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a BIO-HPC, Universidad Católica de Murcia (UCAM), Murcia, Spain
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Abstract. Recent advancements in computer-aided drug discovery revolutionize
healthcare by integrating virtual screening (VS) and artificial intelligence (AI). Vir-
tual screening enables the efficient screening of vast chemical libraries in silico, re-
ducing the number of compounds requiring physical testing in the lab before drug
synthesis or repurposing. An essential aspect of successful virtual screening is the
representation of chemical compounds. While traditionally represented as feature
vectors, leveraging convolutional neural networks (CNNs) to interpret chemical
structures as images has emerged as a promising approach, harnessing the learn-
ing capabilities of CNNs. One potential application of CNNs is in creating classi-
fiers capable of accurately distinguishing between drugs and decoys. These classi-
fiers could serve as a foundation for developing generative adversarial neural net-
works (GANs), facilitating the synthetic generation of potential non-toxic drugs.
This study, which attempts to serve as a basis for future work in the field of smart
health, assesses a selection of pre-trained CNNs for their efficacy in classifying
drugs associated with diabetes, cancer, and malaria. To enhance model training, a
data augmentation phase has been incorporated, introducing variations to the ini-
tial images to impart rotational invariance to the learning process. Results indi-
cate that DenseNet201 exhibits superior accuracy, albeit with considerable com-
putational time requirements. Surprisingly, excluding data augmentation signifi-
cantly improves predictive performance across all models, challenging the initial
assumptions. Consequently, applying pre-trained CNNs for drug classification is
contingent upon specific conditions, necessitating carefully considering augmenta-
tion strategies for optimal outcomes.

Keywords. computer-aided drug discovery, convolutional neural network, deep
learning, image processing, data augmentation, generative adversarial networks

1. Introduction

Intelligent environments, such as smart homes or smart cities, leverage artificial intel-
ligence (AI) to enhance various aspects of living, from energy efficiency to healthcare
[1,2]. AI-based drug discovery can significantly contribute to intelligent environments
in several ways. One of these ways is drug repositioning, which consists of using drugs
approved and validated in certain diseases to treat others [3]. AI can analyze existing
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drugs and their mechanisms of action to identify new therapeutic uses [4,5,6]. In intelli-
gent environments, this capability can lead to the discovery of novel disease treatments
more efficiently and cost-effectively by repurposing drugs that have already undergone
extensive testing for safety. Moreover, AI can design and optimize drug delivery systems
tailored to individual patient needs [7,8] that could involve smart drug delivery devices
that administer medications at optimal times and doses, improving treatment outcomes
and patient adherence. Overall, AI-based drug discovery holds great promise for enhanc-
ing healthcare in intelligent environments by enabling personalized treatments, early dis-
ease detection, optimized clinical trials, drug repurposing, environmental monitoring,
optimized drug delivery, and continuous monitoring and feedback.

Computational techniques, such as virtual screening (VS), dramatically accelerate
drug repurposing. VS is a collection of computational techniques to identify the most
promising drug candidates among the existing compounds in chemical databases [9].
Among the VS approaches, shape similarity is the preferred one when the tri-dimensional
structure of the target is unknown but a database of small molecules, called ligands, is
available. Shape similarity relies on the similarity principle, which states that two struc-
turally similar compounds can show the same biological activity [10]. Usually, the sim-
ilarity between two compounds is calculated with mathematical tools like the Euclidean
distance. This is possible because the compounds can be depicted as numerical vectors
of features, called descriptors.

How compounds are represented strongly determines what kind of AI models can
be used for certain tasks. For example, graph-based neural networks (GNNs) allow the
manipulation of compounds through their coordinates in three-dimensional space. This
representation is suitable for tasks like predicting drug-target interactions [11] and de-
novo drug design [12]. Alphafold [13] revolutionalized the prediction of proteins’ struc-
ture by incorporating genetic information into a deep neural network. The model prof-
its from the fact that proteins can be represented in FASTA format to outperform the
state-of-the-art dramatically. Chemical compounds can also be represented graphically
like images, feeding convolutional neural networks (CNN). CNNs have been extensively
studied in the context of drug discovery. Their main usage has been as scoring func-
tions in molecular docking calculations [14,15], which is a technique that relies on the
3D structure of the target to predict the best pose and placement of a ligand on a target
receptor. Qian et al. [16] implemented an advanced transformer model and a CNN for
predicting compound-protein interactions. CNNs have also been employed in different
tasks based on the SMILES (Simplified Molecular Input Line Entry Specification) rep-
resentation of the chemical compounds. SMILES is a textual representation that can be
easily depicted as a matrix that CNNs can process [17,18]. Both CNNs and GNNs can be
combined in the same architecture. Mendolia et al. [19] developed a GNN-based tool for
representing chemical compounds. This type of architecture leverages that compounds
can be represented in the tri-dimensional space by their coordinates, which makes it easy
to manipulate by GNNs. The extensive use of CNNs has also led to the development
of generative adversarial networks (GAN) for different drug discovery tasks [20,21,22].
Unfortunately, because of their toxicity, synthetic chemical compounds generated with
GANs barely pass in-vivo tests. To overcome this problem, accurate classifiers capable
of discriminating between approved and toxic drugs would be needed.

This work evaluates a diversity of pre-trained CNN models as potential non-toxic
drug classifiers. The models have been trained with three in-house datasets containing
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approved drugs for diabetes, cancer, and malaria. Typical classification metrics, such
as precision, recall, F1 score, and the area under the curve (AUC), have been used to
assess the models. Additionally, the training times have been measured. The potential
drugs and their corresponding decoys have been transformed from SMILES format to 2D
images representing their structure. A data augmentation process has been implemented
to enhance the learning of the models. The input images have been carefully flipped and
rotated to make the model learn the drugs in different positions.

The next section describes the three datasets and the CNN models employed in the
experiment. In section 3, the collected metrics and main results are presented. Next, the
reasons behind the results are disclosed in section 4. Finally, the main conclusions and
future works are summarized in section 5.

2. Materials and Methods

2.1. Datasets

Three datasets of established drugs for diabetes, cancer, and malaria were utilized to
benchmark the models. These datasets were selected for their well-known and publicly
available compounds. Choosing datasets with poorly validated drugs could have hindered
the models’ ability to discriminate appropriate compounds, leading to invalid results.
The required compounds have been collected in SMILES format and converted to 2D
images with the Open Babel tool [23]. Anti-diabetic compounds were collected from an
in-house database which is available for VS purposes [24]. In a previous paper, Mswahili
et al. [25] reported an extensive antimalarial drug list. A subset of the published drug list
has been used for training the CNN models. Finally, the anticancer drugs were collected
from [26], where the authors present a detailed subclassification of anticancer drugs. In
our work, the compounds were all labeled as cancer inhibitors. The three datasets were
completed with random decoys, which are compounds not showing the same biological
activity as the drugs. Such decoys were randomly extracted from DrugBank 5 [27] and
ChEMBL 33 databases [28]. As many decoys as inhibitors were added to keep the dataset
balanced and facilitate the learning of models (Table 1).

Table 1. Number of training and validation samples of the three datasets.

Training Validation

Dataset Drugs Decoys Drugs Decoys

Diabetes 149 149 37 37
Cancer 42 42 11 11
Malaria 300 300 75 75

2.2. CNN Models

Ten pre-trained CNN models have been evaluated: VGG16 [29], VGG19 [29], ResNet50V2
[30], ResNet101 [30], DenseNet201 [31], InceptionV3 [32], Xception [33], Mo-
bileNetV2 [34], EfficientNetV2B3 [35] and AlexNet [36]. The implementation of the
AlexNet model was inferred from the original paper [37], while the other models are
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Figure 1. Examples of synthetically generated images for the diabetes dataset.

implemented in Tensorflow 2.15. The convolutional layers were completed with two
Dense layers of 4096 units and relu activation. A Dropout layer with a rate of 20% fol-
lowed the second dense layer. Aiming to apply the transfer learning approach, the models
were initialized with the ImageNet [38] weights, and the input images were reshaped to
224x224. The models were evaluated for accuracy, precision, recall, F1 score, and AUC
metrics. In this work, the AUC will be the reference metric for choosing the best model.
Additionally, the training time was taken. An Adam optimizer with a learning rate of
0.0001 was used. The assessed models were selected based on the Keras performance
metrics for models trained with the ImageNet weights. A range of models with diverse
depths was selected, and a trade-off between accuracy, speed, and memory consumption
was intended to select the versions. All the models reported accuracy higher than 90% in
classification tasks, and their inference time on GPU was less than 8 seconds [39].

3. Results

Due to the small datasets, augmentation was done to create more images. This involved
rotating images up to 180º and flipping them horizontally and vertically. Pixel values
were scaled in the range (1, 255) for stability. Brightness was adjusted without altering
compound notation. Minimal zoom (0.05 range) was applied to avoid structural distor-
tion. Augmented images were used for training and validation. See Figure 1 for examples
of new anti-diabetics.

The models were first trained for 20 epochs, and the weights of the best epoch were
saved for later. Fine-tuning was then applied by freezing a variable number of layers. As
the evaluated models had different depths, 70% of the lower layers were frozen, and the
rest were trained for 10 additional epochs starting with the previously saved weights. Fi-
nally, the models were evaluated 30 times each to avoid bias in the metrics. The training
and evaluation process was repeated 10 times, and the metrics were averaged. The cal-
culations were carried out on an NVIDIA GeForce RTX 3090 GPU. Table 2 summarizes
the average AUC of each model with and without data augmentation. Finally, Table 3
shows the training process’s computing times along with the datasets’ main features.
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Table 2. Average AUC of each model with and without data augmentation for the three datasets.

Model Diabetes Cancer Malaria

Aug. No Aug. Aug. No Aug. Aug. No Aug.

VGG16 0.741±0.04 0.993±0.01 0.688±0.03 0.889±0.24 0.627±0.02 0.813±0.03

VGG19 0.732±0.03 0.730±0.08 0.678±0.03 0.194±0.10 0.612±0.02 0.769±0.02

ResNet50V2 0.638±0.02 0.599±0.07 0.604±0.06 0.500±0.00 0.591±0.03 0.530±0.15

ResNet101 0.611±0.07 0.732±0.10 0.527±0.03 0.750±0.00 0.497±0.01 0.906±0.06

DenseNet201 0.710±0.07 0.782±0.11 0.764±0.06 0.472±0.25 0.673±0.02 0.691±0.10

InceptionV3 0.662±0.04 0.645±0.10 0.795±0.03 0.694±0.20 0.663±0.03 0.759±0.13

Xception 0.621±0.06 0.710±0.17 0.710±0.09 0.375±0.32 0.635±0.05 0.613±0.11

MobileNetV2 0.721±0.04 0.760±0.05 0.671±0.05 0.250±0.00 0.691±0.03 0.648±0.03

EfficientNetV2B3 0.507±0.02 0.710±0.07 0.496±0.02 0.972±0.08 0.500±0.00 0.807±0.03

AlexNet 0.599±0.01 0.633±0.10 0.441±0.02 0.583±0.20 0.527±0.01 0.712±0.07

Table 3. Models’ features and computing time with data augmentation.

Model Depth Training Time (s) Model Size

Diabetes Cancer Malaria

VGG16 16 185.850±9.92 92.062±11.76 308.587±12.37 345 MB
VGG19 19 175.334±11.41 77.802±5.04 296.379±12.06 383 MB
ResNet50V2 50 336.820±24.74 156.820±14.90 485.844±22.63 510 MB
ResNet101 101 527.879±34.64 238.317±14.09 805.332±45.94 627 MB
DenseNet201 201 818.486±57.52 381.333±21.37 1233.788±31.53 406 MB
InceptionV3 48 424.050±18.65 210.532±19.49 662.135±54.83 476 MB
Xception 71 311.083±19.92 136.887±12.43 447.676±16.49 449 MB
MobileNetV2 53 210.154±12.40 98.471±7.45 352.509±18.75 270 MB
EfficientNetV2B3 82 660.994±34.27 258.688±7.40 1037.483±29.00 369 MB
AlexNet 8 165.710±14.34 69.825±4.89 281.498±7.29 212 MB

4. Discussion

The results show that the models behave differently for each dataset. VGG16 and VGG19
models were the most accurate in antidiabetic classification, closely followed by Mo-
bileNet and DenseNet201. InceptionV3 was the best with the cancer dataset, again,
closely followed by DenseNet201. Finally, MobileNet, DenseNet201 and InceptionV3
obtained the highest accuracy with the malaria dataset. Despite performing best on the
diabetes dataset, VGG16 and VGG19 performed poorly on the other tasks. That happens
because their number of layers is insufficient to classify complex compounds such as
cancer and malaria inhibitors correctly. However, anti-diabetic drugs are more similar to
each other, which makes them easier to classify, even for shallow models. On the other
hand, MobileNet and InceptionV3 have a medium depth, which makes them suitable for
some tasks. For example, both models performed well with the malaria dataset. However,
their performance dropped in the other datasets. MobileNet barely achieved AUC=0.671
in the anticancer classification, and InceptionV3 AUC=0.662 in the anti-diabetic classi-
fication. This suggests that deeper models are needed for those tasks. This is the case of
DenseNet201, the deepest of the models that have been evaluated. DenseNet201 was the
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Figure 2. AUC comparison of the models with and without data augmentation with the Diabetes dataset.

second-best classifier in the cancer and malaria datasets, and its AUC was close to that of
VGG16 in the diabetes dataset. However, the results exhibit two important limitations.
First, given its high depth, it is a slow model to train (4x slower than MobileNet) and can
be time-consuming with larger datasets. And secondly, although its accuracy is among
the best, overall, it remains a poor model for drug classification.

On the other hand, EfficientNetV2B3 and AlexNet were demonstrated to be the
least accurate models. Only in the malaria dataset did the ResNet101 model perform
worse than EfficientNetV2B3 and AlexNet. AlexNet contains 8 layers, and only five
of them are convolutional layers. This reduced number of convolutions may explain its
low capacity to learn patterns. EfficientNetV2B3 is optimized with training-aware neural
architecture search (NAS) and model scaling. These features are supposed to make it
a very efficient model, although it can be less accurate than others. However, Table 3
shows that EfficientNetV2B3 is the second slowest model of our collection. This model
mainly focuses on computer vision tasks, and the obtained results may indicate that it is
not as effective as the other models in classification tasks.

The worryingly low quality of the models made us rethink whether data augmen-
tation could have impacted the models’ accuracy. Therefore, the models were re-trained
without data augmentation. As can be seen in Figures 2, 3, and 4, the models increased
their accuracy considerably in most cases. This shows that disturbing images affect the
representation of compounds. For example, changing the brightness of an image causes
an atom to lose some of its meaning. By varying the color, atoms of the same element
with different colors become more assimilated, making it more difficult to learn the mod-
els. Another example is zooming in, which can cause certain parts of the compound to
move out of the image, causing the structure of the compound to be corrupted.

A.J. Banegas-Luna and J. Bonastre-Egea / Evaluation of Pre-Trained CNN Models 129



Figure 3. AUC comparison of the models with and without data augmentation with the Cancer dataset.

Figure 4. AUC comparison of the models with and without data augmentation with the Malaria dataset.
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Training with the original data shows that VGG16 and EfficientNet work very well with
the diabetes and malaria datasets. In addition, VGG16 also achieved the highest accu-
racy in the anti-diabetic dataset. Therefore, despite its shallowness, it is the model that
achieves the best results. On the other hand, it is also evident that ResNet50 always pre-
dicts better with data augmentation. This indicates that this model needs many more im-
ages to be used for this type of task. The need for more images is evident in the anti-
cancer dataset, as half of the models learn better with data augmentation than without.
This fact is clearest in this dataset because it is clearly the smallest and, consequently,
the one that needs the most images to improve.

5. Conclusions

Structural similarity is a way of applying virtual screening to identify, from large chem-
ical databases, a small set of compounds that may be potential drugs. AI often assists
that approach in different ways, which are related to the compounds’ representation.
Chemical compounds are often represented by numerical vectors or graphs. However, 2D
image-based representations remain unexplored for classification purposes. CNN-based
classifiers can lead to the development of GANs, which can create non-toxic synthetic
drugs out of the lab. The first step towards accurate GANs is training accurate CNNs.
For this purpose, ten pre-trained CNN models have been evaluated for classifying three
types of drugs.

Results show that DenseNet201 outperformed the rest of the models when data aug-
mentation was used. However, due to its high number of layers, it is a time-consuming
model. Unfortunately, data augmentation perturbs the images and often modifies the
structural representation of compounds. Such disturbances impair model learning. In
contrast, training with the original images usually leads to better results, except for the
anti-cancer dataset due to its small size. This finding demonstrates that pre-trained CNN
models can serve as a basis for new classifiers of chemical compounds with certain re-
strictions. The first is that the images can only be altered very slightly so as not to modify
the representation of the chemical structures. The second is that many images are needed
for the models to learn correctly. The latter condition is often not easy to fulfill as the
number of compounds labeled as drugs for a certain disease is often limited. To summa-
rize, 2D images do not seem to be the best way of representing chemical compounds for
classification tasks, but if so, no data pre-processing is strongly recommended. Instead,
other representations, such as graphs, can be more effective.

Future work should investigate how to transform images without affecting perfor-
mance, so that models can be trained with more data. Hyperparametrising the head layers
of the classifier may also lead to improved results and is an option that needs to be ex-
plored further. It is also interesting to contrast the results with other datasets. For exam-
ple, evaluating the models with fungicide and pyrethroid datasets, which are widely used
in agriculture, would be an interesting application of this work in the field of environmen-
tal sciences. These compounds are found in publicly accessible chemical databases, al-
though their identification is costly. Finally, the results obtained in this work can be com-
pared with other representations of the compounds, like numerical vectors and graphs.
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