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Abstract. Many cities around the world are deploying wireless sensor
networks to capture information on different environmental parameters.
Noise, as one of the main pollutants with negative effects on health and
economy, is monitored through sound pressure level. In this work, the
application of unsupervised clustering to sound pressure level data from
a wireless acoustic sensors network (WASN) is proposed. Data from a
sensor network deployed in the city of Madrid are used to show the
usefulness of performing a clustering process with the aim of detecting
different patterns of behavior of noise levels. The preliminary results
obtained have allowed us to divide the city into several acoustic zones,
which help city managers to propose improvement plans.
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Introduction

The European Directive 2002/49/EC aims to establish a common approach aimed
at avoiding, preventing or reducing, as a priority, the harmful effects, including
annoyances, of exposure to environmental noise [1].

To this end, it urges the rulers of cities to determine exposure to environ-
mental noise, make this information available to the population and adopt action
plans. The objective of these action plans is to prevent and reduce environmental
noise when it has harmful effects on human health and to maintain quality of the
acoustic environment when this is satisfactory.

To reach this objective, many cities are deploying a wireless acoustic sensors
network (WASN) to ensure the gathering of noise data that will be analysed and
used to design an action plan. Also, this data could be available in open data
portals to the citizens.

As different nodes should have different noise behaviors, the same strategy
should not works in all the nodes. Unsupervised learning techniques could help
grouping the nodes with the same behavior in clusters to allow cities to identify
these behaviors and establishing personalized strategies for each cluster.



A. Pita et al. / On the Application of Unsupervised Clustering to Sound Pressure Data 171

Unsupervised machine learning techniques including clustering and dimen-
sionality reduction have been used to optimize the choice and the number of mon-
itoring sites [2]. Using hourly averaged L Aeqin acoustic data of a 24 h measure-
ment campaign in the city of Milan, Italy, a methodology for a more efficient way
to estimate the mean Ly and Lp levels in urban roads compared with the leg-
islative road classification [3] was presented. Moreover, in order to associate each
of the streets of the pilot zone with one of the two noise profiles detected in the
clustering and then calculate the dynamic map, different non-acoustic parameters
were evaluated [3]. Recently, the intermittency ratio indicator was combined with
the L Aeqih data to improve the classification of different types of road in two
identified clusters [4].

In this research, clustering techniques are proposed for the analysis of urban
noise pollution of the city of Madrid in order to identify and classify different
urban acoustic behaviors, rather than only road traffic zones. These behavioral
groups will help municipalities to monitor the sound contamination, estabish per-
sonalized action plans for each behavior and evaluate the noise pollution actions
plans in each behavioral group allowing city council to manage the noise pollution
depending of the behavior of the noise not only the sound level pressure or the
source of the noise, that are the usual ways to control the noise pollution.

Materials and Methods

In this section, first, the dataset is presented and described. Second, the data anal-
ysis and transformations are explained and summarized in some graphs. Third,
the clustering techniques are presented and the selection technique evaluation is
developed. Finally, the software and technology used in this research is enumerate.

Dataset

The Acoustic Pollution Monitoring Network of the city of Madrid has 31 perma-
nent stations in charge of the control and continuous monitoring of the existing
noise levels [5].

The sound pressure level measurement dataset of these stations was retrieved
from the acoustic pollution section in the Madrid council’s open data portal [6].
The available data provides long-term analysis, from January 2014 until December
2021. The location of these fixed stations is shown in Figure 1.

The sound pressure p(t) is usually measured continuously over a given time
period T = [t1, 5] for all t € T, to quantify the sound level on a single value using
the equivalent sound pressure level in dB, denoted as Leqr [7],

1 ta 2 t
Leqr = 10 - log [T/t pp(2 ) dt} where T' =ty — tq, (1)
1 0

and pg is the sound pressure reference value equal to 20 pPa. In particular, de-
ployed nodes compute the A frequency-weighting equivalent sound pressure level
of one minute period, denoted as Laeqim in dBA unit, applying Equation (1).
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Figure 1. Map showing the location of the 31 acoustic nodes deployed in the city of Madrid,
Spain.

In this work, sound pressure level results are presented applying a long-term
average of Laeqim. Different time periods 7' can be defined, for instance it is
denoted as Laeqiq for a 24-h day period and Lacqiy for a generic year period.
Moreover, the equivalent sound pressure level in a specific year Y is denoted as
Lacqy, for instance Laeq2020 represents the equivalent sound pressure level for
2020. These values are calculated using an energetic average with the following
equation [7],

1 — LAcq;
Lieqr = 10- log l"E 107 ] (2)
=1

where n is the total number of 1-unit time intervals in period T and Leq, is the
equivalent sound pressure level in the interval ¢ obtained by the sensor applying
Equation (1). For instance, to calculate L Acqlh, 60 values of Lacqim are averaged.

The data provided by the Madrid city council contains acquired data from
January 2014 until December 2021, downloaded from the Acoustic Pollution
repository in the Madrid’s open data platform [6]. This data is spread in annual
flat files in a semicolon tabulated format with a total storage size of 16,7 MBytes
which contains several daily or a period of the day acoustics indicators calculated
regarding Directive 2002/49/EC [1]. This Directive [1] establishes that member
states must calculate the acoustic parameters Lgen and Lyight for the preparation
and revision of the Strategic Noise Map (SNM).

Lgen, defined in Equation (3), refers to the day-evening-night noise indicator
obtained for an overall assessment period, usually one year period.

Lday evening T5 Lnight+10

1 L
Laen = 10 - log {24 (12-10 o 44.107 10 48-107 10 )] (3)

where Lgay, Levening @nd Lyight, also denoted as Lq, Le and Ly, respectively, are
the A-weighted long-term average sound level. In this paper, Lq, L. and L, are
calculated using Equation (2), determined over all the day periods (07:00-19:00),
evening periods (19:00-23:00) and night periods (23:00-07:00), respectively, over
the assessment period.
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Each instance of the Madrid’s files contains the indicators L sqqr correspond-
ing for a day, evening and night periods and 24h for a specific station on every
day. Therefore, in this work, Lqiy, Le1y and Ly1, indicators will be used as inputs
to model the behavior of the nodes in different periods of the day, so the temporal
variability during a day is taken into account. Moreover, yearly standard devia-
tion of Lgen1q to identify the variability of the nodes during a year, denoted as

5d1y(Lden1a)- The selection of these variables as inputs is also based on Directive
2002/49/EC [1].

Data Preprocessing and Exploratory Analysis

Firstly, a data quality analysis was conducted, identifying nulls and the com-
pleteness of the data. Due to some technical mistakes, such as connections errors,
maintenance and breaks, all the information is not usually available. Therefore,
an analysis of the completeness of the data must be carried out to identify the
amount of available and missing data. In the calculation of the KPIs used in this
research, the instances with missing or erroneous data has been dropped out of
the calculations.

Once the KPIs are calculated, some basic exploratory analysis can be per-
formed to look for some important features of the data. Although this is not the
main objective of this paper, some results are shown to illustrate the experiment.
For instance, the sound pressure level time series can be analyzed for each node
independently. Figure 2 shows the Lqen14 statistics along the available dates. The
red vertical lines delimit the period of national state of alarm decreed by the
country, with a lockdown from 15 March 2020 to 21 June 2020. Through these
graphs, a discussion could arise regarding the effects of the COVID-19 disease in
noise pollution. Although this analysis is out of the scope of the current work,
readers should note that the impact of the COVID-19 lockdown period in noise
levels and soundscapes has been analyzed in different cities, such as Madrid [8]
and Milan [9].
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Figure 2. Lgen1q time series for node M ADs. Note that Spanish lockdown corresponds with the
period between red lines.
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Model Description

In this research, several clustering algorithms were trained, including k-means
clustering [10], hierarchical agglomeration [11], expectation maximization algo-
rithm [12], partitioning around medoids [13], the divisive hierarchical algorithm
DIANA [14],the fuzzy clustering FANNY [14], the sampling-based algorithm
CLARA [14], Kohonen self-organizing maps [15] and the self-organizing tree al-
gorithm (SOTA) [16].

Using the following yearly acoustic indexes, Lday, Levening, Lnight and stan-
dard deviation of Lgen. A comparison of the results using Dunn Index [17], Con-
nectivity [18] and Silhouette Width [19] concludes that hierarchical agglomera-
tion has the best performance for these data. The evaluation of the algorithm are
presented in Section Results

The method considered in the following, called hierarchical agglomera-
tion [11], is an unsupervised learning algorithm which groups the unlabeled data-
set into different clusters. Initially, each observation or instance (in our case each
node) is placed in its own cluster. The clusters are then sequentially (in steps)
combined into larger clusters until all elements end up being in the same cluster
that contains all the observations. At each step, the nearest two clusters are com-
bined. To identify the nearest two cluster, a distance D between clusters must
to be calculated. As a cluster can have one or more observations, the distance
D between two clusters (also called height) is the maximum of the distance d of
pairs observations, each from each cluster as shows Equation (4) where d is the
euclidean distance between observations.

D(C;,C5) = max  d(z,y) (4)

zeCi,yeC

Once all the observations are together in the same clusters, you must go back
n — 1 steps to divide the observations in n clusters.

Software and Technology

The preparation, transformation, analysis and modelling of the data have been
performed using the Statistical Programming Language R [20], combining a local
environment using R version 4.1.0 with a cloud environment provided by RStudio
Cloud using R version 4.1.2. The cloud environment has been used to parallelize
some tasks. The following libraries have been involved in the tasks: stringr (Ver-
sion 1.4.0), dplyr (Version 1.0.5), tidyr (Version 1.1.3), cluster (Version 2.1.1),
gegplot2 (Version 3.3.3), hrbrthemes (Version 0.8.0), imputeTS (Version 3.2) and
zoo (Version 1.8-9).

To ensure the reproducibility of the research, in every task that includes a
random step, the seed using the R function set.seed() has been fixed. Due to
changes in random numbers generation in R version 4.0.0, the way to generate
them to be sure that the analysis will be reproducible in every R version has also
been defined.
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Results

In this section, the evaluation of the different algorithms is presented and com-
pared. Also the results obtained from applying the optimal clustering technique,
see subsection Model Description for details, to the collected data, see subsec-
tion Data Preprocessing and Exploratory Analysis for details, are presented.

In order to show the relevance and the relation between these indicators,
La2019; Le2019, Ln2019 and sdag19(Lden1d), & smoothed color density scatterplot
representing all the nodes can be seen in Figure 3. The smoothed color density
helps to identify dense zones that groups nodes with similar behavior. The first
row of plots compares the sound pressure level statistics pairwise. The black line
is the so-called identity line meaning that both statistics are equal. The nodes in
the upper right part of each plot show high sound pressure level values that affects
citizen well being. Almost all nodes has similar sound pressure level at daily and
evening periods and lower nightly, except M ADg that has higher nightly sound
pressure level than daily and evening. The second row of plots compares each
sound pressure level statistic with the standard deviation of Lgeniq.
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Figure 3. Scatter plot of the Lqg2019 , Le2019, Ln2019, and sd2019(Lgen14) metrics representing

Ld[dBA]
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all the nodes. Black line represents identity line, i.e., equal value for both KPIs.

In these plots, it can be identified different types of nodes: nodes with
low sound pressure level and low standard deviation related with quite zones,
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nodes with high sound pressure level and low standard deviation related with a
constant high noise pollution and nodes with high standard deviation that have
some days with low sound pressure level and other days with high sound pressure
level. A dense zone around the point Lgog19 = 63 dBA, Lesg19 = 63 dBA, L2019
= 55 dBA and sdap19(Lden1ia) = 1.2 dBA groups nodes with a constant noise
pollution along both the day and the year. Node M ADsy is located in the middle
of the iconic park in Madrid called Casa de Campo, this is the reason why this is
the one with lowest sound pressure level in daily, evening and nigthly periods.
Figure 4 shows Dunn Index, Silhouette and Connectivity for every algorithm

considering 2 to 12 clusters. Hierarchical agglomeration with 2 clusters is the

optimal one because maximizes Dunn Index and Silhouette Width and minimizes
Connectivity.
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Figure 4. Validation measures for a given set of clustering algorithms and number of clusters.

According with the analysis, it has been consider the hierarchical agglomera-
tion clustering model to groups the nodes in the 2 optimal clusters because is the
optimal one since maximizes Dunn Index and Silhouette Width and minimizes
Connectivity.

The first cluster (red color) is made up of the 21 nodes that have the highest
sound pressure and therefore entail a greater risk to health, while the second (blue
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color) is made up of the 10 nodes that have the lowest sound pressure as can be
seen in Table 1. It is interesting to note that although the sound pressure values
of the first cluster are higher, their variability is much lower while it is higher in
those nodes that belong to the second cluster.

Table 1. Size and centroid of clusters using data collected during 2019.

Cluster Lg,9,9 Le2019 Ln2019  sd2019 (Ldenld) Size  Color
1 65.0 64.4 59.8 1.39 21 blue
2 58.4 57.9 54.4 2.16 10 red

Discussion

Table 1 shows that clusters centroids created by hierarchical clustering are differ-
ent but it’s necessary to analyse the distribution of the node’s values and their
volatility to help city managers to understand the underlined patterns to take
decisition in order to manage noise pollution.

Figure 5 represents the variable distributions for both clusters showing that
the behavior of the clusters are different where the 75th percentile of the cluster
distribution for the low value variable is lower than the 25th percentile of the high
value variable. So cluster 1 and cluster 2 need different action to manage noise
pollution. Also, there is an outlier node corresponding with M ADs, that should
be managed independently.

1
|

Figure 5. Clustering Boxplot

Dendogram allows city managers to select smaller groups than clusters with
similar characteristics related with sound pressure level. It is possible to do a
deep dive to understand the relationships between nodes showing a dendogram as
Figure 6, where each square represents each cluster and the nodes belonging to. A
dendrogram is a tree based diagram showing hierarchical clustering relationships
between instances in a dataset, in particular, it’s a summary of the distance matrix
between instances or grouped instances used in the hierarchical agglomeration
clustering algorithm. The height represent the distances between the two joined
groups. Normally it is used to understand which intances or group of instances are
more similar to others and to show the clusters. In this case, we can identify nodes
with similar behavior, as M ADy; and M ADs5y witch are very similar because
their link has a small height.
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Figure 6. Hierarchical agglomeration

In this preliminary work, it is shown that unsupervised learning technique
is a promising technique that allows city managers to identify different sound
pressure level behaviors to help them proposing personalized strategy for each
group. The next step of designing plans in order to reduce the noise pollution in
the city and measure the impact of each action plan in each behavioral group,
matching behaviours groups with optimized actions in order to minimize noise
pollution and improve healthy. Unsupervised learning provides meaningful insight
for urban-designing and healthcare sector to control and prevent noise pollution.
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