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Abstract. The recent explosion of sensors enable our environment to act in an in-
telligent way. These Intelligent Environments rely on sense making of the sensors’
data streams. This process starts with reliable signal processing in real-time. This
is challenging due to i) the low energy and computing resources of edge devices,
ii) the signals’ non-stationary nature, and iii) the variety in software and hardware.
To tackle this triplet of challenges, we present a WebAssembly-based hardware and
software independent fast Continuous Wavelet Transform (fCWT), which excels in
processing non-stationary signals at low costs. The application shows to be 2x-5.5x
faster than competitors on speech, electrocardiogram (ECG), and vibration signals,
enabling reliable real-time processing on edge devices. This yields new opportuni-
ties for the creation of safe and reliable Intelligent Environments.

Keywords. intelligent environments, reliability, internet of things, edge computing,
continuous wavelet transform, sensors

1. Introduction

The proliferation of Internet of Things (IoT) devices has led to an explosion of sensors
that enable us to monitor and analyze our environment in new ways [1,2,3]. Analyzing
the data streams generated by these devices can help us better understand and adapt
to our surroundings and realize Intelligent Environments (IE) [4,5,6]. However, IE is
challenging [7], starting with the real-time analysis of the sensors’ signals that are often
noisy and non-stationary (see Figure 1) [2,8,9]. Besides, analysis generally happens on
edge computing devices where energy, network bandwidth, and computational resources
are scarce [1]. Also, effective analysis is often troubled by the diversity of software and
hardware standards IoT and IE knows [2].

A major reason why non-stationary frequency analysis is challenging, is the inabil-
ity of traditional analysis techniques, such as Fourier analysis, to capture the temporal
variations in non-stationary signals [10,11]. These static techniques ignore time and aver-
age, blur, or spread out the time-varying patterns (see Figure 2) [12,13]. Time-frequency
algorithms overcome this limitation by analyzing the time-varying signals in both the

1Corresponding Author: l.p.a.arts@uu.nl

Workshop Proceedings of the 19th International Conference on Intelligent Environments (IE2023)
G. Bekaroo et al. (Eds.)

© 2023 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/AISE230005

14



Signals

Examples

Real-world
impact

Audio & Music

Environmental noise,
Acoustics, Sound

Noise pollution sensors,
Adaptive sound systems,
Innovative instruments 

Increase sensor
sensitivity, Improve 
listening experience

Power consumption

Current, Temperature,
Water flow

Smart meters, Leakage 
detectors, Smart
thermostats

Reduce waste and
energy, Real-time 
leakage detection

Video, Audio, Speech,
Motion, Pressure

Safety and Security

Security-breach
Detection, Smart locks,
Biometric authentication

Safer homes, Easy and
accurate authentication
and identification

Communication

Speech, Text, Network
Activity, Traffic 

Smart Assistants (Siri,
Alexa, Google Assistant),
Smart Cars, Online video 
conferencing

Improve remote work
experience, Enhance 
speech recognition

Device condition

Vibration, Acceleration,
Acoustics, Temperature

Smart sensors, Monitor
machine health, Predict

Reduce maintenance 
costs, Improve machine
lifetime

Health and Well-being

HR, HRV, Respiration,
Electrodermal Activity,
Gait, Posture

Smartwatches (Apple 
Watch, Fitbit), Smart
scales, Fatigue detection
in cars


Improve measurement
and diagnosis accuracy 

Figure 1. Non-stationary signals are omnipresent within IoT. Across six domains, non-stationary signal are
used to increase reliability, safety and security in real-world applications.

Figure 2. The analysis of stationary and non-stationary signals differs considerable. Analysing a non-station-
ary signal only in the frequency domain produces a blurred and spread out frequency spectrum. Instead, a
time-frequency analysis is needed to reveal the time-dependent frequency components.

time and frequency domain [14]. However, analyzing signals in two dimensions simul-
taneously is computationally expensive, making real-time signal analysis on low-power
IoT devices unfeasible [15,16]. Less expensive time-frequency techniques exist, but they
achieve this speedup by lowering accuracy [17]. Hence, one is always forced to choose
between speed or precision. This can be problematic in situations where both speed and
accuracy are crucial. Without fast and efficient computation, cardiac health assessment
and seizure prediction are too late in emergency situations [18], IoT devices cannot pro-
vide real-time feedback, and machine inspection by edge computing devices requires too
much battery power [16]. Simultaneously, without high precision, safety, reliability, and
security are no longer guaranteed. Minor but important changes in heart rhythm [19] or
machine vibration [4,20] would go unnoticed, speech analysis fails [21], and security
becomes an issue in radio frequency-based authentication of IoT devices [22].

Portability and flexibility of these non-stationary analysis techniques also limits use
in edge computing applications [2]. As implementations are often hardware-specific,
they are inflexible and challenging to adapt across multiple devices. Consequently, the
lack of cross-platform and cross-device compatibility undermines their use in the diverse
hardware landscape that IoT is rich [2,1]. Non-stationary analysis remains underdevel-
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oped in comparison to traditional frequency techniques, resulting in untapped potential
from real-time data streams generated by IoT devices [4].

To address the issue of speed, we developed a fast implementation of the high-
resolution Continuous Wavelet Transform (CWT) algorithm was called fCWT [23]. Dur-
ing benchmarks it was shown to provide high-resolution frequency analysis at real-time
speeds, essentially solving the speed-accuracy dilemma. However, its portability is lim-
ited. fCWT uses many hardware-dependent optimization strategies to speed up calcula-
tion. As such, fCWT is bounded to specific operating systems and CPU types, limiting its
use in IoT. Implementing fCWT in a hardware-independent, portable language such as
Python or Javascript is not an option as these languages are unable to implement fCWT’s
low-level optimization strategies destroying its much needed speed and efficiency advan-
tage [16]. Until recently, this issue was unsolvable and low-level optimized code needed
to be tuned for every hardware configuration. This all changed when WebAssembly [24]
was introduced in 2017 (see ’WebAssembly: Why is it special’).

WebAssembly presents a new hardware independent abstraction layer over modern
hardware. Suddenly, programs could be hardware- and device-independent while still
having the ability to access low-level instructions and achieve performances comparable
to native implementations. WebAssembly has already been coined the next big thing in
edge computing offloading [25,26]. Since its release, several attempts have been made to
bring the power of time-frequency algorithms, such as the Short-Term Fourier Transform
(STFT) [17], Discrete Wavelet Transform (DWT) [14], and CWT [11], via WebAssem-
bly to the edge. However, despite efforts, current WebAssembly-based time-frequency
implementations still lack the high resolution and noise-resilience of CWT [27], are not
fully optimized [28], or lack a publicly available source code [29]. As a result, the power
of WebAssembly’s native performance and portability has not yet been fully utilized for
non-stationary signal analysis in resource-limited edge computing devices to make our
environments safer, secure, or more reliable [16,30].

This paper presents WebfCWT, a WebAssembly implementation of fCWT. WebfCWT
inherits fCWT’s efficient calculation while being much more portable. To show this, we
benchmarked WebfCWT on multiple signals and created a publicly accessible web appli-
cation, enabling researchers to perform non-stationary signal analysis in a user-friendly
and secure browser environment. Since WebfCWT runs entirely client-side, all data re-
mains on the user’s system, ensuring privacy by design [25]. Furthermore, WebfCWT
can be integrated seamlessly into IoT and edge computing devices as it inherits We-
bAssembly’s portability [26,31].

Next, we provide i) a recap of the mathematical theory behind CWT, which enables
non-stationary signal analysis, ii) fast Continuous Wavelet Transform (fCWT)’s Fourier-
based implementation and iii) the compilation of fCWT to WebAssembly. Section 3
presents a benchmark of WebfCWT’s speed compared to three other implementations.
Section 4 ends this paper with a discussion.

WebAssembly: Why is it special?
Arguably, Python, Javascript, and other portable languages already offered the
portability that WebAssembly [24] promises. What, exactly, is the advantage of
WebAssembly over these widely used languages? The major thing is that these
languages offer portability by limiting access to low-level hardware instructions
such as Single Instruction Multiple Data (SIMD) and custom memory management.
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Ahead-of-time (AOT) languages such as C, C++ and Rust, that compile target-
specific binaries, do provide these optimizations but can only do this by sacrificing
portability. For different Central Processing Unit (CPU)’s, a C, C++ or Rust code-
base needs to be recompiled, or even rewritten, in severe cases. Thread handling
using OpenMP, for example, does not run natively on every system. WebAssembly
brings together the best of both worlds. With WebAssembly one can harness the
power of low-level programming languages while still being portable [25]. Conse-
quently, computationally intensive tasks such as non-stationary signal processing,
can now be performed by small, portable WebAssembly programs that run on any
edge computing device no matter their operating system or hardware configura-
tion [31].

2. Methodology

WebfCWT is a WebAssembly-based program that utilizes the fast CWT to offer a cross-
platform and hardware-independent signal analysis. CWT is capable of tracking the
frequency components responsible for a signal’s non-stationary behavior over time by
breaking the input signal down into wavelets, which are localized in both time and fre-
quency. Using WebAssembly, the majority of fCWT’s optimization strategies can be
made hardware-independent, without compromising performance. To show the power of
fast, hardware-independent, non-stationary signal analysis, a publicly available browser
application [32] was developed that embeds fCWT directly in the browser making it free
and accessible for everyone.

2.1. The Continuous Wavelet Transform

Wavelets are defined as a-scaled and b-shifted versions of a base wavelet

ψab(t) = ψ
(

t −b
a

)
. (1)

Analogues to the sine and cosine waves in Fourier Transform (FT) [11,10,14], a linear
combination of wavelets shifted across time (b) and frequency (a) can represent any
signal by

f (t) =
∞

∑
a,b=−∞

cabψab(t), (2)

where each wavelet is scaled by cab, the wavelet coefficient. Like FT, we can calculate cab
for all a and b by calculating the convolution between the signal f (t) and the conjugated
wavelet family ψab(t)

cab =Wψ f (a,b) = |a|−1
∫ ∞

−∞
f (t)ψab(t)dt, (3)

which is the Wavelet Transform (WT)of f (t) using wavelet ψ(t). Calculating the WT
at dyadic scale-factors a = 2i and offset-parameters b = 2ik,k ∈ N obtains the definition
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of the Discrete WT (DWT) that uses orthogonal wavelets to minimize the amount of
wavelets needed to reconstruct a signal without loss [33] . Sampling a and b continu-
ously obtains a time-frequency estimation often used when in-depth signal analysis is
preferred. Such a WT is called a Continuous WT (CWT) [11,34]. When Eq. 3 is imple-
mented digitally, the continuous integral translates to a discrete summation

Wψ f [a,b] = |a|−1
N−1

∑
n=0

f [n]ψ
[

n−b
a

]
, (4)

which is mathematically equivalent to passing the input signal through a series of band-
pass filters with different cutoff frequencies.

2.2. The fast Continuous Wavelet Transform

We can improve CWT’s efficiency when applying Parseval’s Theorem to Eq. 3:

cab =Wψ f (a,b) =
1

2π

∫
f̂ (ξ )ψ̂ab(ξ )dξ , (5)

where f̂ and ψ̂ab are the Fourier-transformed input and wavelet, respectively. Next,
we substitute the scaled and shifted Fourier-transformed wavelet ψ̂ab(ξ ) by its mother
wavelet:

cab =Wψ f (a,b) =
1

2π

∫
f̂ (ξ )ψ̂(aξ )eibξ dξ , (6)

which provides us with the inverse FT of f̂ (ξ )ψ̂(aξ ). Subsequently, fCWT uses a variety
of optimization strategies in combination with already existing Fast Fourier Transform
(FFT) libraries [35] to implement these three steps as efficient as possible. For details on
this implementation, we refer to [23].

2.3. WebfCWT

The introduction of WebAssembly in 2017 represented a significant milestone in the
development of high-performance web-based edge computing [24]. WebAssembly in-
troduced a new abstraction layer providing applications access to low-level operations
such as Single Instruction Multiple Data (SIMD) [36] and custom memory manage-
ment to achieve near-native performances while still allowing them to run across dif-
ferent platforms and devices. We compiled fCWT’s C++ based codebase and all its de-
pendencies (i.e., FFT libary [35]) to a multi-threaded, vectorized WebAssembly envi-
ronment using Emscripten, webworkers, and the experimental SIMD instructionset to
bring fast, hardware-efficient and hardware-independent, non-stationary signal analysis
to IE [25,26,31].

To show the advantages of having a fast, accurate, and hardware-independent
CWT implementation, we developed a publicly available web application implement-
ing fCWT [23] using WebAssembly [32]. The application is designed to provide a user-
friendly environment that allows users to interact with CWT without requiring program-
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ming knowledge or experience in the digital signal processing domain. Moreover, the
application is designed with accessibility and safety in mind, allowing users to execute
CWT exclusively client-side. As data never leaves the user’s system, that analysis of
privacy-sensitive data is ensured to be safe.

3. Results

To evaluate the speed of WebfCWT, we conducted a comparative analysis of its ex-
ecution times with other implementations of the CWT. WebfCWT was tested against
CCWT.js [28], the only existing open source WebAssembly-based CWT, and Matlab’s
Wavelet toolbox [37] to show the difference between WebfCWT’s real-time, hardware-
independent performance and that of a large software suite that uses all available hard-
ware.

In order to validate the efficacy and versatility of WebfCWT, we selected three
distinct real-world, non-stationary signals often used in edge computing to increase
safety, reliability, and security. Specifically, a self-recorded audio fragment containing
speech was chosen to evaluate performance in the context of broadband audio analysis.
Hence, a wide frequency range was chosen with a low number of frequencies. High-
resolution analysis speed was assessed using 5000 frequencies on a short Electrocar-
diogram (ECG) segment of record 109 from the MIT-BIH database [38] and real-time,
multi-stream analysis on the first four channels of NASA’s roller bearing dataset record
’2003.10.22.13.09.13’. [39]. Number of frequencies in the speech and vibration tests
were considerably lower due to the large sample frequencies and the 4Gb memory con-
straint of WebAssembly.

Table 1. Three real-world, non-stationary signals were used in the comparative analysis between WebfCWT
and two competitors. Signals were analysed on different frequency ranges at different resolutions.

Signal Type Sample Frequency Freq. Range Num. of Freq. Duration Goal
Speech 16000Hz 1-8000Hz 300 6s Broadband

ECG 360Hz 1-20Hz 5000 50s High-resolution

Vibration 20000Hz 1-10000Hz 500 4x1s Multi-channel

The majority of the energy of the ECG signal is in the 1-20Hz frequency band [40].
Hence, only those frequencies were analysed. In contrast, the entire frequency range of
the speech and vibration signal were analysed as consonants (i.e., ”s”, ”h”, and ”f”) are
in the high-frequency range [41] and vibrations often occur at high frequencies equal
to the machine’s rotational speed [20]. The benchmark was performed on an eight-core
2.30-GHz CPU running macOS Big Sur. Details about each analysis are listed in Table 1.
Benchmark results are shown in Figure 3.

4. Discussion

In the previous section, we have seen that WebfCWT outperforms all competitors, by
being at least twice as fast. When compared to CCWT.js, the only other open source
WebAssembly-based CWT implementation, WebfCWT is even 4-5.5 times faster. As
such, no real alternative for WebfCWT currently exists, making it a valuable addition
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Figure 3. Benchmark between WebfCWT, its WebAssembly competitor CCWT.js, and Matlab on three signals
commonly encountered in edge computing and IoT solutions. Speech, heart rate and vibration. Details about
each analysis are shown in Table 1. Execution times are averaged on 10 runs.

to the fast but stationary FFT, limited STFT, and already existing CWT’s. WebfCWT
showed to perform real-time non-stationary signal analysis while being software and
hardware independent.

WebfCWT’s benchmark results highlight the effectiveness of several low-level op-
timization strategies that would not be possible without WebAssembly. For example, on
the high-frequency vibration dataset, WebfCWT’s horizontal parallelization over the in-
verse FFT, SIMD usage in the point-wise multiplication, and pre-allocation of memory
used by the time-frequency matrix made it possible to achieve a real-time performance
where this was not possible before.

At present, the web application [32] is still limited to a visualization tool. How-
ever, it has been designed to function as a versatile platform for CWT-based analysis of
various signals. In the future, signal-specific analysis modules could be implemented to
provide researchers with tools such as phoneme recognition or noise removal for speech
analysis [21], peak detection [42], filtering or heart rate variability extraction [43] for
ECG research, diagnostic reporting on vibration data [20], or ridge extraction [44] for
general purposes. Furthermore, other CWT-based time-frequency algorithms such as the
Synchrosqueezed Transform (SST) [45] or Superlet Transform (SLT) [46] could be im-
plemented to improve accuracy even more.

WebfCWT has no limitations beyond those inherited from the CWT, such as reduced
frequency resolution at high frequencies [47], and those inherited from WebAssembly,
such as the 4Gb memory limit. The benchmark has the limitation that it did not exten-
sively test WebAssembly’s claim of being hardware-independent. Future research could
investigate the use of WebfCWT on various platforms, including edge devices and a
range of other sensors [4], to determine if its performance in terms of speed, accuracy,
and power consumption remains consistent. Nevertheless, current results are promis-
ing [5,6].
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The proliferation of the IE has led to an explosion of sensors that generate non-
stationary signals. Consequently, the analysis of these signals is essential for developing
safe and reliable IE. Time-frequency analysis algorithms are designed to capture the tem-
poral variations present in these signals; but, their computational complexity has made
them challenging to implement in real-time and to use on different platforms. To ad-
dress these challenges, we developed WebfCWT, a fast, high-resolution, platform and
hardware-independent edge application of the fCWT, using WebAssembly technology.
WebfCWT can provide high-quality, hardware independent frequency analysis at at least
twice the speed of hardware dependent implementations. As such, it opens up new oppor-
tunities for the development of applications that make our environments safer, more reli-
able and secure and highlights the potential of WebAssembly for implementing complex
algorithms in a hardware-independent and accessible way.
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