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Abstract. Emotions are an essential constituent of well-being. They can be recog-
nized using contact-free sensors such as cameras, based on facial expressions and
physiological parameters, such as changes in temperature. We conducted an early
evaluation of emotion recognition from RGB cameras using two datasets and high-
lighted challenges such as subject-specific relationship between facial expressions
and emotions, as well as inconsistent expressions during the same emotional state.
Additionally we confirmed the feasibility of measuring subtle changes in temper-
ature between facial regions correlating to different emotional states, using a ther-
mal camera. Finally we proposed ideas for future improvements relating to transfer
learning and cross-dataset data curation, which could allow for improvements in
performance leading towards practical implementation of well-being monitoring.
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1. Introduction

In recent years, work conditions that influence physical and mental health have become
increasingly important. Simultaneously, reports of increased stress and worsened mental
health among workers are more and more common [1]. This indicates a need for better
understanding of employee well-being and development of methods for its monitoring.

Technology plays an important role in this, however, its effects can be either positive
or negative, depending on its implementation and use. On one hand employers can abuse
technology for increased supervision and continuous monitoring that exerts additional
pressure on workers. On the other hand, technology can positively encourage workers to
be mindful of their well-being and health, especially in office environments where sitting
in front of a screen for prolonged periods can have detrimental consequences [2].

In order for the users to accept such technology in their daily work routine, it must
be as unobtrusive as possible, not interfering with their activities or requiring special in-
teraction. Contact-free sensing is ideal for such scenarios, specifically RGB and thermal
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cameras (can be mounted on the screen), microphone and application usage monitoring
applications (can run in the background). Furthermore, it is important for such technol-
ogy to preserve complete user privacy, as to both prevent abuse as well as increase user
adherence.

In this paper we report an early feasibility study conducted within the Trust-ME
project [3]. Our proposed pipeline is to obtain features from contact-free sensors, such
as cameras, and then train emotion recognition models on existing datasets. This allows
us to train initial models without the need for extensive data collection in the first phase.
While such models are smaller and simpler compared to end-to-end approaches, they
are more appropriate for real-time use due to much lower computational demands and
simplify mechanisms of privacy preservation such as federated learning.

We initially identified psychological constructs of interest that relate to well-being
and job productivity and the corresponding sensors that would allow for their measure-
ment. This model is subject to refinement and out of the scope of this paper. In this paper
we limited our initial investigation to the first phase — classification of emotional states,
which are reported to be detectable from different facial expressions using RGB cam-
eras [4]. We attempted to extract relevant facial features using state-of-the-art methods
and train classification models to classify emotions related to well-being. Additionally,
we confirmed the feasibility of observing physiological changes on users’ faces using
thermal cameras and also investigated how facial region of interest detection performs
on thermal data of different quality. We report results of these early experiments, com-
ment on the feasibility, challenges and drawbacks of existing approaches, and propose a
direction for future work.

2. Related Work

In recent years, emotion recognition from video emerged as an increasingly common
research topic in the literature [5]. Different methods and techniques have been proposed,
many of them including an analysis of facial expressions from video. Ebrahimi Kahou et
al. [6] proposed using convolutional and recurrent neural networks for facial expression
analysis. In their study, they also used audio information beside visual for more accurate
emotion recognition. In another example, Wu et al. [7] proposed a method that integrates
the analysis of facial expressions with data on head pose and eye gaze. This way of
complementing data allows for an implementation of an attention block that guides the
use of facial features and utilizes the data to the greater extent. The proposed approach
increased state-of-the-art accuracy.

Different types of data can be used for emotion recognition. A large body of litera-
ture is emerging on combining video data with data from other available sources. For ex-
ample, Soleymani et al. [8] conducted a study using data from video (facial expressions)
alongside data from electroencephalogram (EEG). Using this approach, continuous emo-
tion recognition was enabled on participants watching emotionally colored videos. Due
to the nature of the study, data on facial expressions turned out to be more useful com-
pared to data gathered with the EEG. Another study used data from video and wearables
(e.g., electrodermal activity, heart rate) [9], proposing an approach to recognise valence
and arousal of experienced emotions from physiological signals. They utilized features
both inside each instance and between different instances for the same video, adopting a
correlational approach, achieving promising accuracy.
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Shifting focus back to emotion recognition from video, some research investigated
the role of context. Combining facial expression, tone and text derived from YouTube
videos, Bhattacharya et al. [10] investigated how various contextual factors such as gen-
der of the speaker and duration of the emotional episode affect multimodal emotion
recognition. They concluded that the gender of the speaker played a moderating role in
the multimodal features’ performance, while effectivenes of the features varied across
different durations of the episodes.

Last but not least, thermal imaging has also been investigated in emotion recogni-
tion. Aristizabal-Tique et al. [11] gathered thermographic data on participants in three
different conditions - baseline, positive, and negative valence of emotions. Analysing the
data, blood perfusion and average temperature was calculated for the regions of interest
(ROIs). The results show high correlations between changes in temperature and changes
in valence across conditions. Bhushan et al. [12] also utilized thermal data when they
conducted a study protocol inducing complex emotions. Similarly, they focused on cer-
tain ROIs and found a pattern connecting experienced emotions to temperature changes.

Following the related work, we identified lack of work in unobtrusive contact-free
monitoring of emotions in office environments, which could in turn help measure and
potentially increase both well-being and satisfaction of workers, as well as positively
influence their productivity.

3. Data

Data collection is generally complex and expensive in the sense of protocol design, sub-
ject recruitment and other administrative tasks. As our initial focus was early feasibility
analysis limited to emotions, we opted to use freely available open-access datasets, cov-
ering a broad spectrum of data modalities, including contact-free sensors such as cam-
eras [4]. Our ultimate goal is to leverage existing datasets for emotion recognition to
build early models, and then use the outputs of these classifiers as inputs into additional
models for well-being monitoring. The datasets that we chose best imitate our end-goal
setup, as they provide suitable data modalities and labels from a variety of subjects in
naturalistic settings.

3.1. Emotion Recognition using RGB Camera

We identified two datasets that include RGB image data and labels of interest for our
task, specifically Facial Expression Recognition (FER) [13] Dataset and Bahcesehir Uni-
versity Multimodal Face Database of Spontaneous Affective and Mental States (BAUM-
1) [14].

FER dataset is relatively old and was a cornerstone in early emotion recognition
from visual cues of the face. It consists of over 30000 48x48 pixel grayscale images of
faces, originating from sources like movies and online content. The faces have been au-
tomatically centred in images and occupy about the same amount of space in each image.
Each image is accompanied with an emotion label, which is one of 7 possibilities: anger,
disgust, fear, happiness, sadness, surprise and neutral. These are the emotions that are de-
fined to be culturally universal by the Emotion Facial Action Coding System (EMFACS).
The dataset was designed so that the expressions are as clear as possible. State-of-the-art
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deep learning models achieve accuracies up to 75% using this dataset [15]. Since the in-
dividual images in this dataset are mostly independent and labelled individually, there is
high confidence in correlation between the facial expressions on an image and its label.

BAUM-1 dataset also contains videos of human faces corresponding to 31 subjects.
As the data originates from video, audio is also available, but out of the scope of this
paper. The data was collected under naturalistic conditions (elicited emotions, but sub-
jects were given time to express themselves freely), with the same EMFACS emotions
labelled. However, several additional classes were labelled, including boredom, con-
tempt, confusion, thinking, concentrating and bothered. These latter states are more sub-
tle and difficult to distinguish, making this dataset inherently more challenging due to
both greater number of classes, as well as their subtle nature. In total there were 12 dis-
tinct class labels in this dataset. As our ultimate goal is to continuously monitor knowl-
edge workers at their workplace (an office with a PC), a broad spectrum of subtle and
varied emotional states can be expected, so an early evaluation on a challenging dataset
has its merit in establishing an initial baseline. Additional classes such as thinking are ex-
pected to be quite important and present in daily routine of knowledge workers. Further-
more, training models for specific sets of emotions has additional potential in then using
their outputs as inputs into more complex models for well-being monitoring. State-of-
the-art multi-modal deep learning models report accuracies of up to 77% on the BAUM-1
dataset [16]. Unlike in FER, the data in BAUM-1 was labelled on per-video basis, mean-
ing a whole video was assigned the same label. Naturally this means that potentially a
large variation of expressions can have the same label, making training a model more
difficult, as we will see in Section 4.

3.2. Detection of Physiological Changes using Thermal Camera

There is consensus in literature that physiological changes are well-correlated with dif-
ferent psychological states. Thermal imaging can be used to detect changes in tempera-
ture between ROIs, which correspond to changes in psychological or emotional state. A
recent example dataset containing such thermal recordings with corresponding emotion
labels was provided by Aristizabal-Tique et al. [11] and was described in Section 2. Our
aim was to use their thermal data for precise ROI segmentation and verify the segmenta-
tion performance on a consumer thermal camera with lower specifications (resolution),
which would be feasible to use in our planned larger-scale experiments.

4. Experiments and Results

Given the prevalence of emotion recognition from facial expressions in literature, we de-
cided to initially replicate this approach and verify it on the BAUM-1 dataset, as it con-
tains more varied and subtle labels that closely resemble our target application (e.g., ad-
dition of thinking class). We devised a pipeline that initially preprocesses the video data.
It then takes remaining facial images as inputs and detects keypoints that are used for
computation of face blendshapes. These are complex features that have a direct meaning
and interpretation (e.g., how much the corner of the mouth is raised). We investigated
distributions of features and how their changes correlate to different labels. Finally we
trained and evaluated a machine learning (ML) model for prediction of emotions.
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4.1. RGB Data Preprocessing and Feature Analysis

After splitting the videos into individual frames, we then subsampled the images. While
video is typically recorded at 30 frames per second, facial expressions and emotions do
not change as rapidly as every 30 ms. Thus we decided to subsample the data by keeping
a frame every 100 ms. This is still conservative sampling and could potentially be further
reduced, but more plentiful data is generally desirable for training of ML models.

We then identified several classes that are psychologically similar and usually man-
ifest in similar facial expressions as well (e.g., contempt and anger). We merged such
classes in order to simplify the initial problem, given its inherent difficulty. We addition-
ally removed the class unsure, as its meaning was not clear.

Afterwards, we computed the facial features from each image by using Google Me-
diaPipe framework. The latter offers real-time face detection and landmark detection
based on BlazeFace, a lightweight and well-performing face detector [17]. The frame-
work provides 52 blendshapes for each face detected on an image, computed from key-
points shown in Figure 1. These blendshapes were then used as our set of facial features.

Following the computation of features, we conducted an analysis on the distribution
of their values with different classes. For instance, we did an analysis of smiling facial
expression, which we defined as the average of mouthsmile features from MediaPipe,
shown in Figure 1. We investigated its expected correlation with the happiness class by
plotting the value of this feature in different frames with different labels, as shown in
Figure 2. For this specific feature we observed expected changes, as the distribution of
its values became more uniform when looking at happiness images, while it was heavily
centered around zero in all other cases. For majority of the features however, the distribu-
tion was narrowly centered around zero, meaning no consistent changes were observed
across different emotions.
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Figure 1. Face mesh with keypoints used tocompute ~ Figure 2. Distribution of values for the feature de-
meaningful blendshapes. Red asterisk marks corners scribing smiling.
of mouth related to smiling.

There is a use for such distributions of feature values, as one can define a manual
threshold-based classifier based on the distribution of a feature, which can be used to
prune the data with the goal of obtaining clearer examples of emotions (based on some
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expert knowledge correlating features with emotions). This can yield a subset of the ini-
tial dataset, which is expected to allow for a model to more easily learn relevant connec-
tions between features and classes.

4.2. Machine Learning Experiments

In the next step our aim was to train classification models for the datasets described
previously and evaluate them robustly.

4.2.1. Classification of FER Dataset

The previously mentioned issue of a single label across whole recordings containing
varied facial expressions is not present in the FER dataset, as the data is not sequential.
Each image is instead an independent representation of the labelled emotion, meaning
that a clearer and more consistent relationship between facial expressions and class labels
is expected. We thus initially investigated classification performance of a light-weight
RandomForest model (with default hyperparameters) on this dataset, using the faceblend
features described earlier. RandomForest was chosen due to its fast training and relatively
good performance on a variety of tasks, which make it ideal for early feasibility analysis.

Given the independence of instances, the data splitting procedure was rather simple,
as we could simply randomly split all instances into the train and validation folds in a
5-fold cross validation (CV). We monitored accuracy, precision, recall and F1 score to
get a robust overview of performance. The per-fold results are shown in Figure 3, but
importantly they are not per subject, as we had no subject information in this dataset.
The model achieved average accuracy and F1 score of 0.59 and 0.54 respectively, which
substantially surpasses the baseline majority classifier.

Initial observations are very consistent performance across all folds, and relatively
small discrepancies between different metrics (e.g., accuracy and recall or F1 score),
compared to BAUM-1 results, which we present later. Additionally, the average perfor-
mance is lower compared to BAUM-1 by about 0.1 in all metrics. This tells us that the
performance is more robust in terms of predicting different classes and not converging
towards the majority class, especially compared to some subjects in the BAUM-1 dataset
(those, who have large discrepancy between accuracy and recall).

4.2.2. Classification of BAUM-1 Dataset

When evaluating models on the BAUM-1 dataset we had to be mindful to correctly split
the data in order to avoid overfitting. Specifically, when dealing with sequential data with
high sampling frequencies, subsequent frames are nearly identical and must not be split
between the train and test data. This was partially alleviated with data subsampling, but
even at 10 fps this problem persists. In the BAUM-1 dataset, an obvious workaround is to
always split the data based on recordings, meaning that parts of the same video recording
never appear in both the train and test sets. However, this option is not viable if only a
single recording of a single emotion is present within a subjects data.

We first trained a completely general RandomForest classifier, again using the same
facial features as inputs, and predicting the classes after merging similar emotions. Our
first attempt was to use the leave-one-subject-out (LOSO) experiment, which is the most
robust evaluation scheme and mimics the 5-fold CV conducted on FER (since we had no
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subject information there). This experiment assumes that a general model can be trained,
independent of subject. This yielded poor initial results with accuracies around 30%,
directing us towards training person-specific models instead. Given the uniqueness of
people and their expressions of emotions, it is not unexpected for person-specific models
to be a more feasible alternative.

For further evaluation we decided to again use 5-fold CV, but within each subject
data. We temporally split each recording of a subject (with the same class label) into 5
chunks, always taking 4 chunks of each recording for training and used the last one for
testing. This temporal split ensured that we avoided overfitting in terms of subsequent (or
close together) frames that we described earlier. We averaged the same five classification
performance scores as in previous experiments, but for each subject. These results for all
subjects of the BAUM-1 dataset are shown in Figure 4.

Classification performance on FER Classification performance on BAUM-1
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— Recall
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Figure 3. Classification performance scores across  Figure 4. Average 5-fold CV classification per-
5-folds of CV for FER dataset. formance scores for each subject in the BAUM-1
dataset.

We can observe notable variation in classification performance between subjects, ranging
from 0.4 to over 0.9, with the average accuracy being 0.73, again substantially suprass-
ing baseline for nearly all subjects. It should be kept in mind that we removed unsure
class and merged contempt and anger, so this result is somewhat optimistic. The large
variations shows that even within subjects robust and consistent performance is not guar-
anteed. When training person-specific models, one challenge was that each subject did
not have individual recordings for all emotions in their data, but only a smaller (differ-
ent) subset. This is important to keep in mind when interpreting results, as they are not
directly comparable between subjects due to different classes and different amount of
instances of each class present in the data. For example, if one only had classes that are
difficult to distinguish, the results can be substantially lower compared to a subject that
had very distinct classes.

Additionally, there are challenges due to the whole recording having the same label,
despite great variations in subjects’ facial expressions during that time. This is further
confirmed by what we showed in Figure 2, where we saw that for class happiness the
smiling feature still often takes values around zero, meaning the person is not really smil-
ing. In results this can be seen in the fact that recall is often lower than precision, which
can be explained by the model managing to learn some correct relationship between fea-
tures and classes, and subsequently managed to detect this emotion when it was actually
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present. However, when the emotion was in fact not present (despite the continuous label
marking it), it did not detect it, but such errors cause the recall to be low.

Furthermore, the class balance between whatever classes were present for a given
subject also varied greatly, which can be seen in the fact that F1 score is often substan-
tially lower than accuracy for a given subject. In cases where the class distribution is
more uniform the accuracy and F1 are closer (e.g., subject 7 in Figure 4) and in other
cases they are further apart.

4.3. Thermal Image Analysis

As outlined in Section 2, thermal imaging was shown in literature to be an efficient ap-
proach to emotion recognition. Thus, we investigated the dataset provided by Aristizabal-
Tique et al. [11], described in the Section 3.2, which contains videos of four emotional
states (baseline, neutral, fear, happiness) for each of the three subjects. The videos were
shot in front of a computer screen, similar to the setting that we intend to utilize in our up-
coming study. Initially, we decided to replicate the approach and findings of Aristizabal-
Tique et al. [11]. Furthermore, our aim was to test the employed methods on data coming
from the FLIR Lepton thermal camera, which is more feasible for use in our upcoming
larger-scale experiments due to its substantially lower price.

For initial visualisation and sanity check purposes, we first extracted traditional RGB
heatmap representations of thermal images from each video, frame by frame alongside
temperature data for each pixel of each frame.

After the initial steps, we proceeded to apply a pre-trained model for real-time face
detection and landmark detection on thermal images [18]. This framework provides 54
facial landmarks for detecting various parts of the face. The model is based on an en-
semble of regression trees and trained on an extensive high-resolution dataset containing
2,556 thermal images of 142 people. In the next step, we tested the generalization per-
formance of this framework on data obtained with the FLIR Lepton. After initial testing,
we noticed that the framework provides consistent results, regardless of the resolution of
thermal images, as seen in Figure 5 and 6. More systematic investigating is still needed
to determine the framework’s robustness and consistency on low-resolution images.

Figure 5. Facial landmarks on high-resolution Figure 6. Facial landmarks on low-res image
thermal image from the [11] dataset. captured with a FLIR Lepton thermal camera.

In the next step after extracting relevant facial landmarks, we used them to identify ROIs.
The ROIs (nose, forehead, and eyes) were chosen based of their known connection to
psychological changes, as reported in related work [11,12]. When comparing average
temperatures of the ROIs for each of the four conditions, we discovered some changes
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across conditions and compared them to the work of Aristizabal-Tique et al. [11]. For
two out of three subjects, our results were similar (though not the same) to the results
reported by the mentioned study [11], as shown in Table 1. Discrepancies were found
in some cases though (subject 3, not reported in this paper), highlighting the need for
further more systematic analysis before practical application. In general, more thorough
research is needed to determine the replicability and generalization possibilities of the
study [11], which we intend to do in the next steps of our analysis.

Table 1. Calculated average temperatures [°C] for the four ROIs across all conditions and absolute differences
in T [°C] between conditions fear - baseline and happiness - baseline for both subjects (S1/ S2).

ROI ATp Baseline ATp Fear ATy Happiness ATy Neutral ATpp ATyp

Nose 34.14/35.33  33.79/34.15 33.95/34.53 33.44/3453 -035/-1.18 -0.19/-0.80
Forehead  34.88/3539  34.77/35.43 34.78 1 35.47 34.72/3534  -0.11/0.03 -0.10/0.07
Left eye 35.63/34.78  35.45/35.76 35.41/35.75 35.37/35.69  -0.18/0.98 -0.2270.98
Righteye 35.64/3529 35.71/35.95 35.40/35.83 35.40/35.80 0.07/0.65 -0.25/0.54

5. Discussion and Conclusions

In the early experiments presented in this paper we found that simple classifiers with
facial keypoint-based features are feasible for emotion recognition, achieving average
accuracies of 0.59 and 0.73, surpassing the baseline majority classifier. However, many
challenges remain before practical application, which should be investigated.

We found that person-specific models are more feasible, however, variations be-
tween subjects are large. It should be investigated, especially for subjects with poor per-
formance, whether the degradation comes from the fact that classes are similar in terms
of facial expressions, or the fact that features are not informative within recordings (e.g.,
different facial expressions with the same label).

As this problem is not present in the FER dataset, it would be possible to attempt a
transfer learning approach. Initially the model could be trained on the FER dataset and
evaluate it on the BAUM-1, for the classes that overlap. In the next step it would be
possible to consider the confidence of the FER model classifying BAUM-1 instances, and
use this information to further prune the BAUM-1 dataset towards high-quality instances
with consistent feature-class relationship. This would yield parts of the BAUM-1 data
that are suitable for training a more robust model in combination with FER data.

In terms of thermal data, we confirmed temperature differences between ROIs when
subject experience different emotional states. These changes will now be used as features
and a classifier will be trained to predict different emotional states. Later we want to
expand this in our own data collection, going from positive and negative emotions to
more subtle psychological states present in work environments.

Finally, we also plan to extend our recording setup beyond RGB and thermal cam-
eras, using the information from a microphone, an eye tracker and application usage to
better model well-being and the psychological constructs comprising it. We expect the
final performance to benefit from the fusion of data, potentially using several or even a
single multi-modal model, like a branched neural network. Additionally, all results must
be validated in terms of statistical significance.

In summary, we showed through our evaluation that many challenges remain before
practical implementation of continuous monitoring of well-being for knowledge work-
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ers at their workplace. The question remains how to achieve state-of-the-art recognition
of complex and subtle emotions (e.g., BAUM-1 dataset) in a computationally effective
manner. Another open question is how to best use different existing emotion datasets
for well-being monitoring. Finally, the comparison between several smaller task-specific
models and a larger end-to-end multi-modal approach warrants further investigation. The
results reported in this paper are subject to further analysis and verification of statistical
significance. They serve as an initial benchmark and a starting point for discussion and
future work towards real-world implementation of well-being monitoring at work.
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