Parallel Computing: Technology Trends 69
L Foster et al. (Eds.)

© 2020 The authors and IOS Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200026

Cloud vs On-Premise HPC: A Model for
Comprehensive Cost Assessment

Marco FERRETTT and Luigi SANTANGELO

Department of Electrical, Computer and Biomedical Engineering
University of Pavia, Italy

Abstract. Cloud Computing has emerged as an interesting alternative for running
business applications, but this might not be true for scientific applications. A com-
parison between HPC systems and cloud infrastructure not always sees the lat-
ter winning over the former, especially when only performance and economical
aspects are taken into account. But if other factors, such as turnaround time and
user preference, come into play, the landscape of the usage convenience changes.
Choosing the right infrastructure, then, can be essentially seen as a multi-attribute
decision-making problem. In this paper we introduce an evaluation model, based on
a weighted geometric aggregation function, that takes into account a set of param-
eters, among which job geometry, cost, execution and turnaround time. The notion
of user preference modulates the model, and allows to determine which platform,
cloud or HPC, might be the best one. The model has then been used to evaluate the
best architecture for several runs of two applications, based on two different com-
munication models. Results show that the model is robust and there is a not negli-
gible number of runs for which a cloud infrastructure seems to be the best place for
running scientific jobs.

Keywords. cloud computing, HPC, workload, cost-benefit analysis, turnaround
time

1. Introduction

Cloud vs on-premise HPC for scientific applications is a long-standing debate [1-5], that
has been tackled from many viewpoints, including the cost-perspective [6—8]. Contrary
to widespread belief, a cost-benefit analysis comparing cloud infrastructures and HPC
systems from the economical point-of view not always sees the cloud as the winner, un-
less applications allow for preemptible virtual instances. We got this result porting on the
cloud two real applications (Cross Motif Search and BloodFlow) that have completely
different patterns in their usage of computation and communication resources [9-12].
The former shows a simple master/worker communication model and is therefore less
prone to the cloud inefficiency in message routing; the latter instead depends heavily on
efficient point-to-point and collective communication primitives. Results show that nei-
ther from the performance perspective nor for the economical point-of-view, cloud seems
to be a convenient place for running scientific application. But such a comparison is not
fair as it does not take into account any factor which make Cloud so appealing. Indeed,
just taking into account the turnaround time, the landscape of the usage convenience of
the cloud computing changes. Building an evaluation model might help researchers to

70 M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC

understand which platform might be the best one depending on the user preference, the
execution time, the cost for computing and the expected waiting time in the queue. To
build such a model, a characterization of the workload of a real HPC system needs to
be done in order to understand the job waiting time depending on the job geometry (job
size, amount of memory, maximum runtime), job failure, setup time and maintenance
time.

Many previous works [13—15] have already characterized the workload of the HPC
systems, but most of them aimed at evaluating the resource utilization and improve the
scheduling algorithms to get the highest system utilization possible. Many others instead
tried to predict the waiting time using machine learning techniques [16—19]. In our work,
instead, we want to characterize the workload of an HPC system, named Marconi, in
order to assess the job waiting time. Such time is then introduced in a utility function
which is used to evaluate the best infrastructure (between Marconi and Google Cloud)
for running both target applications.

The paper is structured as follows: in Sec. 2, we describe Cross Motif Search and
BloodFlow applications and their communication models. Section 3 summarizes the per-
formance results we got running Cross Motif Search and BloodFlow on two similar ar-
chitectures, Marconi, an HPC system, and Google Cloud Infrastructure, showing that
both from the performance and from the economical perspective the cloud lags behind
the HPC system, justifying the reason to introduce the turnaround time as a factor to
make a fair comparison. In Sec. 4, we describe all the parameters, such as the job wait-
ing time and the virtual instance startup time, that should be kept into account for mak-
ing a better evaluation of both infrastructures. Section 5 shows a characterization of the
jobs submitted on Marconi, with a focus on the job waiting time. Section 6 measures
the virtual instance startup time on the Google Cloud Platform for different configura-
tions. Section 7 puts the resulting job waiting time and virtual instance startup time into a
decision-making model which uses the weighted geometric aggregation function to build
a utility function. Such function also takes the elapsed time measured running Cross Mo-
tif Search and BloodFlow on the cloud and on Marconi, and makes an evaluation of both
platform in order to understand which run is executed more conveniently on the HPC
infrastructure and which one on the cloud, taking into account performance, cost and
user preference. According to our utility function, the best infrastructure might not be
the one which minimizes cost or maximizes performance, but that which optimizes the
user expectation. Section 8 concludes the paper.

2. The target applications

An efficient interconnection network is of paramount importance for getting a high per-
formance in many scientific applications. The communication model embedded in the
application and the underlying network infrastructure, are two major factors that should
not be ignored during transition toward the cloud. For this reason, to study whether or not
cloud computing can be considered convenient for running scientific applications, from
the performance perspective as well as the economical one, we selected two different
applications, respectively Cross Motif Search and BloodFlow, which are based on two
different communication models. The first application is based on a master/worker com-
munication pattern and the time spent in communication is very small if compared with

M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC 71

17,565.48

15,074,

7,000.00

Execution Time (in seconds)

700.00 925.86
16 32 64 128 256

Concurrent MPI processes
== Marconi =——4¢— Cloud

Figure 1. The CMS scalability on Marconi and on the cloud.

the whole elapsed time; the second one, instead, relies on a much more complex commu-
nication pattern, making extensive use of collective functions to scatter and gather data.
Being based on two communication models which are opposite to each other, the two
applications can be considered representative for a large subset of scientific applications.
The following subsections describe both applications and their communication model.

2.1. Cross Motif Search

Cross Motif Search (CMS) [20] is a biological application which is able to look for
recurring geometrical patterns in the secondary structures of proteins. The core algorithm
relies on the generalized Hough transform [21] is used to find recurring geometrical
patterns.

The last implementation of CMS [22] uses MPI standard to deliver messages across
all processes. The communication model is very simple, as it is based on the traditional
master/worker pattern. After starting the application, master and workers communicate
to each other just using simple MPI primitives. Profiling activities [9] showed that the
impact of the communication in the application performance is almost negligible if com-
pared with the whole execution time. The last implementation of CMS [10, 23] was
moved to the cloud in order to study its scalability and compare the cloud performance
against the HPC performance. Figure 1 shows the application scalability for two similar
architecture: an HPC system, named Marconi, and the cloud infrastructure provided by
Google. The application showed a good scalability even on the cloud infrastructure as
increasing the number of concurrent MPI processes, the time spent by the application is
reduced, as on the HPC system. As the amount of messages exchanged among processes
is not dependent on the number of concurrent processes, the scalability is good even
increasing further the CPU number.

72 M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC

1600 1468,95
1400
1200
1000

800
563,32
00

Elapsed Time (in sec.)

00
443,53
200

188,91
0 134,43

4 8 16 32 64 128

. g —
64,76 51,22

Concurrent MPI processes

—@— Cloud == Marconi

Figure 2. The BloodFlow scalability on Marconi and on the cloud.

2.2. BloodFlow

BloodFlow [24,25] is a hemodynamics application which is able to run simulations of
patient specific hemodynamics of an aorta through computational fluid dynamic analysis.
The tool relies on a Navier-Stokes partial differential equation system, which is solved
by using numerical approximations. A good description of BloodFlow can be found in
[24,26-28].

Profiling activities on BloodFlow [12] revealed that the application makes use of
many MPI functions, point-to-point as well as collective, and that communication is a
key factor which can affect application performance.

BloodFlow has been moved on the Cloud although the analysis we did on [10] re-
vealed that BloodFlow might suffer if run on the cloud infrastructure, due to its huge
amount of communication and the low network performance on the cloud system. Figure
2 compares the elapsed time measured running the application on both different archi-
tectures (Marconi and Cloud) and using different core numbers. The application seems
to be able to perform well with a small number of concurrent processes, but when such
number grows up the elapsed time becomes soon unmanageable and running the applica-
tion on the cloud infrastructure is not convenient at all. A similar behaviour ensues even
on Marconi, but at much higher core number (256-512).

3. Comparing performance and economical results

According to the results shown in figures 1 and 2, it is clear that CMS is able to scale
very well even on the cloud but BloodFlow performs worse as it stops scaling at 32 cores,
much before than on the HPC system. This comparison highlights that scientific applica-
tions based on a complex communication pattern, such as BloodFlow, might meet several
troubles being run on the cloud while those applications based on simple communication
model, like CMS, are good candidates to be executed on a cloud environment, because

M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC 73

of the small impact of the interconnection network. In conclusion, cloud computing does
not seem to be yet a convenient place for running scientific application at least from the
performance perspective.

To understand if Cloud Computing can be convenient at least from the economical
perspective, we estimated the cost for running a virtual instance on three different cloud
platforms provided respectively by Google, Amazon and Microsoft, in order to compare
it with the cost of using a similar configuration in the HPC environment. Each virtual
instance in the cluster runs a Red Hat Enterprise Linux distribution and is equipped with
8 cores, 16 GB of memory RAM and 100 GB of Hard Disk. All virtual instances have
also been created in a physical cluster based in London. Our analysis revealsed that
Microsoft is slightly more expensive (0.53 dollars per hour) than the other two providers
(0.41 dollars per hour) but Google wins the comparison as the Amazon billing policy is
less convenient because, for example, the cost is computed by hours and not by seconds
as in Google. All costs have been computed using the calculator tool made available from
all three providers [29-31] and are valid as of March 2019. Even though Google is the
cheapest solution, it is still more expensive than Marconi, where the cost per hour for
8 cores is two times lower than Google. And even using preemptible instances (that is,
instances that can be stopped if other tasks require access to those resources) the cost,
which is dropped by half, stays still higher than on Marconi. In conclusion, not even
from the economical perspective cloud seems to be convenient, in the economical setting
available at the moment of the experiments (cost estimation on Marconi was based on
billing for commercial user).

4. The evaluation model

Looking at the results showed in the Section 3, it might sound that, for scientific re-
searchers, cloud is a burden rather than an opportunity. This might be true if only perfor-
mance and cost are taken into account. But if other factors [32-35] come in, comparison
might yield different results. For example, as the jobs on HPC systems are not usually
executed on-the-fly but put in a queue, they might experience a not negligible waiting
time. Then, introducing the turnaround time (which is the sum of execution time and job
queue delay) as further factor to compare HPC and Cloud systems, the landscape of the
usage convenience changes. In our vision, a fair comparison between cloud and HPC
infrastructures should take into account not just performance and economical aspects but
also waiting time, job failure, job setup time, maintenance time as well as the user pref-
erences. A time-sensible user might be willing to pay a bit more for getting the results
sooner and then the chosen architecture will be different according to its preferences.
Choosing the right infrastructure can be essentially seen as a multi-attribute decision-
making problem. A proper model based on all these attributes might help researchers to
understand which platform might be the best one depending on the user preference, the
execution time, the cost for computing and the expected waiting time in the queue. The
selected architecture might not be the highest performing one, nor the most affordable,
but that one which maximizes the utility function describing the model.

To measure the effectiveness of each platform using several attributes, we devised
a utility function based on the weighted geometric aggregation function. The attributes
taken into account by the formula are user preference, execution time, core hour cost,

74 M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC

expected waiting time in the queue for HPC system and virtual instance startup time
for the cloud. Formulas 1 and 2 describe the utility function we adopt for measure the
convenience to use the HPC infrastructure Uy, or the Cloud system U¢ for running any
application.

U — Ty + Wy k* Ou (1-4) o
M= max (Ty + Wiy, Te + S¢) max (Cy,Cc)
Tc+Sc A Cce (1-4)
Uc= k| ——————~ (2)
max (Tys +Wa, Te + Sc) max (Cy,Cc)

In these formulas, Ty;, W), and Cj, are respectively the elapsed time, the job waiting
time and the cost for running the application on the HPC system, while ¢, S¢ and C¢
are the elapsed time, the virtual instance startup time and the cost for running the same
application on the cloud. Parameter A instead is the user preference. Its value ranges be-
tween 0 and 1. A value A=0 means that the user is more sensible to the cost (and then
the user would like to have the results at a lower cost, without being interested in the
time to completion for getting such results); on the opposite side, A=1 is the preference
of a user who is mainly interested in minimizing the time to completion thus optimizing
turnaround time. With this utility function, turnaround time comes in as a criterion for
assessment. The model is validated by assessing all runs of CMS and BloodFlow appli-
cations on both Marconi and Cloud. If U¢ is lower than Uy, users would choose Cloud as
the preferred platform for running the applications, otherwise Marconi is the best choice.

As already mentioned, the utility function takes the time spent by the applications to
be executed on the cloud and on Marconi and their relative costs. Furthermore, it requires
the Waiting Time and the Virtual Instance Startup Time which need to be characterized.
For this reason, in order to get both information, Sections 5 and 6 make a characterization
of both times.

5. The workload analysis

The results described in this section refer to the jobs which have been successfully exe-
cuted on Marconi A1 partition during eight months, from the 23rd of January up to the
26th of September 2018. During such observed period of time, the number of jobs sub-
mitted on Marconi Al and successfully completed has been equal to 844,975. Half of
all completed jobs terminated their execution in less than 43 seconds, while 80% stayed
running for less than 1,400 seconds (almost 23 minutes). Only a negligible percentage
of jobs (0.06%) took more than 24 hours to complete its execution, with a maximum
elapsed time equals to 417,311.

5.1. Job Clusterization
Jobs on Marconi are submitted through Slurm [36]. Using Slurm, users can specify the

task to run, the amount of required resources (number of cores and amount of memory),
the wall time, which is the time the job might be left running the most, and finally the

M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC 75

queue where the job has to be put on. A queue is not handled like a pure FIFO queue.
Each job is assigned a priority index which is computed with a complex formula taking
into account many factors such as the waiting time in the queue, the size of the job
(core number and amount of memory), the required wall time and furthermore a fair
share factor which slows down jobs submitted by users who have almost spent their
monthly hours. Because of this scheduling policy, the waiting time spent by a job cannot
be computed in advance and might be highly variable. Furthermore, as the queue is
chosen by the user at submission time, each queue contains jobs having highly variable
geometries, making the queue-oriented classification not proper to be used as a way to
classify jobs according to their geometry and the time spent running. For this reason, in
order to get sets of more homogeneous jobs, we decided to use k-means as partitioning
method for job clusterization. Instead of fixing a priori the number of clusters, we iterated
k-means method several times, until the covariance coefficient was lower than 1.1 for all
clusters. The covariance coefficient cc for the i-th cluster is computed as in formula 3:

CCi o Sd(éflapsedTime) + Sd(JlCPUNumber)

mean (‘Ié;‘lapsedTime) +mean (‘IZCPUNumher)

3

where sd is the standard deviation function, mean instead is the mean function and J/ is
the set of jobs belonging to the i-th cluster.

Our test showed that the ideal cluster number is 16, because using a smaller cluster-
ization number makes the covariance coefficient higher the 1.1 at least for one cluster.

5.2. Job Waiting time

5.2.1. A global perspective

An overview on the waiting time of all jobs started on A1l partition shows that the time
spent by each job is not negligible as it can last even several days. Indeed, 5.56% of
the jobs had to wait at least 24 hours before being run. Only 19.21% instead has been
executed almost immediately, while almost fifty percent of the jobs waited at least two
minutes before being run.

5.2.2. Waiting time by clusters

We also did a characterization of the clusters we found using k-mean technique. The
analysis revealed that the median waiting time for all clusters ranges between 3 seconds
(cluster 7) and 92,094 seconds (cluster 1).

5.2.3. Relative Waiting Time by Clusters

As the main aim of this work is to characterize the waiting time the jobs might experience
on an HPC system like Marconi, we studied how the relative waiting time changes inside
each cluster. We define the relative waiting time RWT as follows:

RWT — WaitingTime @)

" ElapsedTime

76

M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC

Table 1. Relative Waiting Time for all clusters

cluster CPU Number | - Elapsed Time median mean 3rd quartile max
interval interval (sec.)
cluster 1 1-4752 34387 - 62258 2.17 5.50 8.15 42.96
cluster 2 1-4176 1864 - 8176 0.07 6.21 2.54 248.46
cluster 3 1-1872 735-1234 1.48 15.84 6.91 1,015.34
cluster 4 1-512 282 - 534 2.51 29.57 9.74 1,461.78
cluster 5 1-216 200 - 335 1.88 25.82 12.24 2,528.10
cluster 6 2048 - 7488 1-6643 708.14 | 2,341.14 3,387.19 69,066.80
cluster 7 1-34 1-46 0.50 409.09 11.00 | 313,432.00
cluster 8 1-5760 6960 - 19590 0.23 3.38 3.51 133.06
cluster 9 1-5760 | 62227-417311 0.06 1.33 1.28 20.95
cluster 10 1-5760 18892 - 34880 1.12 5.27 5.84 64.79
cluster 11 1-180 103 - 208 0.76 28.31 5.45 4,120.61
cluster 12 1-1872 1035 - 2593 0.47 14.39 2.51 507.77
cluster 13 162 - 2088 1-920 0.80 381.70 4.60 | 37,7678.50
cluster 14 1-1024 473 - 803 3.40 37.16 27.68 1,809.86
cluster 15 1-72 39-117 1.80 99.38 12.53 20,702.60
cluster 16 30-162 1-111 1.50 284.07 13.87 | 166,114.00

This value is always greater than or equal to 0. Better values are close to 0. The higher
the relative waiting time, the greater the impact of the waiting time on the elapsed time.
Table 1 shows the numerical values of such distribution. The mean value is almost al-
ways greater than the third quartile. This highlights that the distribution is badly affected
by some outlier making the mean value and the maximum value much higher than the
median value. For this reason, median value can better describe the waiting time because
it is insensitive to the presence of outliers.

6. Virtual Instance Startup

Formulas 1 and 2 take into account not only the waiting time, which has been charac-
terized in the previous section, but also the virtual instance startup time. Many works
[37-39] have already studied Virtual Instance Startup Time and its relations with other
factors such as the time of the day, operating system image size, instance type, data center
location and number of instances requested at the same time. Nethertheless, we checked
virtual instance startup time for a number of cluster configurations typically used for the
benchmark suite of applications we are interested in. The analysis covers startup time
measured when activating a cluster of three virtual instances on a physical infrastructure
hosted in the West US (us-west2-a). Each virtual instance is equipped with CentOS 7,
50GB of virtual disk and using different virtual hardware configurations (from 1 to 8
cores, from 3.75 to 30 GB of RAM). Times have been measured starting virtual instance
from a custom tool written using the Google SDK. Our tests revealed that the median
startup time is about 10 seconds.

M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC 77

Table 2. Cluster distribution for CMS and BloodFlow runs

CPU Number | 4CPU | 8CPU | 16 CPU | 32CPU | 64 CPU | 128 CPU | 256 CPU
CMS 8 8 2 12 3
BloodFlow 14 4 5 11 15 16

CROSS MOTIF SEARCH

16 32 64 128 256
o 0.0 MARCONI MARCONI MARCONI MARCONI MARCONI
0.1 MARCONI MARCONI MARCONI MARCONI MARCONI
0.2 MARCONI MARCONI MARCONI MARCONI MARCONI
0.3 MARCONI MARCONI MARCONI MARCONI MARCONI

05 MARCONI MARCONI MARCONI MARCONI MARCONI
0.6 MARCONI MARCONI MARCONI MARCONI CLOUD
07 MARCONI MARCONI MARCONI MARCONI [NeRsIT)]
7 08 MARCONI MARCONI MARCONI cLoUD
/ 0.9 | MARCONI MARCONI CLOUD
e 1.0 MARCONI cLOuD

user preference

Figure 3. Preferred architecture for running CMS.
7. Applying the evaluation model on both applications

As described in Sec. 4, the utility function takes the time spent by the applications to be
executed on the cloud and on Marconi and their relative costs. Furthermore, it requires
the Virtual Instance Startup Time S¢ and the Waiting Time Wj,. The previous section gave
us a measure of the time spent by a virtual instance to get ready to start the application,
which can be fixed to 10. For the parameter W), instead of using a single value on all
runs, we decided to identify the cluster which each run might belong to, according to
the job geometry. Then, the median relative waiting time RWM for the selected cluster
is chosen as a factor to determine the waiting time used in the utility function. The job
waiting time WM then can be easily computed as follows:

WM =RWM«TM (5)

where TM is the job elapsed time. To be clearer, lets consider the first run of CMS. The
application took 15,074.32 seconds using 16 cores. According to the job clusterization
defined in table 1, the run might belong to the cluster number 8, where the median relative
waiting time for all job in the cluster is 0.23. Then for this run, the estimated waiting
time WM is equal to 15,074.32 * 0.23 = 3,467.09 seconds. The last run of BloodFlow,
instead, took 51.22 seconds using 128 cores. Then this run belongs to the cluster number
16, having a relative waiting time equals to 1.50. Then for such run, the waiting time is
equal to 76.83 seconds. Table 2 shows the cluster where each run for both applications
belongs to.

Now, we have got all data needed to apply the utility function and assess the best
platform. Figures 3 and 4 show which architecture might be the preferred for each run
depending on the user preference. Light gray areas represent runs for which the cloud
infrastructure is better. Looking at the table describing CMS, for 22% of all runs, the
cloud Infrastructure seems to be the best architecture for running the application. For
BloodFlow, instead, this percentage is higher, namely 48%.

78 M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC

BLOODFLOW
4 8 16 32 64 128
e 0.0 MARCONI MARCONI MARCONI MARCONI MARCONI MARCONI
\ 01 MARCONI MARCONI MARCONI MARCONI MARCONI MARCONI
0.2 MARCONI MARCONI MARCONI MARCONI MARCONI

0.3 MARCONI MARCONI MARCONI
MARCONI MARCONI
MARCONI MARCONI
MARCONI MARCONI
CLOuUD MARCONI MARCONI
CLOUD MARCONI MARCONI
CLOUD CLOUD MARCONI

user preference

Figure 4. Preferred architecture for running BloodFlow.

The results described so far are heavily dependent on the relative waiting time in-
troduced in our model. Indeed, if we suppose to rise the relative waiting time of cluster
2 (which is the cluster where the 64-core CMS runs belong in) from 0.07 to 0.40, the
cloud preference for CMS rises from 22% to 28%. It is worth noting that the increase
we introduced changing the relative waiting time from 0.07 to 0.40, is not negligible. In
fact, supposing to have an elapsed time of 3,681.70 seconds (which is the real elapsed
time CMS took being run on Marconi using 64 cores), changing the relative waiting time
from 0.07 to 0.40, the waiting time goes from 258 seconds to 1,473. According to this
observation, we can state that our model is robust, since a high perturbation of the rela-
tive waiting time brings a small variation in the convenience to use the cloud infrastruc-
ture rather than the HPC system. The results presented above also show that although
cloud computing might be more expensive and less powerful than the HPC system, when
turnaround time becomes important, cloud computing can be a convenient alternative for
running scientific applications.

8. Conclusion

Studying the convenience to use Cloud Infrastructures as alternative to HPC systems for
running scientific application is not easy as it should take into account many factors, not
only related to the performance and economical aspect. Even the user preference plays
an important role as some users might prefer to have results as fast as possible, others
instead might wish spending less. In this paper we introduced a new model for the cloud
convenience evaluation which takes into account performance, cost, user preference and
waiting time. The model has then been applied to study the best architecture to run two
different applications, based on two different communication models. Results show that
our model is robust as high perturbations in the relative waiting time bring small variation
in the results. Furthermore, there is a not negligible number of runs of both applications
for which Cloud seems to be the better place, according to our evaluation mode.

References

[1] Rashid Hassani, Md Aiatullah, Peter Luksch, Improving HPC Application Performance in Public Cloud,
In IERI Procedia, Volume 10, 2014, Pages 169-176, ISSN 2212-6678.

[2] Napper, Jeffrey, and Paolo Bientinesi. "Can cloud computing reach the top500?.” Proceedings of the
combined workshops on UnConventional high performance computing workshop plus memory access
workshop. ACM, 2009.

(3]

(4]

(5]

(6]

(7]

(8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

(20]
[21]

[22]

[23]

M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC 79

Ramakrishnan, L., Canon, R. S., Muriki, K., Sakrejda, I., & Wright, N. J. (2012). Evaluating intercon-
nect and virtualization performance for high performance computing. ACM SIGMETRICS Performance
Evaluation Review, 40(2), 55-60.

Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., ... & Wright, N. J. (2010,
November). Performance analysis of high performance computing applications on the amazon web ser-
vices cloud. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second Interna-
tional Conference on (pp. 159-168). IEEE.

Zhai, Y., Liu, M., Zhai, J., Ma, X., & Chen, W. (2011, November). Cloud versus in-house cluster:
evaluating Amazon cluster compute instances for running MPI applications. In State of the Practice
Reports (p. 11). ACM.

A. G. Carlyle, S. L. Harrell and P. M. Smith, ”Cost-Effective HPC: The Community or the Cloud?,” 2010
IEEE Second International Conference on Cloud Computing Technology and Science, Indianapolis, IN,
2010, pp. 169-176.

T. Passerini, J. Slawinski, U. Villa and V. Sunderam, "Experiences with Cost and Utility Trade-offs
on IaaS Clouds, Grids, and On-Premise Resources,” 2014 IEEE International Conference on Cloud
Engineering, Boston, MA, 2014, pp. 391-396.

Nanath, K., & Pillai, R. (2013). A model for cost-benefit analysis of cloud computing. Journal of Inter-
national Technology and Information Management, 22(3), 6.

Ferretti, M., & Santangelo, L. (2018, September). Protein secondary structure analysis in the cloud. In
Proceedings of the 6th International Workshop on Parallelism in Bioinformatics (pp. 63-70). ACM.
Ferretti, M., & Santangelo, L. (2019, February). Profiling hemodynamic application for parallel comput-
ing in the cloud. In 2019 27th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP) (pp. 41-50). IEEE.

Ferretti, M., & Santangelo, L. (2018, March). Hybrid OpenMP-MPI parallelism: porting experiments
from small to large clusters. In 2018 26th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP) (pp. 297-301). IEEE.

Auricchio, F.,, Fedele, M., Ferretti, M., Lefieux, A., Romarowski, R., Santangelo, L., & d Veneziani, A.
(2018). Benchmarking a hemodynamics application on Intel based HPC systems. Paral Comput Every-
where, 32, 57.

Dror G. Feitelson, Dan Tsafrir, David Krakov, Experience with using the Parallel Workloads Archive,
Journal of Parallel and Distributed Computing, Volume 74, Issue 10, 2014, Pages 2967-2982, ISSN
0743-7315,

Gonzalo P. Rodrigo, P.-O. stberg, Erik Elmroth, Katie Antypas, Richard Gerber, Lavanya Ramakrish-
nan, Towards understanding HPC users and systems: A NERSC case study, Journal of Parallel and
Distributed Computing, Volume 111, 2018, Pages 206-221, SSN 0743-7315,

S. Di, D. Kondo and W. Cirne, "Characterization and Comparison of Cloud versus Grid Workloads,”
2012 IEEE International Conference on Cluster Computing, Beijing, 2012, pp. 230-238.

Kianpisheh, Somayeh & Jalili, Saeed & Charkari, Nasrolah. (2012). Predicting Job Wait Time in Grid
Environment by Applying Machine Learning Methods on Historical Information.

Kumar R., Vadhiyar S. (2015) Prediction of Queue Waiting Times for Metascheduling on Parallel Batch
Systems. In: Cirne W., Desai N. (eds) Job Scheduling Strategies for Parallel Processing. JISSPP 2014.
Lecture Notes in Computer Science, vol 8828. Springer, Cham

Andresen, D., Hsu, W., Yang, H., & Okanlawon, A. (2018). Machine Learning for Predictive Analytics
of Compute Cluster Jobs. arXiv preprint arXiv:1806.01116.

A. Matsunaga and J. A. B. Fortes, ”On the Use of Machine Learning to Predict the Time and Resources
Consumed by Applications,” 2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, Melbourne, VIC, 2010, pp. 495-504.

Ferretti, M., Musci, M., & Santangelo, L. (2015). MPICMS: a hybrid parallel approach to geometrical
motif search in proteins. Concurrency and Computation: Practice and Experience, 27(18), 5500-5516
Ballard DH. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 1981;
13(2): 111-122

Ferretti, M., Musci, M., & Santangelo, L. (2014, September). A hybrid OpenMP and OpenMPI approach
to geometrical motif search in proteins. In 2014 IEEE International Conference on Cluster Computing
(CLUSTER) (pp. 298-304). IEEE.

Ferretti, M., & Santangelo, L. (2019). Optimized cloud-based scheduling for protein secondary structure
analysis. The Journal of Supercomputing, 1-22.

80

[24]
[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]
[37]

[38]

(391

M. Ferretti and L. Santangelo / Cloud vs On-Premise HPC

Quarteroni, A., & Valli, A. (2008). Numerical approximation of partial differential equations (Vol. 23).
Springer Science & Business Media.

Formaggia, L., Quarteroni, A., & Veneziani, A. (Eds.). (2010). Cardiovascular Mathematics: Modeling
and simulation of the circulatory system (Vol. 1). Springer Science & Business Media.

Bertagna, Luca & Deparis, Simone & Formaggia, Luca & Forti, Davide & Veneziani, Alessandro.
(2017). The LifeV library: engineering mathematics beyond the proof of concept.

M. A. Heroux et al., An overview of the trilinos project, ACM Trans. Math. Softw., vol. 31, no. 3, pp.
397-423, 2005

Bertagna, L., Deparis, S., Forti, D., Formaggia, L., & Veneziani, A. (2016), The LifeV library: engi-
neering mathematics beyond the proof of concept, Tech Report Dept. Math & CS, Emory University,
TR2016-008, www.mathcs.emory.edu

Amazon Calculator. Retrieved July 5, 2019, from https://calculator.s3.amazonaws.com/index.html
Azure Pricing Calculator. Retrieved July 5, 2019, from https://azure.microsoft.com/it-
it/pricing/calculator/

Google Cloud Platform Princing Calculator. Retrieved July 5, 2019, from
https://cloud.google.com/products/calculator/

Costa, Pedro & Santos, Joao & Mira da Silva, Miguel. (2013). Evaluation Criteria for Cloud Services.
IEEE International Conference on Cloud Computing, CLOUD. 598-605. 10.1109/CLOUD.2013.70.
Geeta, Prakash S. (2018) A Review on Quality of Service in Cloud Computing. In: Aggarwal V., Bhat-
nagar V., Mishra D. (eds) Big Data Analytics. Advances in Intelligent Systems and Computing, vol 654.
Springer, Singapore

J. Singh, S. Agarwal, J. Mishra, A review: Towards quality of service in cloud computing, International
Journal of Science and Research

Kumar, Rakesh & Kumar, Chiranjeev. (2018). A Multi Criteria Decision Making Method for Cloud
Service Selection and Ranking. International Journal of Ambient Computing and Intelligence. 9. 1-14.
10.4018/1JACI.2018070101.

Overview Slurm ‘Workload Manager. Retrieved July 5, 2019, from
https://slurm.schedmd.com/overview.html

M. Mao, H. Humphrey, A performance study on the VM startup time in the cloud, IEEE 5th International
Conference on Cloud Computing, June, IEEE, 2012, pp. 423-430 (2012)

Razavi K., Razorea L.M., Kielmann T. (2014) Reducing VM Startup Time and Storage Costs by VM
Image Content Consolidation. In: an Mey D. et al. (eds) Euro-Par 2013: Parallel Processing Workshops.
Euro-Par 2013. Lecture Notes in Computer Science, vol 8374. Springer, Berlin, Heidelberg

Marathe, Aniruddha & Harris, Rachel & K. Lowenthal, David & R. de Supinski, Bronis & Rountree,
Barry & Schulz, Martin & Yuan, Xin. (2013). A comparative study of high-performance computing on
the cloud. HPDC 2013 - Proceedings of the 22nd ACM International Symposium on High-Performance
Parallel and Distributed Computing.

