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Abstract. From the real-time forecasting of events to Visual analy-
sis tasks, the state-of-the-art machine learning algorithms exhibit un-
matched performance. Furthermore, with the ongoing traction of em-
bedded computing, the deployment of machine learning algorithms on
mobile devices is receiving increasing attention. There are numerous
practical applications where hand-held devices having machine learning
methods can be more useful due to their compact size and integrated
resources. However, for the realization of ML methods on embedded
devices, either the used algorithm should be less computationally com-
plex or there should be some efficient way to implement a state-of-the-
art algorithm on a less-powerful embedded device. In this paper, differ-
ent approaches for reducing the computational complexity of a machine
learning-based computer vision application are presented that can be
helpful to make other such algorithms applicable on the embedded de-
vices. Results show that the hardware architecture based exploitation
can further improve the performance of an existing framework.
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1. Introduction

Machine Learning is an ever-growing field with real-time applications reaching
out into daily life [2]. Machine Learning has already enjoyed great success in
various applications, and its applications are continuously increasing due to the
development of new algorithms and methods [7,8,6].

In this work, efficient realization of visual analysis is presented that can be
helpful for exploration of other efficient machine learning methods or efficient
approaches to implement the required algorithm on an embedded system.

Particularly, the real-world application of machine learning that would be dis-
cussed in next section is realization of ”Computer Vision Algorithms on Embed-
ded Systems”. A highly precise and computationally demanding CV system can
be deployed on an embedded system by simplifying the flow of deep architectures
developed for powerful desktop and server environments.
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2. Efficient Realization of ML Models

This section presents a brief overview of different approaches that can reduce
the computational complexity of an existing ML framework and can make their
inference realizable on low-powered devices. Furthermore, it is proposed to exploit
the hardware architecture based computational resources that can significantly
improve the performance of existing implementations.

2.1. CV Algorithms on Embedded System

Utilizing a framework based on CUDA (Compute Unified Device Architecture) or
OpenCL (Open Computing Language), it is possible to implement deep learning
models on low-powered embedded platforms by taking advantage of pre-trained
networks [1,4,5].

Training of computationally and memory-intensive deep classifiers can be ac-
complished with ease by utilizing powerful GPU servers or desktop workstations,
frequently in multi-GPU setups. After training a network, its learned parameters
can be imported into an optimized framework specifically designed to replicate
the trained neural architectures on embedded platforms [11,3]. This enables the
deployment of the trained models for real-world classification tasks. One such
implementation is selected in this paper to discuss a few approaches that can be
helpful to reduce its computational complexity [10]. The convolution layer is a
crucial and computationally demanding component of neural classifiers, responsi-
ble for extracting features from input data. Various methods can be employed to
compute convolutions, such as the Winograd minimal filtering algorithm, lookup
table approach, and fast Fourier transformation-based techniques. The selected
CUDA-based framework utilizes a convolution approach that relies on matrix
multiplication where the input image and filters are arranged as matrices. These
matrices are then transferred to the GPU unified memory to eliminate overhead
caused by extra memory transfers and the multiplication of these matrices is
performed at a significantly faster speed [9].

Memory allocation schemes such as unified or pinned data allocation can be
utilized to optimize the flow of specific layers or the entire framework. More-
over, the developed frameworks or implemented functions can leverage hardware-
specific resources to maximize their performance. One such example is the uti-
lization of the Compute capability (C.C), which determines the available features
and limitations of the GPU hardware, allowing for efficient acceleration.

Figure 1 shows an efficient approach used by the mentioned framework to
use the best available resources depending on the compute capability of the used
GPU device. For GPUs with advanced compute capabilities, a high-performance
library such as cuBLAS (CUDA Basic Linear Algebra Subroutines) is utilized for
matrix multiplication. On the other hand, devices with lower compute capabilities
employ shared memory-based matrix multiplication (SAMM) to accelerate the
convolutional layer.
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Figure 1. Flow of Hardware-dependent matrix multiplication based Convolutional layer with
unified memory [10].

2.2. Hardware Architecture based Exploitation

Furthermore, architecture based exploitation of resources can also significantly
improve the performance of such framework.Newer GPU architectures offer sup-
port for half-precision floating-point (FP16) data storage and arithmetic opera-
tions, which can significantly enhance the performance of training and inference
in deep classifiers. The primary benefit of utilizing the half-precision data for-
mat, compared to the 32-bit single-precision format, is that it reduces storage and
bandwidth requirements by half, while maintaining accuracy with little to no no-
ticeable loss. By converting the framework and variables, including input, output,
and trainable parameters, to a half-precision format, the arithmetic complexity
and storage requirements can be minimized significantly for embedded platforms
equipped with modern GPUs like Pascal that support FP16 calculations. Fig-
ure 2 provides a visual representation of the composition of various floating point
representations.
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Figure 2. Various Floating Point Representations.

3. Results

The performance of exisitng CUDA-based framework and its results discussed in
[10] are further improved by using discussed hardware architecture based exploita-
tion approach. The hardware platform employed for experiments is the Nvidia
Jetson TX1 embedded board, which features a quad-core ARM Cortex A57 CPU,
an Nvidia Maxwell GPU with 256 CUDA cores, and 4 GB of shared RAM. It is
also equipped with 16 GB of embedded MultiMediaCard (eMMC) storage. Since
the Jetson TX1 board is equipped with a Pascal GPU and supports half-precision
storage and arithmetic operations, it is possible to achieve additional performance
speedup by converting the proposed framework to FP16 format. This involves
converting all imported parameters and allocations from float- to half-precision
data types, allowing the utilization of the half-precision General Matrix-Matrix
Multiply (HGEMM).

Figure 3. Comparison of double-, single- and half-precision ConvMM layers on Jetson TX1
Board, best results are written in bold.
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It can be visualized from Figure 3 that the GPU-only ConvMM layer in half-
precision demonstrates a speed increase of approximately 4 times compared to the
double-precision version. Moreover, it exhibits a speed improvement of 2 times
when compared to the single-precision scheme.

Figure 4 further validates that the half-precision deep classifiers are signifi-
cantly faster than the other versions and can be used to accelerate the perfor-
mance of a framework. A further analysis of employing half-precision cuBLAS-
Accelerated Matrix Multiplication Convolution (ConvCAMM) and unified mem-
ory in existing framework also verifies the effectiveness of applied approaches.

Figure 4. Classification time of double-, single- and half-precision deep models on Jetson TX1
Board along with half-precision Unified ConvCAMM layer, best results are written in bold.

4. Conclusion

This paper introduces a proposal that highlights the potential enhancements in
performance for an existing framework through various approaches. These ap-
proaches include an optimized data transfer scheme, hardware-dependent matrix
multiplication, and the exploitation of GPU architecture-based resources. The
results obtained validate the effectiveness of the proposed hardware architecture-
based exploitation scheme, demonstrating its ability to achieve real-time image
classification on embedded platforms.

By reducing the computational complexity of the convolution operation, the
performance of the current framework can be further enhanced. One way to
achieve this is by implementing Winograd’s minimal filtering technique, which ef-
fectively minimizes the arithmetic complexity of the convolution operation when
applied to smaller tiles. Various approaches can be adopted to incorporate this
technique and further optimize the framework’s performance.
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