
Engineering Context Updates

Juan Carlos AUGUSTOa,1
a

 Research Group on Development of Intelligent Environments
Department of Computer Science, Middlesex University London, U.K.

Abstract. Context has become a concept with practical applications in Computer
Science. It is a complex concept which has been used often, however one which is
not well understood, and its use is often superficial. This article highlights some
considerations which may be important for our technical community to think more
explicitly and to investigate in further depth. The contribution of this article is in
highlighting the ramifications of system updates in the contexts being considered.
The goal is to encourage future closer analysis and the development of much needed
design and development tools that can provide support for developing systems
which are more resilient to context updates.

Keywords. Contexts, Context-awareness, Requirements, User Preferences.

1. Introduction

Technical publications from a decade ago where highlighting the importance of context
variability and their relationship with requirements (see for example: [1,2]), the state of
the art is still very much the same. No much progress have been made in this direction.
This work aims to contribute to that discussion. Some work has been done to help link
some of the contexts in the system with change by forecasting context variability (e.g.,
[3]). We feel the problem is much wider and requiring a more holistic approach, and
developers in this area ought to have a more comprehensive approach to identifying the
inter-relations between contexts and of contexts with other important system concepts.

Here we take a wider view, where we consider context-context, contexts-
requirements and context-user preferences interactions as areas to discuss and represent
more explicitly during system development. We take as a departing point a recent
theoretical redefinition of context and context-awareness which more explicitly take into
account stakeholders and we use this framework to provide a first approach to context
revision with a more identification of possible system concept interactions which we
propose require more careful consideration.

We illustrate our considerations with the support of a scenario we borrow from [4].
This considers an Ambient Assisted Living system where we refer to as ‘beneficiaries’
the main recipients of the system services:

Beneficiary B lives in a smart home and has two main weekly routines from Monday
to Friday and during weekends. Monday to Friday routines involve waking up at 7AM
to be ready to go to work at 8AM. B expects some automation services. During the
process of getting up in the morning B typically gets up from bed, goes to the bathroom,
then to the kitchen, has breakfast, and goes out of the house to work. The pressure pad

1 Corresponding Author, E-mail: j.augusto@mdx.ac.uk.

Workshops at 18th International Conference on Intelligent Environments (IE2022)
H.H. Alvarez Valera and M. Luštrek (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/AISE220056

293

in the bed and motion sensors in the bedroom allows the system to understand when B is
physically getting up and other motion sensors in the corridor, the bathroom and the
kitchen allows tracking B’s trajectory. The system turn on lights in the next relevant room
and turns them off in rooms where they are perceived not to be useful anymore. When
the user enters the kitchen the system turns on the radio. The sensors in the doors of the
kitchen coverts and fridge as well as the devices used, such as the kettle or the microwave
oven, provide clues of the user preparation of breakfast. Meanwhile the system can
present information on weather and air quality air for the work area of the city, which
helps B’s decision making about transport choices to reach the workplace. It could also
happen that B gets up during the night to go to the bathroom and the system is expected
to understand this is not the same than the breakfast routine to go to work. One of B’s
elderly parents, PB, also lives in the same house and has been increasingly experiencing
symptoms of senile dementia, with increased safety risks, so the system is expected to
differentiate between different beneficiaries going to the bathroom and trying to go out
of the home and at what times these events are expected. Guiding lights can reduce PB’s
risks of falling and also help with her orientation. Getting up in the middle of the night
for the bathroom should not trigger actions in the kitchen. B’s leaving going out of the
house during dark hours is fine but it may be dangerous for PB given the spatial and
temporal confusion experienced for that person. Table 1 summarizes this.

Table 1. Examples of context descriptions based on the smart home scenario..

 Context Concept: front door use
Name Front_door_use1 Front_door_use2

Benficiary B PB
Activation Any time & at Front door & 8 AM–8 PM & at Front door &

 Open door & Leave house Open door & Leave house
Effect Do nothing Inform B

 Context Concept: going to bathroom
Name Going_to_bathroom1 Going_to_bathroom2

Benficiary B PB
Activation 7:00–7:15 & Gets up from bed 7:00–9:00 & Gets up from bed

 & Bedroom movement & Bedroom movement
Effect Turn on lights in Turn on lights in

 bedroom, corridor, and bathroom bedroom, corridor, and bathroom
 Context Concept: getting up routine in process

Name Getting_up_AM_routine1 Getting_up_AM_routine2
Benficiary B PB
Activation 7:00–7:15 Enter bathroom 7:00–9:00 Enter bathroom

Effect Turn on radio and kettle Notify B
 Context Concept: skipping lunch

Name Skipping_lunch1 Skipping_lunch2
Benficiary B PB
Activation 12:00–2:00 12:00–2:00

Effect Do nothing Remind PB
 Context Concept: being at kitchen

Name Being_at_Kitchen1 Being_at_Kitchen2
Benficiary B PB
Activation Kitchen PIR activated Kitchen PIR activated

Effect Log activity Log activity

J.C. Augusto / Engineering Context Updates294

The content of the table reflects some of the contexts in that described scenario and each
context is defined using the format of the following four context “aspects”: [Name,
Beneficiary, Activation, Effect]. There are 8 different contexts defined, four for
beneficiary B in the second column and four for beneficiary PB in the third column.

We keep the description of contexts in the table and in the rest of the paper at a
high level to focus on the concepts that matter, and not get distracted with the lower level
close to the technology details. For example, “Gets up from bed” can be interpreted as
the occurrence of a set of lower level sensor activations such as the bed pressure sensor
is on for some time then is off for a few seconds and overlapping with these changes the
bedroom passive infrared sensor has been triggered for a while.

2. Conceptual Grounding

This paper forms part of a line of work on revisiting the notion of context and context-
awareness and their link with system stakeholders, especially to developers [5,6,7,4].
The main aim of that line of work is to reassess these concepts from a point of view that
is more useful for modern system developers interested in context-awareness and
facilitates discussion from a more Software Engineering oriented point of view. Here we
retake from previous publications and explore in more detail context change and context
revision from the developers’ point of view. First we start with our two stakeholder-
centric definitions2 of Context and of Context-awareness:

Context: the information which is directly relevant to characterize a
situation of interest to the stakeholders of a system.
Context-awareness: the ability of a system to use contextual information in order to
tailor its services so that they are more useful to the stakeholders because they
directly relate to their preferences and needs.

Where we emphasize that the usefulness of these key concepts in Intelligent
Environments3 is on how effectively it provides services to humans. This becomes
explicitly built in the theory explained in the coming sections and becomes a core of the
following discussions.

We assume a theory of Contexts for Intelligent Environments (CIEn), as recently
presented and illustrated in [4], represented through a structure focusing on a set of
contexts and a set of operators defined over them:

CIEn=<B, S, C, Ops, A, OW> where:
B={B1, B2, . . . , Bb} is a finite set of beneficiaries,
S={S1, S2, . . . , Ss} is a finite set of services,
C={C1, C2, . . . , Cc} is a finite number of contexts,
 with Ci=[Name, Beneficiary, Activation, Effect],

 Ops={Op1,Op2, . . . ,Opo} is a finite set of context operations,
A={Al1, Al2,…,Ala} is a finite set of algorithms to process context information,
OW={… OWi …} is a finite set of instances OWi of observations of the real world.

2 Different to the popular Dey’s definitions [8,9].
3 By Intelligent Environments [10] here we mean sensing systems with intelligent software to provide

context-aware services, and we consider the concepts discussed are very much applicable to closely related
systems as those discussed in areas such as IoT, Ubicomp, Percomm, Ambient Intelligence, AAL, etc. [11].

J.C. Augusto / Engineering Context Updates 295

Be L a language and�(L) a set of valid sentences in that language. For Ci � C the
“Activation (Condition)” can be defined as ACi={w1

ci , ..., wn
ci} and given OWj={w1

j ,...,
wm

j}, where OWi � �(L), OWi |/= �, ACi � �(L), ACi |/= � (i.e., OWi and ACi are
assumed to be consistent well-formed formula in L), we can also define a context
satisfaction function �� C x OW --> Bool, which decides whether the observable world
of the system satisfies the context or not. This operator will basically check whether
OWj |= ACi and it can be defined as:

��Ci, OWj)=
“true” iff forall wx

ci � ACi there exists: wy
j � OWj such that f(wx

ci ,Fc ,wy
j ,F0);

 “false” otherwise
where f(wx

ci ,Fc ,wy
j ,F0) is a fulfilment function checking that well-formed formula wx

ci
in the higher-level context language Fc is semantically fulfilled by the meaning of well-
formed formula wy

j in the lower level language of sensing in the observable world F0.
The concepts above tie more closely with the notion of being stakeholders’ centred

as an IE system can be conceived as an optimization function which maximizes services
performance in alignment to user expectations as follows [4]. Consider the following
additional concepts:

Beneficiary Context Perception (BCP) is the context as perceived by the beneficiary,
where Perception here is understood as measured with the available infrastructure.
Beneficiary Context Expectations (BCE) are the services the beneficiary expects in
a given context.

If we use a function BCE(pi, sj, ck, b; t) which measures how a beneficiary (b) prefers (pi)
a contextualized (ck) service (sj) at a certain time (t), and a function BCP(pi, sj, ck, b; t)
which measures how that beneficiary perceives the actual delivery of that service, then
we can define the level of Service Achievement Satisfaction of an IE system for a
beneficiary b at time t as:

SAS (IE, b, t)= �i=1..p; j=1..s; k=1..c |BCE(pi, sj, ck, b; t)- BCP(pi, sj, ck, b; t)|=0
That is the IE system should aim to achieve the best possible alignment of the user
expectation with the user perception of systems across all services at all times. A
generalization SASm(IE, B, t) for multiple users was also given in [4].

3. Context Changes

Contexts in a system can change. So the originally envisaged contexts may need revision.
This could be because at early stages of design developers are still evolving these
contexts, because careful system testing and validation uncovered problems with the
current contexts being considered, or because after the system has been working for some
time it requires adjustments as part of the system maintenance. How should this be done?

Some basic operations defined over contexts we may like to consider for a start are the
obvious (we will call them consistency preserving updates):

� Deletion(Ci, C, C’), the deletion of Ci from C with result C’: C’= C-{Ci}),
� Addition(Ci, C, C’), the addition of Ci to C with result C’: (C’= C�{Ci}), we

assume Ci has a different name to those already in C. Developers need to
consider carefully that this may add a context Ci=[Name1, Beneficiary,
Activation, Effect1] and C 	 Cj=[Name2, Beneficiary, Activation, Effect2]. If
{Effect1, Effect2} |= � it will require a system capable to handle inconsistency.

J.C. Augusto / Engineering Context Updates296

On another hand, if{Effect1, Effect2} |/= � it will require a system capable to
handle non-determinism allowing the system to choose between two possible
courses of actions effects in the same situation.
� Modification(Ci, C, C’), the modification of Ci from C with result C’.
Here several types of modifications may be distinguished. (1) A modification
of name must use a name different to names of other existing contexts. Are
contexts only distinguished by their name in the system? (2) A Beneficiary
modification could lead to the potentially problematic situation of having
Ci=[Name1, Beneficiary, Activation, Effect] when C 	 Cj=[Name2, Beneficiary,
Activation,Effect]. (3) An Activation Condition modification could be made by
eliminating part of the Activation Condition; or when the modification is by
augmenting the conditions: where Ci has ACi={w1

ci , ..., wn
ci} and C’

i gets
Activation Condition AC’

i={w1
ci , ..., wn

ci, wn+1
ci}, provided AC’

i remains

consistent; or when the modification is altering part of the condition: so that
Ci has ACi={w1

ci , ..., wn
ci} and C’

i gets Activation Condition AC’
i={w1

ci , ...,
wn’

ci}, provided AC’
i remains consistent. (4) Finally a modification of the

Effect part could lead to the issues raised as for the Addition operation.
As examples of modifications, consider a context (using the format Ci=[Name,
Beneficiary, Activation, Effect]):

C1={Going_to_bathroom1, B, 7:00–7:15 & Gets up from bed & Bedroom
movement, Turn on lights in (bedroom, corridor, and bathroom)}

We can improve the name to make it more specific, and also add a condition that to
request that is only triggered when movement in the bedroom is followed by movement
in the corridor:

C’
1={Going_to_bathroom_earlyAM, B, 7:00–7:15 & Gets up from bed &

followed_by(Bedroom movement, Corridor movement), Turn on lights in
(bedroom, corridor, and bathroom)}

Or we can also transform it into a more generic one by removing some conditions:
C’’

1={Going_to_bathroom, followed_by(Bedroom movement, Corridor
movement) & bathroom dark, Turn on lights in bathroom}

From a higher perspective at an engineering level is less clear how change should be
managed. There are publications which focus on an automation level. For example a
system can learn statistically that the user is shifting some habits starting them earlier or
later in the day or on different days, so rules can be modified or added or deleted,
however these modifications can introduce conflicts with other rules, including
contradictions, and although in theory some of these can be handled through automated
formal verification (e.g., model checking) either on the at design time or at run-time,
these are far from being a reality. Besides there are new concepts or modifications of
contexts which can involve changes the system cannot collect statistically. Hence the
engineering process of these systems is still one that requires human developers in the
loop. Now, what developers should take into account when considering modifications
to the contexts of a system?

One system concept that comes to mind is obviously Requirements. A change in a
key system element should be reflected in a change of requirements. The problem is
although requirements can be represented in formal languages; they are usually
represented through sentences and descriptions written in one of the so-called ‘natural
languages’ (e.g., English). Still there should be a synchrony between requirements and
contexts and changes in contexts should most likely involve a revision of the

J.C. Augusto / Engineering Context Updates 297

requirements. So we can supplement the Contexts for Intelligent Environments (CIEn)
given above with some accessory concepts which are more related to the process of
engineering such systems. For example, we can assume a finite set of requirements:
R={R1, R2, . . . , Rr}. Now the tricky part comes on the vagueness often associated with
requirements specification, so it could be that a requirement Ri is actually realized
through one or more contexts Cj. For example, “lights should be managed automatically”
may lead to the consideration of a daylight context and a darkness context to be
considered. It could also be a context is related to more than one requirement. For
example, turning off lights in a room when is empty can relate to a requirement focused
on money savings and to another one on reducing carbon footprint. This Requirements-
Contexts relationship is likely not to be a one-to-one mapping. Some way of keeping
track of this relation needs to be used so that modifications during system build up and
later during system maintenance can be used to more safely handle change at context-
awareness level. As an initial simplification we will assume here a relationship ‘one to
many’ between requirements and contexts and we will assume there is a mapping as in
Table 2 (let us call this an R-C Mapping Table).
 Table 2. Requirements to Contexts mapping.

Requirements Contexts
 R1 …
Ri Ci

1 … Ci
m

Rr …

Let us assume we know which contexts we want to change. How do we change

them? Consistently with the case we have been developing for a more explicitly
stakeholders’ centred approach to contexts engineering in Intelligent Environments here
we propose that a highly important element to use as a guide is the so called user
preferences [12]. So let us assume each beneficiary Bi has associated a preference
structure, a partial order of preferences P={P1, P2, . . . , Pp}. For example, in terms of
the entertainment options at home, a younger member of the family may have
preferences for certain T.V. programs and music whilst older adults in the house prefer
a different set of T.V. programs and music and/or in a different order of priority. A
context may relate to several user preferences and a preference may relate to several
contexts. For example, a context of putting calming music when a member of the family
is stressed can link to preferences of music genre, also music volume, whilst a preference
on a music genre could relate to both a stressful context and a daily yoga practicing
context. Again as a simplification here we will consider a ‘one to many’ relationship
and a corresponding table reflecting that, and we will assume there is a mapping as in
Table 3 (let us call this a C-P Mapping Table).
Table 3. Contexts to Preferences mapping.

Contexts Preferences
C1 …
Cj Pk

1 … Pk
n

Cc …

All of these main ingredients are highlighted in Figure 1. Instead of the usual trial

and error of ‘tweaking the code and see whether it works’ we advocate here for a more
methodic approach where preferences, contexts and requirements are looked as a whole

J.C. Augusto / Engineering Context Updates298

Fig. 1. To modify Contexts, IE System Developers (IESD) need to have into account System Users
Experience (SUE) and, especially, their priorities and system requirements.

How change should proceed? We propose that if context Cj is being changed into C’

j then
developers should:

1. Obtain the list of preferences Pk
1 … Pk

n associated with Cj from C-P table
2. If context change implies revising preferences then update C-P table
3. Make changes to Cj into C’

j using consistency preserving updates and also
in a way it takes into account its effect on SAS

4. If C’
j implies revising requirements then update R-C table

For example, Say we have a context: C22= {Getting_up_AM_routine2, PB, 7:00–8:00 &
Enter bathroom, Notify B} and we need to modify it to account for the seasonal variations
given beneficiary PB wakes up later in winter. The developers may be tempted to modify
the Activation Condition so that time window considered is from 8:30-9:30. However
consulting the list of preferences may highlight PB has a preference for waking up earlier
and also there is a preference from a medical point of view for PB not to wake up too
late so that it keeps a healthier and more active lifestyle. This discovery actually
highlights and important requirement which is not explicit and could be considered for
revision and addition to the existing ones. In the balance of services delivered by the
system, the SAS function will improve the service value as, whilst lowering on the
financial side because of higher consumption of energy, it will increase the service
satisfaction on PB for satisfying the preference for an earlier start and the satisfaction of
other stakeholders (family and doctor) by keeping PB more healthily active.

So far we have looked at how contexts fit in the ‘bigger picture’ of an IE system
and how contexts relate to other concepts (requirements and user preferences). Let us
look next at how contexts relate to each other.

4. Contexts Inter-relationships and Interactions

If we want to create systems which are perceived as ‘effectively smart’, we need to scale
up from the typical knowing the location and time of the day, and more sophisticated
combinations of contexts should be considered. In [4] a number of new possibilities were
highlighted as different perspectives developers can consider when thinking about
contexts in their system, these included more explicit considerations on how contexts
may inter-relate to and interact with each other.

J.C. Augusto / Engineering Context Updates 299

One perspective was looking at them from a hierarchical/organizational relationship:
� “C1 is equal to C2 on aspect Ai”, represented by (=) (C1,C2,Ai) when aspect

Ai in both C1 and C2 have the same content;
� “C1 overlaps with C2 on aspect Ai”, represented by (><) (C1,C2,Ai) when

aspect Ai in C1 and C2 have some common content;
� “C1 subsumes C2 on aspect Ai”, represented by (>) (C1,C2,Ai) when aspect

Ai in C1 contains all elements of the same Aspect in C2 and more;
These relationships are clearly of relevance when modifying the definition of a

context (say when an extra individual should be notified on emergency contexts) as
explicitly knowing there is a relationship between two contexts will remind developers
to revise the ones related to that one being modified or deleted. Equally when one is
added, a relationship analysis can be conducted to understand the role of the new context
in the “contextual ecosystem”.

Another perspective considered was looking at how directly and strongly contexts
influence each other:

� “C1 Directly Influence C2”, C1 � C2: if we have C1=[1, *, *, Effect] and
C2= [1, AC2, *, Effect] then we can say C1 directly influences C2 when the
effect of a context C1 has a direct impact on another context C2, that is, if
we consider C1(Effect) the symbolic representation of the services triggered
then C1(Effect) |= S where S
 AC2.

� “C1 has a Ripple Effect on C2”, represented as C1 �� C2: this can be seen
as Indirect Influence, the most complex and most interesting case, where
events occurring within one context, C1, affect another context, C2, but in
a less obvious way. C1 �� C2 can be characterized as follows: (1) C1 has
to start at least no later than C2 finished, and (2) there are C1-related events
which occur during the span of C1 and affect the value of properties in AC2

There is an advantage in the system if developers can somehow understand when
there are context activations which tend to lead to other contexts (say the chain ‘getting
up’, ‘washing face’, ‘preparing breakfast’, ‘leaving home for work’) because
modifications in one likely will influence the others.

And a third perspective was looking into their interaction modalities:
� Cooperative: C1 (+) C2, both contexts can be combined to realize another

one 3, that is given any p1 � AC1, p2 � AC2, p3 � AC3 and { p1, p2} |= p3 ,
for example ‘getting up’, ‘washing face’, ‘preparing breakfast’, and
‘leaving home for work’ all together can form part of the higher level
context ‘weekday morning routine’,

� Competitive: C1 (-) C2 means when either is detected the other one is not,
they “turn off” each other by disabling some conditions in the context
description, p1 � AC1 and p2 � AC2 and {…, p1,…} |/= p2, for example
context working will be associated with certain requirements on good
lighting and non-disruptive levels of sound supporting concentration,

� Incompatible: C1 (x) C2 means they cannot coexist simultaneously at any
time p � AC1 and �p � AC1 , for example the context of a person being at
home or not being at home.

Again, at the time of modifying contexts in the system developers can benefit from
knowing which contexts collaborate, compete or are incompatible with each other, so
that changes in ones may require revision of the others. In this category of inter-relations
the most likely important to pay attention to are changes to the “effects” part of contexts.

J.C. Augusto / Engineering Context Updates300

5. Conclusions

We have argued that to create more useful and interesting systems in our area, a more
sophisticated analysis of contexts and context-awareness is needed. We started revisiting
concepts and theories which bring more explicitly to the forefront of the development
process the alignment of the system behavior with the expectations from the
stakeholders. We also highlighted the need to look in more detail the way contexts
interact with other main concepts in a system. This is somehow done to some extent,
however, there is not much in the literature guiding developers on that. We argued this
is an important aspect which cannot be neglected as changes are unavoidable and they
will bring the need to carefully consider the effects of those changes in the rest of the
system. We also showed that systems have a lot of internal interconnections, and changes
made to contexts, or other elements related to those contexts, have ramifications. With
this we hope to make a case for future explorations and developments of more rigorous
engineering of context-aware systems. This contribution does not pretend to be a solution
in itself, more the starting of a, potentially long lasting, discussion on an important but
so far neglected aspect of context-aware system engineering.
For now there is an abundance of systems created mostly in an ad-hoc manner. Our area
needs to dig deeper into the concepts, methods and tools related to Context and Context-
aware system engineering, so that as an industry we are better equipped to create more
mature, useful and reliable systems in the future.

References

[1] Ali R, Yu Y, Chitchyan R, Nhlabatsi A, Giorgini P. Towards a unified framework for contextual
variability in requirements. 2009 Third International Workshop on Software Product Management, 31-
34.

[2] Ali R, Dalpiaz F, Giorgini P. A goal-based framework for contextual requirements modeling and analysis.
2010 .Requirements Engineering 15 (4), 439-458

[3] Rodrigues A, Rodrigues GN, Knauss A, Ali R, Andrade H. Enhancing context specifications for
dependable adaptive systems: A data mining approach. 2019. Information and Software Technology 112,
115-131.

[4] Augusto JC. Contexts and Context-awareness Revisited from an Intelligent Environments Perspective.
To appear in Applied Artificial Intelligence, Taylor and Francis. 2021. https://eprints.mdx.ac.uk/34176/

[5] Augusto JC. Reflections on Ambient Intelligence Systems Handling of User Preferences and Needs. In
Proceedings The 10th International Conference on Intelligent Environments (IE'14), Shanghai. IEEE
Press. 2014. pp. 369-371. https://eprints.mdx.ac.uk/14687/

[6] Evans C, Brodie L, Augusto JC. Requirements Engineering for Intelligent Environments. In Proceedings
The 10th International Conference on Intelligent Environments (IE'14), Shanghai, IEEE Press. 2014. pp.
154-161.

[7] Augusto JC, Quinde MJ, Oguego CL, Gimenez Manuel JG. Context-aware Systems Architecture
(CaSA). Cybernetics and Systems, Taylor and Francis. 2020. https://eprints.mdx.ac.uk/31198/

[8] Dey AK, Abowd G. Towards a better understanding of context and context-awareness. CHI 2000
Workshop on The What, Who, Where, When, and How of Context-Awareness.

[9] Dey AK. Understanding and using context. Personal and ubiquitous computing 5 (1), 4-7. 2001
[10] Augusto JC, Callaghan V, Kameas A, Cook D, Satoh I. Intelligent Environments: a manifesto. Human-

centric Computing and Information Sciences, 3:12, 2013. Springer. DOI: 10.1186/2192-1962-3-12 URL:
http://www.hcis-journal.com/content/3/1/12

[11] Augusto JC, Aztiria A, Kramer D, Alegre U. A survey on the Evolution of the Notion of Context-
Awareness. Applied Artificial Intelligence, Volume 31 Issue 7-8. Taylor and Francis. 2017.
https://eprints.mdx.ac.uk/23310/

[12] Augusto JC and Muñoz A. Managing Preference Profiles in Multi-user Intelligent Environments.
Proceedings of Citizen-Centric Smart Cities Services Workshop. 20-21 July 2020, Madrid, Spain.

J.C. Augusto / Engineering Context Updates 301

	1. Introduction
	2. Conceptual Grounding
	3. Context Changes
	4. Contexts Inter-relationships and Interactions
	5. Conclusions
	References

