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Abstract. This study proposes a method for home activity recognition solely from
the cumulative power consumption data of individual circuits obtained from HEMS
distribution boards, recorded every 30 minutes. The proposed method targets seven
activities: waking up, going to bed, cooking, laundry, dishwashing, bathing, and
personal hygiene, aiming to estimate which activity occurred in each 30-minute
time slot. Initially, it identifies the circuits most closely related to each activity. For
activities identifiable by the ON/OFF status of appliances, it uses the presence or
absence of power consumption in the corresponding circuit to recognize them. For
other activities, it constructs models to estimate their presence using machine learn-
ing based on specially designed features. Furthermore, it adapts to inter-household
differences using transfer learning. We conducted experiments using one year’s
HEMS data from 17 households through collaboration with a cooperative company.
As a result, we confirmed that it could recognize each of the seven activities with an
average F1 score of 0.86. Furthermore, we confirmed that the recognition accuracy
of each activity could be improved by performing transfer learning.

Keywords. home activity recognition, machine learning, HEMS (Home Energy
Management System), power consumption

1. Introduction

In recent years, Home Energy Management Systems (HEMS) have been increasingly
deployed to monitor and control household electricity and gas usage. With the Japanese
government aiming to install HEMS in all households by 2030, greater adoption and uti-
lization of HEMS are anticipated. Activity recognition based on consumption data of-
fers advantages such as avoiding privacy infringement and low acceptability associated
with intrusive sensors like cameras or microphones [1–5], as well as eliminating the need
for environmental sensors or wearable devices [6–8]. If the activities of residents can be
identified from HEMS data, various non-intrusive and cost-effective applications can be
expected. These include providing feedback on energy usage, improving accuracy in en-
ergy demand forecasting, consumer profiling, targeted marketing, and remote healthcare
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services such as monitoring elderly individuals [9, 10]. Although various activity recog-
nitions based on electricity consumption have been studied, prior research has mainly fo-
cused on relatively high temporal resolution power consumption data [9, 11–15]. While
recent HEMS distribution boards have emerged with systems capable of measuring at
high temporal resolutions, most existing HEMS distribution boards are not configured
to output such high-resolution data for other service purposes due to hardware costs and
cost-effectiveness considerations. However, given the ability to aggregate power con-
sumption by branch circuits (after this referred to as “branches”), it is highly feasible to
grasp the use of household appliances associated with activities such as cooking, dish-
washing, and laundry. Additionally, even with low temporal resolution, detecting activ-
ities involving long periods of activity, such as bathing or using high-power-consuming
appliances like dryers, is possible.

This study proposes a method for activity recognition from 30-minute cumulative
power consumption data for each branch obtained from HEMS distribution boards. The
proposed method targets seven activities: waking up, going to bed, cooking, laundry,
dishwashing, bathing, and personal hygiene. First, it identifies the branches assumed
to be most relevant to each activity. For activities that can be clearly identified by the
ON/OFF status of household appliances, recognition is based on whether the respective
branch’s power consumption is being utilized. For other activities, it constructs models
to estimate the presence or absence of each activity using features we design, employing
machine learning techniques. Additionally, it proposes a method to adapt to differences
between households through transfer learning.

We conducted experiments using HEMS data for one year from 17 households ob-
tained through collaboration with partner companies. We labeled the data with multiple
people for two months in summer and winter, resulting in over 530,000 data entries. As
a result, we confirmed that each of the seven activities could be recognized with an av-
erage F1 score of 0.86. Furthermore, we confirmed that the recognition accuracy of each
activity improved through transfer learning.

Contributions of This Paper

In this study, we aim to recognize activity based on the branch power consumption data
to provide detailed energy usage feedback and monitor the elderly.

Utilizing electricity data offers non-intrusive and cost-effective alternatives com-
pared to cameras, microphones, environmental sensors, or wearable sensors. Existing
studies often utilize high-resolution consumption data at a granularity of seconds, pro-
viding a detailed perspective. However, these datasets require dedicated measurement
devices, incurring installation costs. In this study, we use branch-level power consump-
tion data obtained from existing HEMS at a granularity of 30 minutes. While this limits
detailed features, it excels in installation cost, leveraging existing infrastructure.

The contributions of this study are as follows: We propose a method for activity
recognition from branch-wise power consumption data with such low granularity that
activity recognition would be difficult with other methods. We improve estimation accu-
racy by adapting transfer learning to address differences in household patterns. We de-
sign features that can estimate activities even at 30-minute granularity based on observa-
tions of real-world data collected from 17 households over one year, as well as heuristics
such as trends in appliance usage and lifestyle patterns in Japanese households.
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Figure 1. Example of low-grain branch circuit power consumption data.

2. Proposed Method

2.1. HEMS Data

In order to achieve activity recognition from the power consumption data obtained from
the HEMS distribution board, we obtained a total of 10 million data points observed over
one year from 17 HEMS in collaboration with cooperative companies. The provided data
are all from the same construction company, using cooking appliances such as IH instead
of gas for cooking and also equipped with dishwashers and washing machines. Figure 1
shows a daily data sample from one household. As shown in Figure 1, in the HEMS cur-
rently prevalent in Japan, power consumption is separately aggregated for each room or
specific appliances such as air conditioners to visualize power consumption effectively.
However, currently prevalent HEMS can only measure cumulative power consumption
every 30 minutes due to specifications, resulting in a very low temporal granularity. Due
to the cumulative aggregation, it is impossible to separate multiple activities or appli-
ances operating. The same value may be obtained when the lighting is used for 30 min-
utes and when the dryer, which consumes 30 times as much power as the lighting, is used
for 1 minute. Therefore, it is difficult to use conventional methods to identify the types
of appliances in operation and estimate the activities associated with specific appliances.

However, as seen in Figure 1, branch names are assigned for visualization in each
branch. Data analysis revealed two types of circuits: dedicated circuits and general-
purpose circuits. Dedicated circuits are branches dedicated to specific appliances, while
general-purpose circuits aggregate the total power consumption of all lighting and ap-
pliances in a room. With dedicated circuits, it is possible to estimate the operation of
specific appliances, and activities directly corresponding to those appliances are recog-
nizable. On the other hand, in general-purpose circuits, the number and types of con-
nected appliances are not specified, and due to the coarse aggregation time granularity,
it is difficult to identify the presence and type of appliances. However, there is a high
correlation between room types and the types of appliances used, and in many cases, it
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Figure 2. Overview of the proposed method.

is possible to narrow down the types of appliances from the room names. Additionally,
suppose a room does not typically show high power consumption. In that case, the oper-
ation of appliances with significantly high power consumption can be confirmed, mak-
ing activities such as using dryers or hair irons recognizable, especially in bathrooms.
Furthermore, activities characterized by prolonged distinctive power usage trends before
and after events, such as waking up, going to bed, and bathing, can also be recognizable.
Based on the above reasons, we considered activities with changes in activity over a long
period (waking up, going to bed, bathing), high power consumption activities (personal
hygiene), and activities leaving traces of appliance usage on dedicated circuits (cook-
ing, laundry, dishwashing) as recognizable. In addition to the above reasons, considering
the generality of branches corresponding to data from many households, this study de-
fines seven activities as recognition targets: waking up, going to bed, bathing, personal
hygiene, cooking, laundry, and dishwashing.

2.2. Method Overview

The proposed method takes cumulative power consumption values for each 30-minute
interval (slots) from HEMS residential distribution panels, branch by branch, as input.
The daily life activities to be estimated include waking up, going to bed, cooking, laun-
dry, dishwashing, bathing, and personal hygiene, totaling seven activities. The proposed
method outputs the presence or absence of each activity for each slot.

Figure 2 illustrates an overview of the proposed method. Firstly, it analyzes the
names assigned to each branch to classify the branches into dedicated circuits and
general-purpose circuits. At this time, the appliance names and room names are iden-
tified, and relevant activities are assigned. Next, for dedicated circuits, as the types of
appliances connected to each branch are known, it performs operation recognition by
peak detection, allowing for the recognition of activities using the operated appliances.
For general-purpose circuits, we define features for each activity, and it employs ma-
chine learning for activity recognition. Additionally, since lifestyle habits and power con-
sumption tendencies generally vary significantly from household to household, it applies
transfer learning to adapt models created using data from multiple households to each
household.
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2.3. Name Analysis

As illustrated in Figure 1, the branch names exhibit various patterns, ranging from only
room or appliance names to those followed by floor numbers or identifiers. However,
analysis revealed that the patterns are finite and follow a context-free grammar. There-
fore, we first parse the context-free grammar to extract information such as room names,
appliance names, and associated numbers or floor levels from the branch names. Then,
we map the activities to the branches based on the following rules:

• Circuits for bedrooms, such as “Master bedroom” or “Children’s room” and their
corresponding air conditioning circuits are mapped to waking up and going to bed.

• Circuits for washrooms, such as “Washroom” or “Dressing room,” are mapped to
personal hygiene.

• A Dedicated circuit for the dishwasher is mapped to dishwashing.
• Dedicated circuits for cooking appliances, such as IH cookers or microwaves, as

well as circuits labeled “kitchen appliances,” are associated with cooking.
• The general-purpose circuit for the bathroom and the dedicated circuit for the

water heater are mapped to bathing.
• The dedicated circuit for the washing machine is mapped to laundry.

2.4. Operation Detection

The dedicated circuits are connected to a single appliance, so there is no operation outside
the activity time, and power consumption is zero when not in use. Therefore, the activity
time is detected using a simple rule based on whether the power value is zero. However,
in circuits labeled “kitchen appliances” associated with cooking activities, there may be
appliances connected that are not directly related to cooking. Examples of appliances
unrelated to direct cooking time include ventilation fans, lighting, electric kettles, coffee
makers, and rice cookers. The power consumption indicated by these appliances is dis-
tinctive; for example, ventilation fans and lighting show waveforms with slight variation.
Additionally, electric kettles and coffee makers boil water and then maintain warmth,
while rice cookers keep rice warm after cooking, resulting in a characteristic pattern of
initially high power consumption followed by sustained low power consumption. In this
study, these characteristics are captured using rule-based methods, and branches exhibit-
ing these characteristics are excluded from being utilized for activity recognition.

2.5. Feature Design

The branches used for detecting activities such as bathing aggregate the power con-
sumption of lighting and general outlets, which fluctuates even when there is no activity,
making it difficult to detect with simple rules. Therefore, we employs machine learn-
ing(XGBoost) for activities such as bathing, waking up, going to bed, and personal hy-
giene. The following sections will explain the features and their importance. Table1 gives
the symbolic definitions that represent the features used in each activity.

2.5.1. Feature Design for Recognition of Getting Up and Going to Bed

First, we list the features used for waking up and going to bed. Since the characteristics
for recognition are similar, we use the same features. Specifically, we use the following
features.

F. Tanaka et al. / Recognizing Home Activity from Coarse Branch Circuit Energy Usage Data10



Table 1. Symbolic definitions for features.

Feature Name Feature Description

(T n
cos,T

n
sin) time of sample n (trigonometric representation)

Sn Season of sample n (summer or winter)

Ln
x Power consumption of branch x of sample n (x is bedroom (BED), air conditioning

(AC), bathroom (BATH), boiler (BOILER) or washroom (WASH))

Ldi f f n
x Power consumption difference of branch x of sample n to sample n−1.

Lratio ↑n
x Power consumption ratio of branch x of sample n+1 to sample n

Lratio ↓n
x Power consumption ratio of branch x of sample n−1 to sample n

Lvar[n+a,n+b]
x Variance of power consumption of branch x from sample n+a to n+b (a≤ b)

ΔLn
x Difference between the power consumption of branch x of sample n and the average

of the power consumption of branch x of the previous 24 samples

1. Time (T n
sin,T

n
cos). Due to high dependence on the time of day.

2. Season Sn. Due to the seasonal dependence on electric power.
3. Power consumption of bedrooms and air conditioning Ln−1

BED, Ln
BED, Ln+1

BED, Ln−1
AC ,

Ln
AC, Ln+1

AC .
4. Difference from the previous slot’s power consumption of bedroom and air con-

ditioning Ldi f f n
BED, Ldi f f n+1

BED, Ldi f f n
AC, Ldi f f n+1

AC . To capture the temporal vari-
ations in electricity consumption due to appliance operation.

5. Change in power consumption from before and after samples (slots) in bedrooms
and air conditioning Lratio ↑n

BED, Lratio ↓n
BED, Lratio ↑n

AC, Lratio ↓n
AC. This is

introduced to capture the sudden rise and fall in power observed by turning off
appliances when going to bed and turning on appliances when waking up.

6. Variance of power consumption in bedroom and air conditioning Lvar[n−6,n−1]
BED ,

Lvar[n+1,n+6]
BED , Lvar[n−6,n−1]

AC , Lvar[n+1,n+6]
AC . To capture the differences in power

consumption due to the explicit operation of appliances during awake and asleep
states, we introduced this feature.

The formulas for calculating each feature are shown below. In this study, we used a
trigonometric function applied to 48 slots, which correspond to one day, as the features
in order to give them periodicity. n is the sequential number (sample number) given to
each slot from the beginning of the HEMS data. ε is a very small value that prevents the
denominator from becoming zero.

T n
sin = sin

(n mod 48)π
48

, T n
cos = cos

(n mod 48)π
48

(1)

Ldi f f n
x = Ln

x −Ln−1
x (2)

Lratio ↑n
x=

Ln+1
x

Ln
x + ε

, Lratio ↓n
x=

Ln−1
x

Ln
x + ε

(3)

Lvar[n+a,n+b]
x =

1
b−a+1

b

∑
k=a

(Lk
n−

1
b−a+1

n+b

∑
l=n+a

Ll
x)

2 (4)

Considering that waking up and going to bed occur only once a day, and assuming
that at least one of them occurs if the resident is not outside, we examine the likelihood
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and select the maximum positive slot among those exceeding a certain threshold; if no
positive slot exists within a day. Conversely, all except the maximum one are masked
if there are multiple positive slots. Furthermore, we consider the timing relationship be-
tween waking up and going to bed and operating appliances such as IH cookers, which
individuals manually operate.

2.5.2. Feature Design for Recognition of Bathing

We then show the features of bathing as follows.

1. Time (T n
sin,T

n
cos). This is because bathing is time-regular and highly dependent on

the time of day.
2. Season Sn. This is used because of the seasonal dependence on electric power.
3. Power consumption of bathroom Ln−2

BAT H , Ln−1
BAT H , Ln

BAT H , Ln+1
BAT H , Ln+2

BAT H . This is
because turning on the room lighting and the ventilation fan while bathing causes
an increase in power consumption.

4. Difference from the previous slot’s power consumption of bathroom and boiler
Ldi f f n

BAT H , Ldi f f n+1
BAT H , Ldi f f n

BOILER, Ldi f f n+1
BOILER. To capture the temporal vari-

ations in electricity consumption due to appliance operation.
5. Difference from the average of the last 24 samples of bathroom power consump-

tion. Ln−2
BAT H , Ln−1

BAT H , Ln
BAT H , Ln+1

BAT H , Ln+2
BAT H . The moving average and the differ-

ence between each slot are used to reduce the effect of differences in power con-
sumption during inactivity between houses.

6. Power consumption of boiler Ln−3
BOILER, Ln−2

BOILER, Ln−1
BOILER, Ln

BOILER. The water
heater’s power consumption increases before bathing to fill the bathtub with hot
water. Therefore, we use the power consumption of the water heater over the past
several slots.

We show the formulas for the features not defined in equation (1)∼(4).

ΔLn
x = Ln

x −
1

24

n−1

∑
k=n−24

Lk
x (5)

2.5.3. Feature Design for Recognition of Personal Hygiene

We then show the features of personal hygiene as follows.

1. Time (T n
sin,T

n
cos). This is because personal hygiene is time-regular and highly

dependent on the time of day.
2. Power consumption of washroom Ln−2

WASH , Ln−1
WASH , Ln

WASH , Ln+1
WASH , Ln+2

WASH . This is
because turning on the dryer or hair iron causes an increase in power consump-
tion.

3. Difference from the previous slot’s power consumption of wathroom Ldi f f n−1
WAT H ,

Ldi f f n
WAT H , To capture the temporal variations in electricity consumption due to

appliance operation.
4. Difference from the average of the last 24 samples of washroom power consump-

tion. Ln−2
WASH , Ln−1

WASH , Ln
WASH , Ln+1

WASH , Ln+2
WASH . The moving average and the dif-

ference between each slot are used to reduce the effect of differences in power
consumption during inactivity between houses.
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2.5.4. Transfer Learning

In each household, while the characteristics of power consumption due to activities
are similar, differences in appliance performance and activity duration result in varying
scales and the timing of activities. Training with all possible patterns of data is theo-
retically feasible but not practical. Obtaining a large amount of labeled data for target
households is challenging due to the granularity of 30-minute data, resulting in only 48
data points per day. Therefore, our approach focuses on the similarity of recognition
tasks across households and overcomes inter-household differences by leveraging trans-
fer learning to build models from relatively small amounts of data from target house-
holds. In this study, we employed TransBoost [16], which extends XGBoost. In Trans-
Boost, two GBDT (Gradient Boosting Decision Tree) models are prepared: one trained
on the target data and the other trained on the source data. The loss function for the
GBDT trained on the target data is defined as the weighted sum of the loss functions
of the two GBDT models, allowing the utilization of source information while learning
target-specific features.

Additionally, the proportion of each behavior within a day is very low, with only
one positive data point obtained per day, especially for waking up and going to bed. Us-
ing a small and imbalanced dataset for transfer learning may lead to overfitting. There-
fore, in this study, we addressed the imbalance issue by using the Synthetic Minority
Over-sampling Technique (SMOTE) [17], which increases the proportion of positive data
points.

3. Evaluation

3.1. Evaluation Metrics and Dataset

To evaluate whether the proposed method can recognize the seven activities, we obtained
power consumption data from the HEMS of 17 households through collaboration with
our partner companies. For this evaluation, we labeled one month of data for both sum-
mer and winter, based on rules derived from our previous study [18], where household
appliance usage is typically higher. We conduct cross-validation to evaluate the general-
ization performance, and 10 days of data from each household are reserved for transfer
learning. Considering each of the seven activities as a binary classification problem, we
compared the estimated results of each time slot with the ground truth. We then counted
the number of matches and discrepancies to calculate true positives, false positives, false
negatives, and true negatives.

3.2. Recognition Accuracy of Activities through Operation Recognition

Table 2. Recognition accuracy of each activity by operation recognition.

Activity Precision Recall F1-Score

Cooking 0.996 0.964 0.980
Washing 0.951 0.996 0.973

Dish-Washing 0.981 0.966 0.974
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First, we evaluate the accuracy of activity recognition through the recognition of ap-
pliance operation. Table 2 shows the recognition accuracy of each activity. The proposed
method achieved high accuracy for the three activities: cooking, laundry, and dishwash-
ing. However, the recall for cooking is slightly lower, which is attributed to the fact that
different appliances are connected during summer and winter. Therefore, it is necessary
to confirm which appliances are connected for cooking periodically.

3.3. Recognition Accuracy of Activity through Machine Learning

Table 3. Recognition accuracy for each activity with/without transfer learning.

XGBoost TransBoost

Activity Precision Recall F1-Score Precision Recall F1-Score

Waking up 0.781 0.633 0.699 0.822 0.764 0.792
Going to Bed 0.778 0.631 0.697 0.818 0.707 0.759

Bathing 0.824 0.830 0.827 0.872 0.882 0.877
Personal Hygiene 0.847 0.897 0.871 0.859 0.931 0.893

Next, we evaluated the recognition accuracy of activities when machine learning
was applied. Table 3 shows the recognition accuracy for each activity. The accuracy im-
proved for all activities with transfer learning. The improvement is attributed to the com-
plementary role played by the loss function of the source data model during training,
sharing knowledge while mitigating overfitting, leveraging the similarity of tasks across
households, where a small amount of target household data alone would lead to overfit-
ting. Particularly, the accuracy for waking up and going to bed was lower without transfer
learning but improved significantly with transfer learning. This improvement can be at-
tributed to variations in how households use bedrooms and the types of appliances found
in bedrooms. On the other hand, the recognition accuracy for personal hygiene was al-
ready high, and there was minimal improvement. This is likely because personal hygiene
is characterized by significant power consumption and relatively uniform household pat-
terns.

4. Conclusion

This paper proposed a method for activity recognition from low-granularity branch
power consumption data obtained from HEMS. The performance evaluation results con-
firmed that each of the seven activities could be recognized with an average F1 score of
0.86. Furthermore, it was confirmed that recognition accuracy improved by performing
transfer learning.

The presence or absence of residents in a room can be estimated based on the mag-
nitude of fluctuations in power consumption, similar to the recognition of wake-up and
going to bed. If the presence or absence of residents in a room can be recognized, it is
conceivable to estimate whether all occupants are out of the house in conjunction with
the other activities. Finally, we are considering conducting a verification experiment to
introduce our proposed method into HEMS.
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