than that
using cuBLAS and cuSPARSE routines.

In future work, in order to examine the physical property of a large Hubbard model,
we aim to realize the high performance exact diagonalization on multi-GPU systems. For
this aim, we plan to investigate the tuning strategies in consideration of the effects of the
data communication between GPUs and/or CPUs.
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