
GPGPU Computing for
Microscopic Pedestrian Simulation

Benedikt Zönnchen a,b,1, Gerta Köster a

a Munich University of Applied Sciences, Lothstrae 64, 80335 Munich, Germany
b Technische Universität München, Boltzmannstrasse 3, 85748 Garching, Germany

Abstract. GPGPU computation of microscopic pedestrian simulations has been
largely restricted to Cellular Automata and differential equations models, leaving
out most agent-based models that rely on sequential updates. We combine a linked-
cell data structure to reduce neighborhood complexity with a massive parallel fil-
tering technique to identify agents that can be updated in parallel, thus extending
GPGPU computation to one such model, the Optimal Steps Model. We compare
two different OpenCL implementations: a parallel event-driven update scheme and
a parallel update scheme that violates the event order for the sake of parallelism. We
achieve significant speed ups for both in two benchmark scenarios making faster
than real-time simulations possible even for large-scale scenarios.

Keywords. discrete event simulation, agent-based simulation, pedestrian dynamics,
GPGPU, linked cell algorithm

1. Introduction

Modelling of crowd dynamics has become an important area of research. It helps to un-
derstand the interaction of large crowds on a macroscopic level. Results of reliable crowd
simulations support safety managers, engineers, event managers and security staff in
their decisions. Off-line simulations allow testing of architectural solutions for buildings
or facilities for mass events. Nowadays, the application of pedestrians simulations goes
beyond off-line simulations. There is a growing interest in and a need for on-line data-
driven simulations. Such simulations can predict the future — but only if the computa-
tion is faster than real-time. Since microscopic crowd simulations are computationally
expensive, they must be accelerated to enable predictive simulations on a large scale.

With the breakdown of Dennard scaling, clock frequencies of single Central Pro-
cessing Units (CPUs) no longer increase significantly. As a consequence, manufactur-
ers turned their attention towards multi-core processors. In contrast to CPUs, the hard-
ware architecture of Graphics Processing Units (GPU) is designed for massive paral-
lelism. Since GPUs are part of many current and upcoming supercomputers, efficient
exploitation of GPUs has become essential in scientific computing. Additionally, GPUs
offer thousands of cores inside affordable off-the-shelf workstations making general-
purpose Graphics Processing Units (GPGPUs) a source of cheap and efficient computa-
tional power. In crowd dynamics thousands or even millions of virtual pedestrians move

1Corresponding Author: Benedikt Zönnchen: zoennchen.benendikt@hm.edu

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200029

93

simultaneously. At the same time, they are spatially separated, which implies that there
is a chance for parallel updates. Consequently, we consider how to exploit GPUs for
large-scale crowd simulations.

To simulate thousands of pedestrians in real-time, Cellular Automata (CA) based
models are an attractive choice. Space is discretized by a regular and fixed grid of cells
and agents are usually represented by occupied cells. This regularity induces efficiency
with respect to computational complexity even without parallelism but it also causes in-
flexibility and inaccuracy in terms of modelling. Motion is restricted to the grid mak-
ing CA unsuitable for scenarios with high pedestrian densities or fine spatial granular-
ity. (GPGPU) for CA modelling has been explored and successfully applied by many
researchers [1,2,3,4,5,6].

Other wide-spread classes of microscopic pedestrian models are force- and velocity-
based models where a set of ordinary differential equations (ODEs) describes motion.
In contrast to Cellular Automata, agents move in continuous space. Discretization of
the continuous model is necessary to numerically solve the equations. Especially for
crowded scenarios, accurate results imply small time steps and thus a lot of computa-
tional power. In [3] the authors discuss GPU implementations of a CA model, the Social
Distance Model (SDM), and the force-based Social Force Model (SFM). They achieve a
speed up factor of approximately 4 by exploiting GPGPU.

Almost all microscopic models are, in fact, agent-based models (ABMs). There is a
lot of research on using hardware accelerators for ABMs but mostly outside the field of
pedestrian dynamics. An extensive overview can be found in [7].

In this contribution we extend massive parallelism through GPUs to another class of
agent-based pedestrian models represented by the well validated Optimal Steps Model
(OSM) [8,9,10]. In the OSM each agent steps ahead in two dimensional space, driven by
its individual pace. The agent’s next position is found by solving an optimization prob-
lem. Thus the OSM is discrete in time and continuous in space. We present and compare
two implementations of the OSM which differ in their update schemes: an inherently
sequential event-driven update scheme, which is the OSM’s original update scheme, and
a newer parallel update scheme.

2. The Optimal Steps Model

The OSM combines aspects from both, CA and differential equation models. It inher-
its rule-based discrete stepping events from CA and motion in continuous space from
differential equation models. Furthermore, it can be classified as an agent-based model
(ABM), since each agent is individualized by its unique free-flow speed vfree and stride
length λ . The principle idea behind the OSM is that the natural stepwise movement of
pedestrians leads to a spatial discretization within the simulation [11,9]: Let Ω be the
simulated spatial domain and Ωout ⊂ Ω the obstacle domain, that is, all space covered by
obstacles such as walls. Let Ωin = Ω\Ωout be the walkable part of the scenario. Further-
more, let ∂Ωout be the scenario boundary. Pedestrians are represented by circular shaped
agents of radius rp = 0.195 meters. They move inside Ωin. Agents can step forward in
any direction by choosing a position inside their stepping circle. See Fig. 1a. The radius
of an agent’s stepping circle is derived from the experimentally observed linear depen-
dency of the stride length on the free-flow speed presented in [8]. That is, the radius is
given by

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation94

λ = β0 +β1 × vfree + ε, (1)

where vfree is the agent’s free-flow speed and ε is a normally distributed error term,
ε ∼N (0,σ). The intercept β0 and slope β1 stem from a regression through experimental
data [8]. Therefore, λ represents the natural stride length of the the modelled pedestrian.
To obtain a heterogeneous population, the free-flow speed is chosen from a truncated
normal distribution. Let xk be the current position of agent i and τi be the event time of its
next step, then the next position xk+1 is found by optimizing a utility function Φ within
the stepping circle around the agent:

xk+1 = arg min
y ∈ Pi

Φi(y), with Pi = {y : ‖y− xk‖ ≤ λi} (2)

The Optimal Steps Model is event driven. In fact, the linear dependency between
free-flow speed and step length also uniquely determines each agent’s pace: While the
model moves the agent to xk+1 in an instant, its next footstep event occurs at τi+λi/vi,free.
In our free and open implementation of the OSM [10], the optimization problem is cur-
rently solved either by the Nelder-Mead method or by a brute force evaluation on a dis-
cretization of Pi [12] visualized in Fig. 1.

The utility function Φ, which is often interpreted as a potential field, ensures that
the destination is reached while skirting obstacles and other agents. We consider it more
closely, because calculating Φ contains computationally expensive steps. Let Φi be the
utility function, or potential field, of agent i. It is given by a sum of sub-utilities or sub-
potentials: Φi = Φt,Γ +Φo +Φp,i.

Φt,Γ: contributes attraction to a target Γ and is given by the solution of the eikonal
equation. Φt,Γ(x) encodes the travel time required to reach Γ starting from x.
All agents approaching the same target share a common target potential field.

Φo: contributes repulsion caused by obstacles and depends on the distance dΩ(x) =
min
y∈∂Ω

‖x− y‖, which is the shortest distance to the closest obstacle.

Φp,i: is the sum of local repulsion terms caused by other agents and depends on the
distance to these agents.

The target and obstacle potential fields are static but Φp changes dynamically with the
movement of agents. Both repulsive potentials increase with decreasing distance to ob-

a) Ilustration of footsteps of agent i. The circles (blue) indicate the
actual step radius λi and the shaded area (blue) represents the agent
torso of radius rp.

b) Approximation of Pi
by equidistant points in-
side the step circle.

Figure 1. Computation of the next agent position.

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation 95

stacles and other agents, respectively. Each sub-potential of Φp is realized by a function
that has compact support, that is, it is zero outside a small area of influence. For a more
detailed description of the modelling aspects we refer to [11,9].

Regarding computational complexity Φp is the crucial part. Each sub-potential in-
cludes the evaluation of a square root and an exponential function. Therefore, we aim at
computing as many sub-potentials as possible in parallel. One essential property to work
with is that Φp is a local function. More precisely, if x is the position of agent j with j �= i
then its contribution to Φp,i at y is zero if and only if ‖x−y‖> wp. The locality property
and the fact that agents are spatially separated imply that footstep events of agent are
not likely to interfere with each other if they are close in time but distant in space. This
permits us to exploit parallelism.

2.1. The Event-driven Update Scheme

The orginal OSM is event-driven. The event-driven update scheme processes events in
their natural order, that is, the way they occur. In terms of the OSM this ensures that
for the choice of the next footstep at time t all footstep events which starts at τ < t are
already processed. From a modelling perspective this implies that pedestrians can antici-
pate currently processed footsteps of nearby pedestrians. Therefore, Φp actually depends
on agents’ positions in the very near future. By using the event-driven update scheme the
OSM becomes a discrete event simulation (DES) model. Note that even though pedes-
trians only anticipate the movement of nearby pedestrians, this can lead to a chain of
navigation adaptations propagating through the whole spatial domain.

2.2. The Parallel Update Scheme

An alternative implementation of the OSM presented in [13] suggest a parallel update
scheme. The parallel update scheme uses a global synchronizing clock. An increase of
the clock by a fixed time step Δt processes all footstep events within (t; t+Δt] in parallel.

a) A target potential Φ̂t,Γ spreads out like
wave from a target on the bottom left.

b) Distance function d̂Ω which gives the
minimal distance to the nearest obstacle.

Figure 2. Plot of solutions of the Eikonal equation of a real world scenario of size 450× 400 square meters.
White areas are contained in Ωout and therefore not walkable.

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation96

This means that we need to deal with potential collisions. The parallel update scheme
consist of the following steps:

seek: parallel computation of the next desired positions
move: parallel movement of agents and adjustment of their event time if their event

time is the smallest among all competing agents

Agents are competing if their bodies overlap with respect to their desired position. These
two steps are repeated until all event times are greater than t+Δt. It is important to notice
that Φp changes with each repetition. For the first seek call Φp depends on the agents’
positions at time t.

2.3. Parallel versus Event-driven Update Scheme

Currently, all OSM parameters are calibrated for the event-driven update scheme. If one
wants to use the parallel update for predictive simulations, the parameters must be re-
calibrated. The parallel update scheme produces the same result as the event-driven up-
date scheme if move only effects one agent, that is, if Δt is sufficient small. In [13] the
authors showed that, otherwise, the parallel update scheme produces larger evacuation
times. This indicates that agents use sub-optimal paths to their destinations because they
lose some of their ability to anticipate other agent’s motion. We decided to compare
computation times and estimate speed-ups for both schemes.

3. OpenCL Implementations of the Optimal Steps Model

We base our implementation on OpenCL to support a broad range of hardware accelera-
tors. It is integrated in our open source framework Vadere [10] which is written in Java.
To call our OpenCL kernels within Java, we use the Lightweight Java Game Library
3.2.3 [14].

The OSM is a model on the operational level. It executes locomotion when each
agent’s destination is known. Route choice, or selection of the destination, is part of the
tactical level, which is, in principle, a decision making process. As such its implementa-
tion consists of divergent code paths which does not lend itself to execution on the GPU.
Consequently, we focus on the operational level and keep the execution of the tactical
level on the CPU.

At the start of the simulation the host (CPU) writes the necessary data (all required
agent information, Φt,Γ and dΩ) to the device (GPU). The host defines how much time
the simulation should be stepped forward by the device. After the device has finished its
computation the result is transferred back to the host. This allows us to incorporate the
tactical level if necessary.

For the sake of simplicity we assume a constant number of n agents during the
simulation which are numbered from 0 to n−1 having the same target Γ. To compute the
target and obstacle potentials on the GPU, Φt,Γ and the distance function dΩ are required.
We approximate both by Φ̂t,Γ and d̂Ω, receptively. They are depicted in Fig. 2. Φ̂t,Γ and
d̂Ω are solutions of the eikonal equation computed by the Fast Marching Method [15] for
a regular grid. In case of the target potential the initial wave front of the Fast Marching
Method starts at the target boundary ∂Γ, i. e., Φ̂t,Γ(x) = 0 if x ∈ Γ. In case of the distance

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation 97

function, it starts at ∂Ω, i. e., d̂Ω(x) = 0 if x ∈ Ωout. The computation is done on the host.
Both grids are transferred into the global memory of the GPU. Values in between grid
points are bilinearly interpolated. Furthermore, an approximation of the possible next
footstep positions P is computed using a unit circle depicted in Fig. 1 and transferred
into cached constant memory. This means that we are using optimizing by “brute force”.
The possible next positions for agent i at position xi are given by

Pi = {q | p×λi + xi, p ∈ P}, (3)

where P are the points inside a unit. All required constants such as the domain size and
the grid size of Φ̂t,Γ and d̂Ω are also transferred to constant device memory. To make
use of beneficial coalesce memory, we convert the arrays of structure (AoS), used by
the CPU code of Vadere, into a structure of arrays (SoA). Listings 1 and 2 depicts the
difference and list all required agent information.

class Agent {

float x;

float y;

float eventTime;

float speed;

float strideLength;

}

Listing 1: Arrays of structure used in object
oriented programming.

class Agents {

float [] x;

float [] y;

float [] eventTime;

float [] speed;

float [] strideLength;

}

Listing 2: Structure of arrays used in
GPGPU programming.

3.1. The Linked Cell Algorithm

In order to avoid the O(n2) complexity of the neighbours search we exploit the locality
of agent potentials. Dynamic data structures are difficult to manage on the GPU. The
linked cell data structure is a well-known technique to deal with this. We adopt it for our
purposes. Let wΩ,hΩ be the width and height of a tight bounding rectangle enclosing the
whole simulation domain Ω and let c be the cell size of the linked cell data structure,
then we divide the space into

wc ×hc = l,with wc = �wΩ/c	,hc = �hΩ/c	 (4)

cells uniquely numbered from 0 to l−1. We choose c such that for a given cell, it suffice
to consider only agents in its Moore neighborhood to compute the next position of any
agent within the cell. Let vmax,smax be the maximum speed and stride length over all
agents. Then a cell size

c = max{smax,vmax ×Δt}+ rp +wp, (5)

is sufficient, if we reconstruct the data structure every Δt seconds. Before each update
cycle (simulating Δt seconds) we construct the data structure by using an OpenCL im-
plementation of the algorithm described in [16,17] which consist of three steps:

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation98

hash: for each agent with position (x,y) its cell id (hash) is computed by
h(x,y) = wc ×
y/c�+
x/c�

sort: agents ids are sorted by a bitonic sort according to their cell id
ordering: agents, i. e., all arrays of the SoA depicted in Listing 2 are reordered

according to the sort result
find: cell start indices and cell end indices are detected by unequal consecutive

cell ids

The construction is depicted in Fig. 3. The reordering does not only simplify the ac-
cess to nearby agents but additionally increases the cache hit rate during the following
computation steps of the cycle.

3.2. The Parallel Update Scheme

Implementing the parallel update scheme for the GPU is straightforward. One update cy-
cle is realized by invoking multiple OpenCL kernel functions which steps the simulation
time from t to t+Δt. A cycle is completed if there exist no more agent with an event time
smaller or equal to t +Δt. For each agent we have to remember two positions: its actual
position and its next possible position. Therefore, we extend the SoA by two additional
floating point arrays.

3.2.1. Seek

After the linked cell date structure is constructed, we compute the agents’ next possible
position in parallel. Each agent is assigned to a different work item (thread) executing the
seek kernel. If the agents’ next footstep happens before t +Δt, that is, if τ ≤ t +Δt, the
next possible best position is computed. The work item reduces all possible positions to
the best one by solving Eq. (2). Finally, the resulting position is saved in global memory.

3.2.2. Move

For each agent the move kernel is executed on a different work item (thread). This kernel
tests if there are any collisions with respect to the possible next positions (calculated by

1

0

3

6

2

5

4
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15
0

2

4

6

1

3

5

10

12

1

10

1

15

10

0

2

4

6

1

3

5

10

12

1

10

1

15

10

cellstart(1) = 0

cellend(1) = cellstart(10) = 2

cellend(10) = cellstart(12) = 5

cellend(15) = 7

cellend(12) = cellstart(15) = 6

sort

ag
en

t i
d

ag
en

t h
as

h

ag
en

t i
d

ag
en

t h
as

h

Figure 3. Construction of the linked cell data structure with a cell width wc and height hc equal to 4 and
n = 7 agents. The spatial domain is covered by the rectangle on the left. Agents numbered from 0 to n−1 are
depicted in blue. After the sorting based on the agent’s hash, the start and end, for example, cell 10 are the two
array positions at which the agent hash changes to or from 10, i. e., cellstart(10) = 2 and cellend(10) = 5.

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation 99

the seek kernel) agents within the Moore neighbourhood of the linked cell data structure.
If there is none, we update the agents event time

τ ← τ +(λi/vi,free) (6)

and position accordingly. Otherwise, we mark the cycle as conflicted. We repeat the
cycle, that is, the seek and move operation until there is no collision detected and all
event times are greater than t +Δt.

3.3. The Event-driven Update Scheme

The number of agents the event-driven update can update in parallel is greatly reduced
compared to the parallel update. An upper bound is given by the number of cells l. And
in the worst we can only update a single agent. Therefore, we split the computation of
the next agent position into |P| tasks, where |P| is the number of possible next positions
of agent i. Let M contain the agent ids of all agents we can update in parallel. Then we
evaluate

Φi(xi + z×λi), for i ∈ M,z ∈ P (7)

in parallel. Beforehand, we have to efficiently compute M which is realized by the fol-
lowing three kernel functions.

3.3.1. Cellfilter

We implement two filters which are processed consecutively. The first cellfilter is in-
voked for each cell of the linked cell data structure. It iterates over all agents of a specific
cell and filters the agent with the smallest event time τ ≤ t +Δt. Its id is written into an
array M′ of size wc ×hc. If no agent was found, which happens if the cell is empty, −1
is written instead. Compare Fig. 4.

1

0

3

6

2

5

4
0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

4

5

1

0

1

10

11

12

15

cellfilter

ag
en

t i
d

-1

-1

gridfilter

5.3s
5.8s

5.6s

5.7s

6.3s

4.9s

6.1s

0

4

1

0

1

10

11

12

15

-1

-1

-1

ce
ll

id M'

Figure 4. Construction of M′ using the situation depicted in Fig. 3 by invoking cellfilter and gridfilter con-
secutively. Blue highlighted numbers represent agent ids and the time represent their event time λi. The first
array is constructed by cellfilter. For each cell the agent with the shortest event time is written into the array.
In this example gridfilter filters the agent 5 because of the smaller event time of agent 0.

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation100

3.3.2. Gridfilter

The second kernel gridfilter is also invoked for each cell and filters the left-over agents.
It replaces the id by −1 if there is an agent in the Moore neighbourhood with a smaller
event time. Note that each work item only has to test 8 agents due to the first filter.

3.3.3. Align

The result of the filtering is a large integer array M′ of size wc×hc containing some agent
ids and a lot of negative ones. To compute |M| we use a modified prefix sum using the
algorithm presented in [18]. Instead of summing everything up, we only add 1 if the array
value is none negative. Additionally, we compute a second prefix sum array K ignoring
all positive values. Since all agent ids are non negative and all other array entries are set
to −1, −K[j] gives the number of cells with an id smaller than j that are unaffected by
any movement update. It follows that j+K[j] is equal to the number of cells with an id
smaller than j which are affected by changes. The align kernel is invoked for each cell.
Let i be the id of a work item (thread), then all work items generates the aligned array M

of |M| agent ids by executing the following assignment in parallel:

M[i+K[i]]← M′[i], if M′[i]≥ 0. (8)

After executing the align kernel, M only contains agent ids of the agent which can be
updated in parallel. Compare Fig. 5.

3.3.4. Move

To use fast shared memory the move kernel is executed by |M|×|P| work items grouped
into |M| work groups. The i-th work item (thread) of the j-th work group (thread group)
computes ΦM[j](xi) where xi is the i-th possible next position. All immediate results are
saved into shared memory. Therefore, each work group requires |P|× 3× 4 bytes local
memory, i. e., 2×4 bytes for each point in P and four bytes to save each evaluation of Φ.
After all work items complete their task, the final next position is computed by a parallel
reduction using �|P|/2	 work items which finally solves Eq. (2). The first work item of
each work group writes the resulting next position back to global memory. We repeat the
cycle, i. e., cellfilter, gridfilter, align, move until M is empty.

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-1 10-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

10 1 1 1 1 1 1 1 2 30 1 2 3 3 3

0 -1 -1 -2 -3 -4 -5 -6 -7 -8 -9 -9 -10 -10 -11 -12 -13

4 0 1

10-9 =1

10 2

M':

M :

K :

agent id

array index

Figure 5. Construction of M using the situation depicted in Fig. 3 by invoking align after the kernel function
gridfilter has finished. The third and forth line represent the prefix sum arrays. Blue highlighted numbers
represent agent ids.

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation 101

parallel update scheme event-driven update scheme

OpenCL

(GPU)

OpenCL

(CPU

Java

(CPU)

OpenCL

(GPU)

OpenCL

(CPU)

Java

(CPU)

10k 3 15 80 20 99 140

100k 13 119 1190 60 546 2100

500k 74 1348 12137 160 2875 30096

Table 1. Average computation time in milliseconds of Δt = 0.4 seconds simulation time of the open space
scenario for 10×103,100×103 and 500×103 agents.

4. Comparison of Computation Times

In order to compare computation times of all implementations, we carry out a series of
tests. The parallel event-driven update scheme is expected to perform best for evenly
distributed and well-separated agents because in this case their footstep events are likely
to be independent from each other. It should perform worst if cells are either empty or
highly populated. Therefore, we use two benchmark scenarios. The first one consist of
multiple bottlenecks which yield high local densities. Even the multi-bottleneck scenario
is simple, it imitates more complex geometries and situations by generating a wide range
of densities, i. e., from low densities at the start of the simulation to high densities at the
time of congestion. For the second scenario we evenly distribute agents inside a large
rectangle at the bottom and place the target at the top. Both scenarios are depicted in
Fig. 6. For all tests |P| is approximated by 32 points and Δt is set to 0.4 seconds. Note that
our OpenCL implementation uses single precision and the existing Java implementation
double precision.

Tests were carried out on the following hardware platform: Intel i5-7400 Quad-Core
(3.50 GHz), 8 GB DDR4 SDRAM and a graphics card NVIDIA GeForce GTX 1050 Ti
/ 4 GB GDDR5 VRAM.

In open space, i. e., for the second scenario, using GPGPU computation over the
existing Java implementation speeds up the simulation by multiple order of magnitude,
i. e., the simulation runs more than 100 times faster. Running the same OpenCL code
on the CPU is 5− 18 times slower compared to the GPU. The GPU scales much bet-
ter for a growing number of agents. Compare Table 1. Furthermore, during the simula-
tion the computation times do not significantly fluctuate. The multi-bottleneck scenario

a) Bottleneck scneario. b) Open space scenario.

Figure 6. Illustration of both benchmark scenarios. All agents are uniformly distributed inside the green rect-
angle at t = 0 seconds. They walk towards their orange target at the top. The blue trajectories reveals the agents’
movement through one of the 6 bottlenecks (left) and straight towards their top target (right).

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation102

Figure 7. Comparison of computation times over a simulation run of the multi bottleneck scenario for 100 and
500 thousand agents using the parallel and event-driven update scheme. The computation time is required to
simulate Δt = 0.4 seconds.

benchmark reveals that computation times do fluctuate during the simulation run, if the
event-driven update scheme is used. As expected, the computation slows down because
agents approach the bottlenecks, and thus move closer together. After approximately 100
simulated seconds, the computation time reach a plateau because more and more agents
passed the bottleneck. Figure 7 illustrated this phenomenon. The jump at 300 seconds
for 500 thousand simulated agents might be the result of some caching effect but further
investigations are required.

5. Conclusion

We proposed mechanisms to enable GPU computation for the agent-based Optimal Steps
Model which simulates pedestrian dynamics. We presented two implementations: One
relied on a parallel update scheme thus modifying the original model. The other paral-
lelized an inherently sequential event-driven update scheme by efficiently identifying in-
dependent events and by splitting the event computation into multiple independent tasks.
For this we combined a linked cell data structure with massive parallel filtering. We
achieved speed-ups of multiple order magnitude for both update schemes compared to
the single threaded Java version. Using the same code base but different devices shows
that for the chosen hardware setup, the GPU outperforms the CPU by a factor up to 18
for both update schemes. For our specific hardware setup and two non-trivial benchmark
scenarios we were able to simulate up to half a million agents faster than real-time. Our
techniques can be carried over to any model where the agents’ influence remains local
and where agents are spatially spread. This is true for many models. Thus we showed
that there is great potential in using GPGPU for pedestrian dynamics beyond CA models
or differential equation models.

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation 103

6. Acknowledgement

We thank the research office (FORWIN) of the Munich University of Applied Sciences
and the Faculty Graduate Center CeDoSIA of TUM Graduate School at Technical Uni-
versity of Munich for their support. The authors are supported by the German Federal
Ministry of Education and Research through the project S2UCRE to study the accelera-
tion of microscopic pedestrian simulations by designing efficient and parallel algorithms
(grant no. 13N14463).

References

[1] S. Rybacki, J. Himmelspach, and A. M. Uhrmacher. Experiments with single core, multi-core, and gpu
based computation of cellular automata. In Advances in System Simulation, 2009. SIMUL ’09. First
International Conference on, pages 62 –67, Sept 2009.

[2] Q. Miao, Y. Lv, and F. Zhu. A cellular automata based evacuation model on gpu platform. In 2012 15th
International IEEE Conference on Intelligent Transportation Systems, pages 764–768, Sep. 2012.

[3] Hubert Mroz and Jaroslaw Was. Discrete vs. continuous approach in crowd dynamics modeling using
gpu computing. Cybernetics and Systems, 45(1):25–38, 2014.

[4] Jarosław Was, Hubert Mroz, and Pawel Topa. Gpgpu computing for microscopic simulations of crowd
dynamics. COMPUTING AND INFORMATICS, 2015.

[5] Adrian Kulusek, Pawel Topa, and Jarosław Was. Towards effective gpu implementation of social dis-
tances model for mass evacuation. Working paper, 2016.

[6] Adrian Kłusek, Paweł Topa, and Jarosław Was. An implementation of the social distances model using
multi gpu-systems. Working paper, 2016.

[7] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll. A survey on agent-
based simulation using hardware accelerators. ACM Comput. Surv., 51(6):131:1–131:35, January 2019.

[8] Michael J. Seitz and Gerta Köster. Natural discretization of pedestrian movement in continuous space.
Physical Review E, 86(4):046108, 2012.

[9] Isabella von Sivers and Gerta Köster. Dynamic stride length adaptation according to utility and personal
space. Transportation Research Part B: Methodological, 74:104–117, 2015.

[10] Benedikt Kleinmeier, Benedikt Zönnchen, Marion Gödel, and Gerta Köster. Vadere: An open-source
simulation framework to promote interdisciplinary understanding. Collective Dynamics, 4, 2019.

[11] Michael J. Seitz, Felix Dietrich, and Gerta Köster. The effect of stepping on pedestrian trajectories.
Physica A: Statistical Mechanics and its Applications, 421:594–604, 2015.

[12] Isabella von Sivers and Gerta Köster. How stride adaptation in pedestrian models improves navigation.
arXiv, 1401.7838(v1), 2014.

[13] Michael J. Seitz and Gerta Köster. How update schemes influence crowd simulations. Journal of
Statistical Mechanics: Theory and Experiment, 2014(7):P07002, 2014.

[14] Lightweight java game library 3. https://www.lwjgl.org/.
[15] J. A. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings of the

National Academy of Sciences, 93(4):1591–1595, 1996.
[16] U. Erra, B. Frola, V. Scarano, and I. Couzin. An efficient gpu implementation for large scale individual-

based simulation of collective behavior. In High Performance Computational Systems Biology, 2009.
HIBI ’09. International Workshop on, pages 51–58, Oct 2009.

[17] Simon Green. Particle simulation using cuda, May 2010.
[18] M. Harris, S. Sengupta, and J.D. Owens. Parallel prefix sum (scan) with cuda. GPU Gems, 3(39):851–

876, 2007.

B. Zönnchen and G. Köster / GPGPU Computing for Microscopic Pedestrian Simulation104

