
Four Decades of Cluster Computing

Gerhard JOUBERTa,1, Anthony MAEDERb
a Clausthal University of Technology, Germany

b Flinders University, Adelaide, Australia

Abstract.

During the latter half of the 1970s high performance computers (HPC) were con-
structed using specially designed and manufactured hardware. The preferred archi-
tectures were vector or array processors, as these allowed for high speed pro-
cessing of a large class of scientific/engineering applications. Due to the high cost
of the development and construction of such HPC systems, the number of avail-
able installations was limited. Researchers often had to apply for compute time on
such systems and wait for weeks before being allowed access. Cheaper and more
accessible HPC systems were thus in great need. The concept to construct high
performance parallel computers with distributed Multiple Instruction Multiple
Data (MIMD) architectures using standard off-the-shelf hardware promised the
construction of affordable supercomputers. Considerable scepticism existed at the
time about the feasibility that MIMD systems could offer significant increases in
processing speeds. The reasons for this were due to Amdahl’s Law, coupled with
the overheads resulting from slow communication between nodes and the complex
scheduling and synchronisation of parallel tasks. In order to investigate the poten-
tial of MIMD systems constructed with existing off-the-shelf hardware a first
simple two processor system was constructed that finally became operational in
1979. In this paper aspects of this system and some of the results achieved are re-
viewed.

Keywords. MIMD parallel computer, cluster computer, parallel algorithms, speed-
up, gain factor.

1. Introduction

During the 1960s and 1970s the solution of increasingly complex scientific problems

resulted in a demand for more powerful computers. The available sequential processors

proved unable to meet these demands. The attempts implemented in the late 1960s to

optimise the execution of sequential program code by analysing program execution

patterns resulted in optimised execution strategies [1, 2]. These attempts to increase the

processing speeds of sequential SISD (Single Instruction Single Data) computers were

limited and did not offer the compute power needed for the processing of compute in-

tensive problems. A typical problem at the time was to be able to compute a 24 hour

weather forecast in less than 24 hours.

A next step was to speed up the execution of compute intensive sections of a pro-

gram through specially designed hardware. An often occurring operation in scientific

computations is the processing of vectors and matrices. Such operations can be ex-

ecuted in parallel by SIMD (Single Instruction Multiple Data) processors. It was thus a

natural approach in the 1970’s to develop vector and array processors as the supercom-

1 Lange-Feld-Str. 45, Hanover, Germany. E-mail: gerhard.joubert@tu-clausthal.de

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200017

3

puters of the day. Examples are the ICL DAP (Distributed Array Processor), ILLIAC,

CRAY, etc.

The problem was that the development of such specially designed and built ma-

chines was expensive. The use of such supercomputers by researchers as well as soft-

ware developers was limited due to the high cost of purchasing and running these sys-

tems. In addition the programming of applications software often had to resort to ma-

chine level instructions in order to utilise the particular hardware characteristics of the

available machine.

The development of integrated circuits during the early 1970’s, which enabled the

large scale production of processors at ever lower cost, opened up the possibility to use

such components to construct MIMD parallel computers at low cost. The concept pro-

posed in a non-published talk in 1976 [3] was that the future of high performance com-

puting at acceptable costs was possible by using standard COTS (Components Off The

Shelf) to construct low-cost parallel computers. The architecture of such systems could

be adapted by using standard as well as special compute nodes, different storage archi-

tectures and various interconnection networks.

The concept of developing such systems was, however, deemed unattractive dur-

ing the late 1970’s mainly due to two aspects. The first was Amdahl’s Law [4] that

only a relatively small percentage of programs could be parallelised, and the second

was that the synchronisation and communication requirements would create an over-

head, which made parallel systems highly inefficient. A further aspect that hampered

the acceptance of MIMD systems, was Grosch’s Law [5], which stated that computer

performance increases as the square of the cost, i.e. if a computer costs twice as much

one could expect it to be four times more powerful. This does not apply to MIMD sys-

tems as the addition of nodes results in a linear increase in compute power. Moore’s

Law [6] maintained in 1965 that the number of components per integrated circuit

doubled every year, which was revised in 1975 to double every two years. This resulted

in an estimated doubling of computer chip performance due to design improvements

about every 18 months. It was an open question in how far these developments could

offset the inherent disadvantages of MIMD systems.

In 1977 Prof. Tsutomu Hoshino and Prof. Kawai started a project in Japan to con-

struct a parallel computer using standard components. Their aim was to develop a par-

allel system architecture that could be used to solve particular problems. The system

was later called the PAX computer [7]. This approach was different from that described

in the following sections, where the general applicability of MIMD systems to solve

compute intensive problems was the main objective.

 2. A Simple MIMD Parallel Computer

In 1976/77 a project was started at the University of Natal, South Africa to investigate

the possibilities of achieving higher compute performances by connecting standard

available mini-computers [8]. The final development stage was reached in 1979 when

the system was upgraded to have both nodes with identical hardware. The parallel sys-

tem was later named the CSUN (Computer System of the University of Natal) [8].

The project involved three aspects, viz. hardware and architecture, network and

software.

G. Joubert and A. Maeder / Four Decades of Cluster Computing4

2.1 Hardware and Architecture

The available hardware consisted of two standard HP1000 mini-computers. The pro-

cessors were identical, but the memory sizes differed initially. The architecture decided

on was a master-slave configuration with distributed memories. No commonly access-

ible memory was available. The HP1000 offered a micro programming capability,

which allowed for special functions to be executed at high speed.

Fig. 1: The cluster system, admired by Chris Handley2

2.2 Network

The connection of the two nodes had to offer high communication speeds. This was

realised by using a high-speed connection available for HP1000 mini computers for

logging high volumes of data collected by scientific instruments. The cable was adap-

ted by HP to supply a computer interface at both ends allowing the interconnection of

the two nodes via interface cards installed in each machine. These interfaces were user

configurable by means of adjustable switch settings for timing or logistic characterist-

ics, allowing a computer-to-computer mode. The maximum transmission speed was

one million 16 bit words per second.

2.3 Software

The Real Time Operating System (RTOS), HP-RTE, available for the HP1000 offered

the basic platform for running and managing the nodes. The system had to be enhanced

2
Later: University of Otago, New Zealand

G. Joubert and A. Maeder / Four Decades of Cluster Computing 5

by additional software modules to achieve the control of the overall parallel computer

system. A monitor was developed to create an interface for users to input and run pro-

grams. Programs and data were provided on punched cards or tape.

A critical component was the communication between the two nodes. For this

drivers were developed that also allowed for the synchronisation of tasks. With the

master-slave organisation of the system the slave always had to be under control of the

master. In an interrupt-driven environment this is easily accomplished. The communic-

ation available between the two nodes did not allow to transmit specific interrupt sig-

nals between the two machines. Thus data controlled transmission, i.e. sending all mes-

sages with header information, was used. Both sender and receiver had to wait for ac-

knowledgement from the counterpart before message transmission could begin. This

caused an additional overhead for the synchronisation of tasks.

 The master node was responsible for all controlling activities. It prepared tasks

for execution by the slave, downloaded these together with the data needed to the slave,

which then started executing the tasks. The master in the meantime prepared its own

tasks and executed these in parallel, exchanging intermediate results with the slave.

The master also executed any serial tasks as required. The later upgrade of the system

to have two equally equipped nodes simplified task scheduling.

Such a setup is of course very sensitive to the volume and frequency of data trans-

mission. This must thus be considered by programmers when selecting an algorithm for

solving a particular problem.

No programming tools for developing parallel software were available at the time.

The standard programming language for scientific applications was FORTRAN. A pre-

compiler was developed that processed instructions from programmers to automatically

create parallel tasks that were inserted in the FORTRAN program code. The compiler

subsequently created tasks that could be executed in parallel, which information was

used to schedule the parallel execution of tasks.

3. Applications

The aim with the project was to show that at least some algorithms could be executed

in less time by a cluster constructed with standard components. The two-node cluster

was a starting point that could be easily expanded by adding more, not necessarily

identical, nodes.

The physical limitations of the available nodes as well as the architecture of the

cluster limited the classes of problems that could possibly be efficiently executed.

Thus, a comparatively low volume of interprocessor data transfers as well as few syn-

chronisation points relative to the amount of computational work, was an advantage.

Problems implemented on the cluster were, for example:

• Partial Differential Equations: One-dimensional heat equation solved by expli-

cit and implicit difference methods [9]

• Solution of tridiagonal linear systems [10]

• Numerical integration [11].

G. Joubert and A. Maeder / Four Decades of Cluster Computing6

4. Gain Factor

Several methods for assessing parallel computer performance are available, such as

speedup, cost, etc. These metrics proved insufficient, especially in view of Amdahl’s

Law [4], for a comparison of the overall time used to solve a problem on a sequential

processor and the MIMD system described above.

The measurement needed was a comparison of overall sequential compute time, Ts,

and overall parallel compute time, Tp. A further aspect was that the optimal sequential

and parallel algorithms may differ substantially. Thus, in the comparisons, the optimal

algorithm for each processing mode—sequential or parallel—was used.

A large number of aspects influence the value of Tp, such as organisation and

speed of processors (these need not be identical, thus potentially resulting in a hetero-

geneous system), interprocessor communication speed, communications software

design, construction of algorithms, etc. In practice time measurements can be made to

obtain values for Ts and Tp for particular algorithms. This gives a Gain Factor:

G = (Ts - Tp)/Ts

If 0 < G ≤ 1 parallel processing offers an advantage over sequential processing.

The upper limit, G = 1, is obtained when Tp, the overall time used to solve a problem

with the parallel machine, is zero. When G ≤ 0 parallel computation offers no advant-

age. Note that G applies equally well to the performance measurement of heterogen-

eous systems, and includes communication and administration overheads and covers

the limitations expressed in Amdahl's Law.

Results obtained for a number of test cases using the two node cluster, are [12]:

• Solution of tridiagonal linear systems, 120x120: G = 0.42

• One-dimensional diffusion equation, 30.000 time steps: G = 0.481

• Numerical integration, 30.000 steps: G = 0.497.

With a two node cluster the value of G ≤ 0.5.

These results showed that, at least in some cases, parallel processing using an

MIMD system with distributed memories may offer significant advantages.

5. Conclusions

The results obtained with the simple two-node MIMD parallel system showed that

clusters constructed with standard components can be used to boost the execution of

parallel algorithms for solving certain classes of problems.

The results obtained with the system prompted further research on the effects of

more nodes, different connection networks and suitable algorithms.

This work resulted in the start of the international Parallel Computing (ParCo)

conference series with the first conference held in 1983 in West-Berlin. The aims with

these events was to stimulate research and development of all types of parallel systems,

as it was clear from the outset that not one architecture is suitable for solving all prob-

lems.

It took more than a decade for the idea of using standard components to construct

HPC systems to be adopted by industry on a comprehensive scale. It was also only

gradually realised that the flexibility of cluster systems allowed for the processing of a

G. Joubert and A. Maeder / Four Decades of Cluster Computing 7

wide range of compute intensive and/or large scale problems. The resulting advent of

cheaper parallel systems built with commodity hardware lead to many specially de-

signed HPC systems becoming less competitive due to their high price tags and limited

application spectrum. The resulting major crisis in the supercomputing industry during

the late 1980’s and early 1990’s lead to the demise of many companies supplying spe-

cially designed hardware aimed at particular problem classes..

Exascale computing is presently the next step in HPC and this will require extreme

parallelism, employing many thousands or millions of nodes, to achieve its goals.

With the end of Moore’s Law approaching, new technologies may emerge, to

achieve the future development of HPC beyond exascale.

References

[1] Anderson, D. W., Sparacio, F. J., Tomasulo, R. M.: The IBM System/360 Model 91: Machine Philosophy
and Instruction-Handling (1967), See: http://home.eng.iastate.edu/~zzhang/courses/cpre585-f04/reading/

 ibm67-anderson-360.pdf

[2] Schneck, Paul B.: The IBM 360-91, In: Supercomputer Architecture, The Kluwer International Series in

Engineering and Computer Science (Parallel Processing and Fifth generation Computing), Springer, Bo

ston, MA, Vol. 31, 53-98 (1987)

[3] Joubert, G.: Invited Talk, Helmut Schmidt University, Hamburg, January 1976

[4] Amdahl, Gene M.: Validity of the Single Processor Approach to Achieving Large-Scale Computing Cap

 abilities . AFIPS Conference Proceedings (30): 483–485. doi:10.1145/1465482.1465560, (1967)

[5] Grosch, H.R.J.: High Speed Arithmetic: The Digital Computer as a Research Tool, Journal of the Optical

Society of America. 43 (4): 306–310 (1953). doi:10.1364/JOSA.43.000306

[6] Moore, Gordon: Cramming More Components onto Integrated Circuits, Electronics

Magazine. 38 (8): 114–117 (1965)

[7] Hoshino, Tsutomu: PAX Computer, Reading, Massachusetts, etc.: Addison Wesley Publishing Company

(1989)

[8] Proposed by U. Schendel, Free University of Berlin (1979)

[9] Joubert, G. R., Maeder, A. J.: An MIMD Parallel Computer System, Computer Physics Communications,
Amsterdam: North Holland Publishing Company, Vol. 26, 253-257 (1982)

[10] Joubert, Gerhard, Maeder, Anthony: Solution of Differential Equations with a Simple Parallel Com
 puter, International Series on Numerical Mathematics (ISNM), Birkhäuser: Basel, Vol. 68,137-144

 (1982)

[11] Joubert, G. R., Cloete, E.: The Solution of Tridiagonal Linear Systems with an MIMD Parallel Com-

 puter, ZAMM Zeitschrift für Angewandte Mathematik und mechanik, Vol. 65, 4, 383-385 (1985)

[12] Joubert, G. R., Maeder, A. J., Cloete, E.: Performance measurements of Parallel Numerical Algorithms

 on a Simple MIMD Computer, Proceedings of the the Seventh South African Symposium on Numerical

 Mathematics, Computer Science Department, University of Natal, Durban, ISBN 0 86980 264 X, 25-36
 (1981)

G. Joubert and A. Maeder / Four Decades of Cluster Computing8

