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Abstract. We propose a novel approach combining vector autoregressive models
and data assimilation to conduct econometric inference for high dimensional prob-
lems in cryptocurrency markets. We label this new model TVP-VAR-DA. As the
resulting algorithm is computationally very expensive, it mandates the introduction
of a problem decomposition and its implementation in a parallel computing envi-
ronment. We study its scalability and prediction accuracy under various specifica-
tions.
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1. Introduction

The ongoing digitisation of the economy has led to an abundance of data. Some insti-
tutions such as the Bank of England [8] argue that it is only a matter of time until the
nature of economic data changes and will be as granular and continuous as is already the
case for traffic and weather data. A very prominent example is the emergence of cryp-
tocurrency markets, in which every single transaction is traceable on a publicly available
ledger and is updated on a minute by minute bases [14,4], with the ledgers data size
continuously growing. Hence, this new economic phenomenon provides an ideal exam-
ple for the digitisation of economic data and also exposes the limitations of econometric
inference at scale.
Due to these developments, economic modeling needs to take computational constraints
more into account and incorporate sensible ways to speed up and enable larger scale
analysis without the loss of accuracy. Whilst uncommon in economics, this resembles
the approach in computational sciences in which researchers often face the problem of
trade-offs between accuracy and computational efficiency. Our work therefore aims at
bridging this gap by presenting a mathematical formulation of a generalisable economic
model in which we explicitly account for scalability and parallelisation as well as evalu-
ate and compare accuracy.
The model class we consider are vector autoregressive models with time varying param-
eters (TVP-VAR) [9]. TVP-VARs are time series models often used for economic policy
analysis and forecasting, describing the interrelationship of economic variables dynami-
cally over time and also model latent economic states whose structure economists exploit
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for policy analysis [5]. Most conducted studies are small scale [15] because the inclusion
of time varying latent states with multiple lagged coefficients leads to parameter matri-
ces whose size increases with the square of the number of variables in the model. This
makes CPU time requirements highly nonlinear with respect to the number of variables
and thus calls for parallel computing methods [7].
Due to the fact that economists need to study and compare various model parameteri-
sations such as lag length selection, it is important that such models can be computed
in reasonable amounts of time without losing accuracy. We thus introduce a domain de-
composition approach for significant performance gains. The parallelisation we intro-
duce is on the mathematical formulation of the problem. We decompose the datasets in
time windows with possible overlaps and we propose a mathematical model formulation
based on domain decomposition. We present and study the performance of the parallel
algorithm implemented on a distributed computing architecture. Also, the algorithm’s
scalability is studied taking into account the execution time.
To study the models performance, we use generated data as well as a dataset that con-
sists of up to 121 identified exchanges on the Bitcoin blockchain. The data is available
in multiple frequencies and spans multiple years. Each exchange is represented as an on-
chain address cluster of hundreds of addresses. Thus for each exchange, multiple time
series are of interest: the aggregate amount of Bitcoin they hold over time, the number
of inflows and outflows, as well as transaction rate within a given timeframe. We fur-
ther expand this with available off-chain data such as price and trading volume of ex-
changes. This allows for investigation of economic questions such as if a large inflow of
Bitcoins has a negative effect of the price of a given exchange, i.e if the rules of supply
and demand hold for individual exchanges.

2. The Economic Model

In order to conduct economic inference we combine a TVP-VAR with a Data Assimila-
tion (DA) Framework. DA is an uncertainty quantification technique used to incorporate
observational data into a prediction model ([2]) in order to improve numerical forecasted
results. As previously discussed, TVP-VAR is a time series model for the analysis of
economic systems using latent state variables. The model is outlined in Eq. 1 to 3. We
propose a new model which combines TVP-VAR with DA, naming it TVP-VAR-DA.
Due to the high dimensionality of the model and the number of state variables used to
describe cryptocurrency markets, the TVP-VAR-DA is a large scale problem that should
be solved in suitable acceptable time. It mandates the use of parallel computing envi-
ronments. In this paper, we formally address the parallelism problem by defining the
parallel TVP-VAR-DA model based on a problem decomposition approach. In fact, as
claimed in [7], the partitioning problem (i.e, decomposability: to break the problem into
small enough independent less complex subproblems) is a universal source of scalable
parallelism.
To exemplify the model, the basic structure of the univariate TVP-VAR model is:

ỹt = x̃tφt + ε̃t σ̃t (1)

φt = φt−1 + ν̃t (2)

log(σ̃2
t ) = log(σ̃2

t−1)+ ξ̃t (3)
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where scalar ỹt is the time t value of the dependent variable for t = 1, ..,T , x̃t is a 1×
q vector of predictors and lagged dependent variables and φt the coefficient vector of
corresponding dimension. The errors follow the distributions: ε̃t ∼N(0,1), ν̃t ∼N(0, Q̃t)
and ξ̃t ∼ N(0, R̃t). Eq. 1 describes the relationship of an economic variable with other
series of interest. The evolution of this relationship over time is given by Eq. 2, whereas
Eq. 3 models changes in the volatility of variables over time.

Generalisation In order to generalise the model in Eq. 1-3 to arbitrary lag length and
number of variables under consideration, it is necessary to re-express the model in a more
general matrix notation:

yt = Φ1yt−1 + ...+Φlyt−l +μt + εtσt (4)

where yt is now a q× 1 vector of variables we wish to study, μt a vector of means and
Φl is a q×q coefficient matrix. σt is of the same dimension as yt whereas εt is a diagonal
matrix. To write this compactly, we define Xt = [y′t−1, ...,y

′
t−l ,1]

′ and Φ = [Φ1, ...,Φl ,μ]′.
Define K = (ql + 1) as the product of variables q and lag length l including a constant.
Thus Xt is of dimension K×1 and Φ of dimension K×q.
Vectorisation of Φ is performed in order to include variable lag length which is necessary
for policy analysis while preserving markovian properties of the resulting state-space
model. Therefore define xt = I⊗Xt using Kronecker product ⊗, where I is the identity
matrix and define βt = vec(Φ), where vec() stacks the columns of a matrix. This allows
us to rewrite the VAR in compact notation similar to the univariate case and express it in
state space form:

yt = x′tβt + εtσt (5)

βt = Fβt−1 + vt (6)

log(σ2
t ) = log(σ2

t−1)+ξt (7)

where βt is now of dimension qK × 1 with corresponding transition matrix F and x′t
of dimension q× qK, where log(σ2

t ) in Eq. 7 scales accordingly. The terms εt , νt and
ξt are zero mean errors and will be denoted in the linearization and algorithm section
for clarity. Distributional assumptions remain the same with εt ∼ N(0, I), νt ∼ N(0,Qt)
and ξt ∼ N(0,Rt) with the covariance matrices scaling accordingly. The above equations
form a state space model with a stochastic volatility term, that can be approximated via a
variety of filtering techniques (see e.g. [10], [3], [11]). Our TVP-VAR-DA methodology
is able to produce point forecasts in high-dimensional settings, while also generating the
history of latent state variables for analysis, taking into account the interdependencies
of many variables, incorporating more information and thus reducing omitted variable
bias. The solution to this model which takes into account parallelisation due to domain
decomposition is described in the next section.

3. The Parallel Model

The optimal values of parameters βt and σt are obtained via the following DA method-
ology:
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βt ,σt = argmin
β ,σ

J(β ,σ) (8)

with

J(β ,σ) =
∣∣|β −βt−1 +νt |

∣∣
Q−1

t
+ ||log

(
σ2

t−1

σ2

)
+ξt ||R−1

t
(9)

In order to partition the problem, let Ω ⊂ R
M denote the domain2. DD(Ω) then consti-

tutes a partitioning with overlaps such that DD(Ω)= {Ωi}1,...,p with Ωi =(xi,t ,yi,t)t=0,...Ti

where Ti < T , Ωi ⊂ R
ri , ri ≤ M and for i = 1, ..., p is such that Ω = ∪p

i=1Ωi with
Ωi∩Ω j = Ωi j 	=∅. This allows us to restate the problem as:

Ji(βi,σi) = ||βi−βi,t−1 +νi,t ||Q−1
i,t

+ ||log

(
σ2

i,t−1

σ2
i

)
+ξi,t ||R−1

i,t
(10)

where furthermore yi,t , xi,t are the restrictions of the corresponding quantities in (5), (6),
(7) and (8) on the subdomains which constitute the decomposition. In order to minimise
the function in (10) on each subdomain, we pose ∇(Ji(βi,σi)) = 0 and we solve the
normal equations which conduct to a modified version of the Kalman Filter [2,12]:

βi,t = βi,t−1 +Kt(yi,t − xi,tβi,t−1), t = 1, . . . ,Ti (11)

log(σ2
i,t) = log(σ2

i,t−1)+K∗i,t(y
∗
i,t − log(σ2

i,t−1)), t = 1, . . . ,Ti (12)

where

Ki,t = Qi,t−1x′i,t(xi,tQi,t−1x′i,t +σi,t)
−1 (13)

and

K∗i,t = Ri,t−1(Ri,t−1)
−1, y∗i,t = log((yi,t − xi,tβi,t−1)

2)− ln(ξ 2) (14)

as described in detail in Algorithm 1 applied to each subdomain Ωi where for ease of
notation we drop subdomain subscript i. The Algorithm depicts the main steps and also
includes a condition σ̄ , in which log(σ2

i,t) can be modeled as time varying or constant
over time.

4. Dataset

We conduct our experiments on two datasets. The first one is generated artificially in
order to check model specifications and to generate more well-behaved data. The second
dataset consists of on-chain as well as off-chain data of the cryptocurrency market.

2The training data set is defined as D = {(xi,yi), i = 1, ...,M}
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Algorithm 1 The TVP-VAR-DA algorithm A(Ωi, p) based on domain decomposition for
each subdomain Ωi, where DD(Ω) = {Ωi}1,...,p

1: Input Ωi = (xi,t ,yi,t)t=0,...T
2: Initialise Priors Q0, R0, ξ , F , β0, σ0
3: specify σ̄
4: for for t=1...T do

Prediction Step
5: βt−1 = Fβt−1 � Predicted Mean
6: Qt−1 = FQt−1F

′
� Predicted Variance

7: ηt−1 = yt − xtβt−1 � Forecast Error
Stochastic Volatility

8: if σt 	= σ̄ then � Define Constant or Stochastic Volatility
9: Construct y∗t = log((yt − xtβt−1)

2)− ln(ξ 2)
10: K∗t = Rt−1(Rt−1)

−1 � Gain Matrix
11: log(σ2

t ) = log(σ2
t−1)+K∗t (y∗t − log(σ2

t−1)) � Posterior Mean of log(σ2
t )

12: Rt = (I−K∗t )Rt−1 � Posterior Variance of log(σ2
t )

13: else

14: σt = σ̄
15:16: end if

Updating Step
17: ft = xtQt−1x′t +σt � Forecast Variance
18: Kt = Qt−1x′t(xtQt−1x′t +σt)

−1 � Gain Matrix
19: βt = βt−1 +Kt(yt − xtβt−1) � Posterior Mean of βt
20: Qt = (I−Ktxt)Qt−1 � Posterior Variance of βt
21: end for

Dataset 1 In order to verify the correct tracking of the state equation we create an
artifical dataset that is generated according to the following underlying specifications:

yt = X ′t γt + e1,t (15)

γt = γt−1 + e2,t + e3,t (16)

Where γ is the time varying state variable, and e1,e2,e3 are ∼ i.i.d N(0,ei) white noise
processes. Data matrix Xt is generated in a similar fashion as standardised i.i.d process.
γt and yt are generated as outlined above.
The dimensions of the dataset are created to match the real dataset and are of problem
size M = 1100, M = 8200, M = 27900 and M = 655600 respectively, these correspond to
the number of entries in xt for each timestep which resemble combinations of variables
and lag lengths included in the model.

Dataset 2 The main dataset of interest is the cryptocurrency market dataset. There are
two types of data, one labeled on-chain data is the data derived directly from the Bitcoin
blockchain. In short, the blockchain can be described as a distributed ledger system in
which a multitude of nodes receive and process transactions created by other actors.
Every transaction leads from one public address to another. All nodes in the network then
synchronise the state of the ledger to form a global consensus on which address owns
how much Bitcoin. The network is pseudonymous: all addresses and their balance are
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visible through time, although it is not directly visible by whom the address is controlled.
Some researchers such as [13] created and verified heuristics in which it is possible to
link addresses to entities such as exchanges and other services. Interested readers are
referred to other sources such as [14] or [6]. Based on this heuristic the on-chain dataset
consists of 121 exchanges which are partially identified on the blockchain by the authors
of https://www.walletexplorer.com/. Given this we calculate its hourly balance and the
number of inflows as well outflows of Bitcoins. The second part of that set which we label
off-chain data consists of the prices as well as volume of Bitcoin on selected exchanges
which were identified in the first dataset. These sets constitute matrices xt and yt in Eq. 5
whereas the latent state variable βt give an economic interpretation of the relationship of
the underlying dynamics of off-chain and on-chain data. Data is available up to minute
frequency and spans from 2014 until early 2019. Due to the noisy nature of the data
we focus on hourly frequency to show the scalability properties of our model. For all
experiments we add constants for numerical stability in the algorithm and interpolate
missing values to make forecasting results more comparable. Fig. 1 displays the on-chain
Bitcoin balance as well as the off-chain trading volume of the Kraken.com exchange for
a selected period.

Figure 1. Example of on-chain and off-chain data: The amount of Bitcoin a set of addresses associated to an
exchange on the blockchain hold as well as the trading volume on the exchange itself

5. Computational Time and Scalability

We evaluate the performance of Algorithm 1 on Dataset 1 as we know this does not affect
the generality of our study. We computed the values of execution time and we evaluated
the scale-up factor. The scale-up factor for a problem decomposition of the function (10)
is defined as [1]:

Sp(M, pM) =
TpM

Tp
, (17)

where p denotes the number of running processors, M denotes the problem size and
pM is the minimum number of processors used for the problem of size M. Table 1
shows the values of the execution time of Algorithm 1 for a problem of size M =
1100,8200,27900,65600 created to match the real dataset which resemble combinations
of variables and lag lengths included in the model. The experiments are run on a cluster
with multiple 2.40GHz Intel Core i7-6700 CPUs and 256GB RAM available.
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Problem Size M = 1100 M = 8200 M = 27900 M = 65600

Processors Tp (seconds) Tp (seconds) Tp (seconds) Tp (seconds)

2 10.47×100 19.70×101 - -
4 4.93×100 99.33×100 98.61×101 50.60×102

8 2.46×100 53.53×100 50.65×101 25.55×102

16 1.25×100 29.26×100 31.78×101 13.63×102

32 0.99×100 18.34×100 14.41×101 10.87×102

Table 1. Generated data table including stochastic volatility displaying computational time. Experiments ran
on Imperial Cluster CX2

Figure 2. Values of scale-up factor for problem size M = 1100,8200 with pM = 2 and M = 27900,65600
with pM = 4

6. Forecast Comparison

This section evaluates the performance of the model in terms of forecasting. Mean
squared forecast errors (MSFE) as well as mean absolute forecast errors (MAFE) are
used to compare model quality in-sample. This is based on direct point forecasts, evalu-
ating the residuals of predicted and realised values:

MSFE =
N

∑
n=0

(
∑T−h

τ=τ0
(yr

t,n− ŷt,n)
2

T −h− τ0 +1

)
(18) MAFE =

N

∑
n=0

(
∑T−h

τ=τ0

∣∣∣yr
t,n− ŷt,n

∣∣∣
T −h− τ0 +1

)
(19)

where h = 1 is the forecast horizon, evaluated before updating the state parameters and
τ0 = 1, the starting date of the forecasting exercise. yr

t,n represents the actual realisation
of a variable, while ŷt,n represents the corresponding point forecast. The results in the
tables are reported as averages over all included time series respectively, indicated by
index n.

Fig. 3 shows the MSFE for one of the experiments using real data. Comparing both
axes shows how after the TVP-VAR-DA assimilation the forecasting error decreases by
multiple magnitudes, validating the predictive performance of the model.

The results for all experiments are reported in Table 2 and 3. We plot the ratio of
forecasting errors before ŷt|t−1 and after ŷt|t assimilation of observations, corresponding
to forecasts generated via parameters in line 5 and 19 in Algorithm 1. The increase in
forecasting accuracy is observable across all problem sizes for both generated and real
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Figure 3. Comparison of forecasting errors before and after assimilation, depicting the average squared fore-
casting error at each timestep for problem size M = 1100

Problem Size M = 1100 M = 8200 M = 27900 M = 65600

Processors MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE

2 2.26e−5 1.98e−4 3.65e−6 8.49e−5 - - - -
4 3.38e−5 3.55e−4 6.94e−6 1.64e−4 3.27e−6 1.18e−4 1.44e−6 7.97e−5

8 5.18e−5 7.02e−4 8.87e−6 2.95e−4 3.82e−6 2.07e−4 1.77e−6 1.45e−4

16 6.65e−5 1.26e−3 1.13e−5 5.31e−4 4.27e−6 3.47e−4 2.11e−6 2.25e−4

32 7.33e−5 2.08e−3 1.12e−5 8.02−4 3.97e−6 4.95e−4 2.24e−6 3.35e−4

Table 2. Generated data table including stochastic volatility displaying accuracy ratios before and after
assimilation

Problem Size M = 1100 M = 8200 M = 27900 M = 65600

Processors MSFE MAFE MSFE MAFE MSFE MAFE MSFE MAFE

2 7.11e−6 8.07e−4 1.46e−5 3.36e−3 - - - -
4 1.11e−5 8.22e−4 1.46e−5 3.35e−3 1.14e−5 2.55e−3 1.60e−6 2.26e−3

8 1.95e−5 8.52e−4 1.47e−5 3.35e−3 1.15e−5 2.56e−3 3.39e−6 6.96e−3

16 5.29e−5 9.32e−4 1.81e−5 3.38e−3 1.46e−5 2.59e−3 1.07e−6 1.37e−2

32 9.11e−5 1.06e−3 2.1e−5 3.42e−3 1.73e−5 2.63e−3 5.09e−6 9.21e−3

Table 3. Real data table including stochastic volatility displaying accuracy ratios before and after assimilation

data, although more pronounced for the MSFE metric. By introducing the domain de-
composition we see a slight decrease in accuracy when then number of processors in-
crease but still improve forecasts by similar orders of magnitude. We use results of ad-
junct subdomains with no overlap to provide a lower bound for accuracy. The relative
increase in errors due to domain decomposition is decreasing in larger scale problems
compared to small ones. In Table 2 it is observable that, across all processors specifi-
cations, with increasing problem size the MSFE ratio decreases consistently, meaning
that the larger the problem, the larger the increase in forecasting accuracy after assimi-
lation. A similar patterns holds for the MAFE ratios. In contrast, Table 3 shows higher
forecasting error ratios across all problem sizes except for the smallest. The forecasting
ratio is performing better in the case of synthetic data since the data generation algorithm
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is specified in such a way that it aligns with model assumptions of the TVP-VAR-DA,
whereas using real cryptocurrency data, the errors are more pronounced due to the more
erratic nature of the data.

7. Economic Results

As a case study, we analyse latent state parameters over the summer of 2015 and 2016
which represent the interaction of on-chain and off-chain movements of the Kraken.com
exchange. Figure 4 displays selected entries from state vector βt over time. In particular
the predictive effect of price and trading volume changes on Bitcoin flows. In the top
figure it is observable that in August 2015 changes in trading volume are associated with
a decrease in bitcoin balance and thus outflow of bitcoins whereas in the same period for
2016 this relationship has nearly vanished. This is evidence that over time the on-chain
activity has become more decoupled from actual price action on exchanges, which might
be driven by other factors such as sentiment. It it also observable that around the change
from August to September price changes have a significant positive effect on the inflow
of Bitcoin, providing evidence for seasonal cycles in how the flow of Bitcoins affect
exchanges.

Figure 4. 2015 and 2016 hourly evolution of state variables of Kraken bitcoin blockchain balance and its
relation to Kraken price and trading Volume changes.
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8. Conclusion

We introduced a new model type that is capable of doing econometric inference at scale
by leveraging a data assimilation approach. We show how already in the formulation of
the problem we can take into account domain decomposition and parallelisation, show-
ing how similar to computational sciences, economists can increase computational fea-
sibility without sacrificing too much accuracy. We compared model performance and
showed that the model generated latent economic variables which help to analyze eco-
nomic phenomena such as the interaction of entities in cryptocurrency markets. Future
work can include additional parallelisations of the algorithm or inference techniques
which are unfeasible in standard environments, such as doing a fully Bayesian treatment
of the TVP-VAR-DA model, as well as doing real-time forecasting and inference with
high frequency data at scale.
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[4] R. Böhme, N. Christin, B. Edelman, and T. Moore. Bitcoin: Economics, technology, and governance.
Journal of Economic Perspectives, 29(2):213–38, 2015.

[5] F. Canova and L. Gambetti. Structural changes in the us economy: Is there a role for monetary policy?
Journal of Economic dynamics and control, 33(2):477–490, 2009.

[6] K. Christidis and M. Devetsikiotis. Blockchains and smart contracts for the internet of things. Ieee
Access, 4:2292–2303, 2016.

[7] G. C. Fox, R. D. Williams, and G. C. Messina. Parallel computing works! Elsevier, 2014.
[8] A. G. Haldane. Will big data keep its promise? Speech at the Bank of England Data Analytics for

Finance and Macro Research Centre, King’s Business School, 2018.
[9] J. D. Hamilton. Time series analysis, volume 2. Princeton university press Princeton, NJ, 1994.

[10] A. Harvey, E. Ruiz, and N. Shephard. Multivariate stochastic variance models. The Review of Economic
Studies, 61(2):247–264, 1994.

[11] S. J. Julier and J. K. Uhlmann. New extension of the kalman filter to nonlinear systems. In Signal
processing, sensor fusion, and target recognition VI, volume 3068, pages 182–194. International Society
for Optics and Photonics, 1997.

[12] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of basic Engineering,
82(1):35–45, 1960.

[13] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and S. Savage. A
fistful of bitcoins: characterizing payments among men with no names. In Proceedings of the 2013
conference on Internet measurement conference, pages 127–140. ACM, 2013.

[14] S. Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.
[15] G. E. Primiceri. Time varying structural vector autoregressions and monetary policy. The Review of

Economic Studies, 72(3):821–852, 2005.

P. Nadler et al. / A Scalable Approach to Econometric Inference68


	Bibliography

