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a Université de Reims Champagne-Ardenne, LICIIS,
51687 Reims Cedex 2, France

Abstract. The development of Artificial Intelligence has raised interesting oppor-
tunities for improved automation in smart agriculture. Smart viticulture is one of
the domains that can benefit from Computer-vision tasks through field sustain-
ability. Computer-vision solutions present additional constraints as the amount of
data for good training convergence has to be complex enough to cover sufficient
features from desired inputs. In this paper, we present a study to implement a
grapevine detection improvement for early grapes detection and grape yield pre-
diction whose interest in Champagne and wine companies is undeniable. Earlier
yield predictions allow a better market assessment, the harvest work’s organization
and help decision-making about plant management. Our goal is to carry estima-
tions 5 to 6 weeks before the harvest. Furthermore, the grapevines growing con-
dition and the large amount of data to process for yield estimation require an em-
bedded device to acquire and compute deep learning inference. Thus, the grapes
detection model has to be lightweight enough to run on an embedded device. These
models were subsequently pre-trained on two different types of datasets and sev-
eral layer depth of deep learning models to propose a pseudo-labelling Teacher-
Student related Knowledge Distillation. Overall solutions proposed an improve-
ment of 7.56%, 6.98, 8.279%, 7.934% and 13.63% for f1 score, precision, recall,
mean average precision at 50 and mean average precision 50-95 respectively on
BBCH77 phenological stage.

Keywords. Deep Learning, Yield forecast, Knowledge Distillation, Fine-tuning,
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1. Introduction

The improvement of wine quality requires strong control of the vineyards in order to
modify the vines by interventions at the plot [1]. Winemakers use yield estimation to
get decisive information for the business’s economy, plant management, and harvest or-
ganization. The interest in knowing the yields early enough involves several economic,
administrative, and qualitative objectives [2]. For example, winegrowers can manage the
wine market by estimating and controlling the crop volume on a regional or national
scale. Also, yield forecasts allow us to know the position of the winegrower’s yield in
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relation to the regulations. For example, the Champagne appellation [3] defines annual
production quotas in kg/ha. Finally, yield forecast maps may help to increase the quality
of the wines by eliminating part of the harvest by thinning out the bunches, as it has been
proven that too high density may hinder the quality of the grapes [4].

Today, most winemakers estimate their yield using manual samplings on selected
land plots. It relies on both grape counting and weighting. The counting is visually per-
formed by a human operator, leading to uncertainties on the precision and dubious re-
peatability. In addition, the weighting of the grapes requires them to be harvested pre-
maturely, a destructive process that cannot be performed extensively. Some work uses
historical data to limit grape weighting, significant variations from year to year can skew
the predictions. As a result, a variation of 30% can be found between the estimations and
the reality [5].

The moment yield forecasts are needed also impacts the solutions. Indeed, most
producers would like to obtain estimations at least one month before harvest, which
usually falls before the veraison, i.e., the start of the maturing period where grapes’
colors change. Hence, the color contrast between the leaves of the vine and the green
grapes complicates the yield estimation using non-intrusive or non-destructive methods
[6]. In addition, the influence of light must be considered for more accurate detection
during the day [7].

Artificial Intelligence (AI) bears the promise to improve the work conditions and the
accuracy of forecasts as it can better humans in repetitive, time-consuming, and tedious
tasks such as counting grapes. Among existing methods, Deep Learning (DL) computer
vision is one of the preferred approaches to automatically count grapes in the vineyard
[8,9]. In addition, it shows more robustness and accuracy than other computing vision
methods based on signal processing or traditional machine learning (SVM, mostly) [10,
11,12].

In this work, we focused on the use of accurate and fast deep-learning models for
grape counting, the first step towards yield performance forecast. The remainder of the
paper is structured as follows: Section 2 reviews existing works in knowledge distilla-
tion for grapevine yield estimation and deep learning computer vision. Section 3 presents
the main architecture of the proposed solution, the dataset characteristics and the Deep
Learning models we have chosen. Section 4 describes the efforts to improve the overall
deep learning model performance with Knowledge Distillation. Finally, Section 5 con-
cludes this work.

2. Related Work

Neural networks have been essential to Deep Learning for achieving computer vision
state-of-art of object detection. Widely used for their adaptability, generalization and
scalability, neural networks showed a correlated performance with the amount of data
they train with. Compared to traditional machine learning, deep neural networks has the
opportunity to scale better with an increased quantity of data [13].

Among the nowadays commonly used architectures (MobileNet, ResNet, ...) and the
detectors that result from them (FasterRCNN, FPN SSD and YOLO, ...), many datasets
were born in a joint context of researching the best performance. Datasets such as Mi-
crosoft COCO, PASCAL VOC, PlantVillage, and ImageNet consist of a set of standard
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image data, annotations and commonly joint evaluation procedures. These days, neural
network research for object detection papers communicates their results based on these
commonly used datasets. Since Deep Learning neural networks learn, scale and adapt
from the features they extract, it has been beneficial to use a pre-trained model as a start-
ing point to train a model with few samples [14].

The remainder of the paper will express the use of a pre-trained model and transfer
learning for better training convergence of deep learning model on grapes detection.

In the edge computing community, neural network research has gained a critical fo-
cus on optimizing model size, efficiency and computing resources while preserving their
accuracy. One concept based on a teacher-student relationship has gained a significant
reputation in model compression research. Knowledge distillation refers to using large
model predictions to train a smaller model. This process of transferring knowledge from
a large and computationally expensive model into a smaller one was successful in several
applications of object detection.

In the case of detecting fruits and vegetables for yield estimation application,
Thomas et al. [15] proposed a pseudo-labelling solution using videos. The authors show
the overall performance of different deep-learning models for grapes detection using one
of the YOLO variants and Mask R-CNN. YOLOv5 architecture experiments on tracking
showed the best results in inference computing time and overall detection performance
ratio. The pseudo-labelling method improved the mean average precision by +8%.

Casado-Garcia et al. [16] conducted a leaf, bunch, pole and wood segmentation for
grapevine detection. Automatic yield monitoring with an in-field robotic approach on
low-cost cameras for object detection and segmentation solutions requires a complex
manual annotation, too time-demanding. The authors proposed three semi-supervised
learning methods (Pseudo-labelling, Distillation and Model Distillation) to take advan-
tage of non-annotated images. In their experiments, the authors gained segmentation ac-
curacy between 5.62% and 6.01% on average with semi-supervised learning methods.

Semi-supervised few-shot learning approach for leaf disease recognition also
showed significant results with pseudo-labelling techniques. Li et al. [17] boosted the
performance of their leaf disease identification model by 2.8% with a single semi-
supervised method and by 4.6% with an iterative semi-supervised approach on PlantVil-
lage Dataset. The iterative semi-supervised method describes several training iterations
with divided unlabeled samples. Similarly, Heras et al. [18] showed a +1.78% improve-
ment in semantic segmentation models using pseudo-labelling for grape bunch identifi-
cation in natural images.

Finally, in a research for automated weeding in agrorobotics, Łukasz et al. [19] pro-
posed a lightweight solution running at 10 FPS on Rasberry Pi embedded device with an
error reduction of 6.4% with a knowledge distillation technique using the same network
structure.

3. Methods and Tools

Our grape detection and counting approach stands on a data collection and real-time
analysis technique using Edge computing. The aim is to separate the collaboration be-
tween the end-edge and cloud levels by avoiding as much network communication as
possible.
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3.1. Dataset description

The images used to train the AI model were obtained in a Vranken-Pommery vineyard
during the 2022 spring, under natural lighting and weather conditions, covering several
weeks preceding the veraison. As the vineyard machinery could not pass during heavy
rain or at night, all the images were captured in the early or late morning, with weather
conditions ranging from cloudy to clear sky. Different grape varieties were recorded,
including Chardonnay, Pinot Noir, and Pinot Meunier.

Because the number of available photos is limited, we also adopted data augmenta-
tion methods before the training, allowing us to raise the number of available images.

Also, computer vision is a complex task to compute in an agrorobotics environment
without cloud computing relation. Thus, the deep learning model requires special care
for an embedded device.

3.2. Deep learning models

Several deep-learning methods can be used to identify an object in an image. Semantic
segmentation is a traditional technique to create a precise mapping of the objects in
an image, and was applied to grape counting on [20,21]. However, this technique is
computing-expensive and does not scale well for real-time processing.

We focus, therefore, on object detection methods that combine classification and
localization. In order to process data streams in real-time, we oriented our research on
deep learning algorithms based on a one-step detector. These algorithms use a single
neural network to perform object detection and classification with no intermediate tasks.
This approach leads to fast models, making them strong candidates for our embedded AI
application. Among the one-step detection models, the YOLO (You Only Look Once)
family was selected. The YOLO architecture has been available in several versions since
[22]. The original YOLO network is a Deep Fully Convolutional Neural Network that
uses a modified GoogleNet as a backbone network, later known as DarkNet-19. Several
variants were later published, and YOLOv5 [23] has been significantly optimized to im-
prove detection speed and accuracy. In addition, YOLOv5 is fully compatible with Py-
torch and Python, and can be easily set up on edge and mobile devices. Furthermore, we
have made a comparison between YOLO and a two-stage detector called FasterRCNN
on phenological stage BBCH77. Composed of region proposal combined with classifi-
cation head, FasterRCNN from Ren et al. [24] became a very popular object detector for
achieving a high average precision with a lower computing time in 2015.

Fully training a complex deep-learning model from scratch is an expensive task.
Instead, we applied transfer learning so that an already existing CNN could be adapted
to grape detection. In addition, we used the DGX-1 server (Intel® Xeon® CPU ES-2698
v4 @ 2.20 GHz, 8x NVIDIA Tesla V100-SXM2 16Gb GPUs, Python 3+/PyTorch 1.7+)
from the ROMEO Supercomputing Center to accelerate the training phase.

The first concern in transfer learning is to look at the size of the model we want to use
for our work. Some models offer complex models and allow high-accuracy performance.
Although competitive in terms of accuracy, using large and complex models poses a
problem of memory space and size of the neural network.

Therefore, we propose a comparison between the state-of-art of the most under-
sized object detector with the highest accuracy on the MSCOCO dataset when applying
transfer-learning on our dataset of grapes.
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Table 1. Mean average precision on BBCH77 grapes detection

mAP50

Yolov3 Tiny 0.585

Yolov5 Nano 0.673

FasterRCNN Resnet50 FPN 0.578

Yolov3 and Yolov5 were the two best models running at least 25 frames per second
on our embedded device Jetson Nano 2GB.

As shown in the research community, pre-trained models and transfer learning com-
monly used to achieve great accuracy with few samples worked well on grapes detection
applications. But can we improve these results with a more specific pre-trained model,
trained with grapes detailed features?

3.3. Pre-trained model and transfer learning

Focusing on the YOLOv5 architecture, we trained our model in two computation depths.
The first one, called Nano, is a miniaturized version and the less computationally ex-
pensive version of the YOLOv5 family. The second one, Called YOLOv5 X, represents
YOLO at its fullest. This model require a lot of computing power and is not appropriate
for edge computing but allows to express the degradation between a large and a com-
pressed model.

Table 2. Performance after transfer-learning on BBCH77 grapes dataset

F1 P R mAP50 mAP50-90

Pre-trained MS COCO - Yolov5 Nano 0.648 0.759 0.565 0.673 0.323

Pre-trained MS COCO - Yolov5 X 0.746 0.865 0.657 0.772 0.456

Among the grapevines dataset, WGISD Dataset stands out by its unmistakable repre-
sentation of maturated grapes. The pre-trained model will be highly aware of false repre-
sentative and be a strong candidate for transfer-learning. The model trained on BBCH77
using transfer learning on a WGISD pre-trained model showed a 1.82% overall perfor-
mance augmentation at the Nano representation.

Table 3. Performance after transfer-learning on BBCH77 grapes dataset

F1 P R mAP50 mAP50-90

Pre-trained WGISD - Yolov5 Nano 0.66 0.736 0.6 0.68 0.347

Pre-trained WGISD - Yolov5 X 0.72 0.783 0.668 0.74 0.446

Our main goal is to improve the Nano version of the YOLOv5 architecture to achieve
the best performance at the edge. Pre-training the base model with the WGISD Dataset
to transfer our dataset afterwards confirms significant results in improving model perfor-
mance. Using WGISD Dataset helped us to gain 1.8%, 5.83%, 1.02% and 6.91% in f1,
recall, mean average precision 50 and mean average precision 50-95.

One interesting fact is the overall downfall of the model X with pre-training on
WGISD. Indeed, too much complexity becomes counterproductive, as there are not suf-
ficient samples of training data to explore the full potential of the X model. Nevertheless,
Recall is slightly better and is the most effective component of knowledge distillation.
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4. Knowledge-distillation

Knowledge Distillation became a well-known technique for improving small deep-
learning models by mimicking more robust and complete neural networks. The most un-
dersized models get more accurate while being suitable for edge and embedded devices.
Our paper focus on Response-Based Knowledge. The outputs logits from the Teacher
model became a training sample for the Student model. The main idea is to use the
knowledge of a model first trained on true bounding boxes sample and use its acquain-
tance to fine-tune another model.

Fine-tuning refers to improving a model on the same dataset, like retraining with
additional images. This time, the data input remains unchanged, but the bounding boxes
are coming from the Teacher model. Implementing early stopping when your model
doesn’t evolve enough helps define if you are undertraining your model. Undertraining
could also explain why your knowledge distillation solutions solve and improve your
model. In our case, the Nano model reaches early stopping before achieving the same
performance found with knowledge distillation. Applying a teacher-student response-
based relation to solve our problem of grapes detection improved our miniaturized model
by 4.34%, 3.41%, 5.06%, 4.89% and 5.96% for f1 score, precision, recall, AP50 and
AP50-95, respectively.

Table 4. Knowledge distillation improvement for BBCH77 grapes detection

F1 P R mAP50 mAP50-90

BASE - Yolov5 Nano 0.66 0.736 0.6 0.68 0.347

After Knowledge Distillation - Yolov5 Nano 0.69 0.762 0.632 0.715 0.369

These models were trained on 212 images of grapes between weeks 25 to 26, which
correspond to a BBCH77 phenological stage. During our data acquisition Campaign in
2022, we decided to collect as much data as possible even if we knew we could not
annotate all the images in the future. Because of this, we have made another group of
183 non-annotated pictures waiting for grape detection training. Since annotating images
is a very tedious task and time-consuming, we decided to explore knowledge-distillation
techniques and pseudo-labelling methods to improve our models.

4.1. Pseudo-labelling

Since knowledge distillation mainly replaces true target bounding boxes while increas-
ing accuracy, researchers took advantage of it to pseudo-labelled non-annotated images
totally unseen by the model. Without modifying any source code of previous knowledge
distillation, we can solve the non-annotated targets with Teacher predicted targets. Ap-
plying model X as a pseudo-labeller on the 183 new images boosted our model f1 score
by 1.56%.

Table 5. Pseudo-labellisation improvement

F1 P R mAP50 mAP50-90

After Knowledge Distillation - Yolov5 Nano 0.69 0.762 0.632 0.715 0.369

After Pseudo-labellisation - Yolov5 Nano 0.701 0.816 0.616 0.731 0.374
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5. Conclusion

Starting from the base model yolov5 Nano architecture pre-trained on MSCOCO
Dataset, we obtained, thanks to 3 layers of optimization, an overall boost of 7.56%, 6.98,
8.279%, 7.934% and 13.63%, respectively for f1 score, precision, recall, ap50 and ap50-
90. In the case of deep learning, pre-trained models are essential to benefit from the al-
ready learned feature on a considerable database when having a few examples to train a
model with. With this in mind, we kept the idea of fine-tuning a model with an already-
seen representation of the targeted object to improve grapevines detection. Knowledge
Distillation proves its utility outperforming the base model when it comes to miniatur-
isation. The model is still improvable by other techniques of distillation. In our study,
we only explored Response-based knowledge, but further exploitation is feasible with
Feature-based knowledge. Feature-based knowledge captures the distillation loss at ev-
ery layer of your deep neural network, making it possible to train a student model with
the same feature activations as the intermediate layers of the teacher model. Further-
more, if data are insufficient, knowledge distillation helps grapes detection models with
non-annotated data enrichment thanks to pseudo-labelling.
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[9] Heinrich K, Roth A, Breithaupt L, Möller B, Maresch J. Yield Prognosis for the Agrarian Management
of Vineyards using Deep Learning for Object Counting. Wirtschaftsinformatik 2019 Proceedings. 2019
2:15. Available from: https://aisel.aisnet.org/wi2019/track05/papers/3.

[10] Diago MP, Tardaguila J, Aleixos N, Millan B, Prats-Montalban JM, Cubero S, et al. Assessment
of cluster yield components by image analysis. Journal of the Science of Food and Agriculture.
2015;95(66):1274–1282.

[11] Dunn GM, Martin SR. Yield prediction from digital image analysis: A technique with poten-
tial for vineyard assessments prior to harvest. Australian Journal of Grape and Wine Research.
2004;10(33):196–198.

[12] Liu S, Li X, Wu H, Xin B, Tang J, Petrie PR, et al. A robust automated flower estimation system for
grape vines. Biosystems Engineering. 2018;172:110-23. Available from: https://www.sciencedir
ect.com/science/article/pii/S1537511017304610.

[13] Sanchez S, Romero H, Morales A. A review: Comparison of performance metrics of pretrained models
for object detection using the TensorFlow framework. In: IOP Conference Series: Materials Science and
Engineering. vol. 844. IOP Publishing; 2020. p. 012024.

[14] Li X, Grandvalet Y, Davoine F, Cheng J, Cui Y, Zhang H, et al. Transfer learning in computer vision
tasks: Remember where you come from. Image and Vision Computing. 2020;93:103853.

[15] Ciarfuglia TA, Motoi IM, Saraceni L, Fawakherji M, Sanfeliu A, Nardi D. Weakly and semi-supervised
detection, segmentation and tracking of table grapes with limited and noisy data. Computers and Elec-
tronics in Agriculture. 2023;205:107624. Available from: https://www.sciencedirect.com/scie
nce/article/pii/S0168169923000121.

[16] Casado-Garcı́a A, Heras J, Milella A, Marani R. Semi-supervised deep learning and low-cost cameras
for the semantic segmentation of natural images in viticulture. Precision Agriculture. 2022:1-26.

[17] Li Y, Chao X. Semi-supervised few-shot learning approach for plant diseases recognition. Plant Meth-
ods. 2021;17:1-10.

[18] Heras J, Marani R, Milella A. Semi-supervised semantic segmentation for grape bunch identification in
natural images. In: Precision agriculture’21. Wageningen Academic Publishers; 2021. p. 65-84.
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