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Abstract. Autism is a neurodevelopmental disorder characterized by deficits in 
social, interpersonal interaction and communication skills. A generalized facial 
emotion recognition model does not scale well when confronted with the emotions 
of autistic children due to the domain shift inherent in the distributions of the source 
(neurotypical) and the target (autistic) population. The dearth of labeled datasets in 
the field of autism exacerbates the problem. Domain adaptation using a generative 
adversarial model (GAN) counters this disparity by creating an adversarial model 
that aligns features of the source and target domains using adversarial training. This 
paper looks at building a facial emotion classifier model that can identify the 
idiosyncrasies associated with an autistic child’s facial expression by generating 
feature-invariant representations of the source and target distribution. The objective 
of the paper is two-fold – a) build a discriminative classifier to identify the emotions 
of autistic children accurately b) to train a feature generator to produce an invariant 
feature representation of the source and target domains taking into account their 
similar yet different data distributions, in the presence of unlabeled target data. 
Investigation into automatic recognition and classification of the facial expressions 
of the autistic population has not been pursued extensively vis-a-vis a neurotypical 
population due to the complexities associated with eliciting and interpreting data 
obtained from autistic children. 
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1. Introduction 

Affect recognition is the ability to automatically deduce the internal affective states 

of an individual. Inner emotions of a person have been quantified by using sensors that 

measure the tangible manifestations of affect, namely facial expression, gestures, voice, 

and physiological signals [1,2]. Human emotions like happiness, sadness, fear, etc. are 

typically manifested non-verbally through facial expressions [1]. But these expressions 

of affect cannot be generalized across people. Various factors like personality traits 

(introvert vs extrovert), cultural background, ethnicity, and facial physiology determine 

the extent and nature of emotions displayed through facial expressions [3]. 

Children affected by autism spectrum disorder (ASD) have impaired emotion 

recognition and emotion expression skills [4]. They find it difficult to express, 
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acknowledge their own emotions (facial emotion expression) or understand those of their 

peers (facial emotion recognition) [5,6,7]. Due to the atypicality of emotions exhibited 

by autistic children, facial expression markers cannot provide an efficient indicator of 

the mental disposition of the individual.  As extrapolated by various studies [8, 9, 10], 

episodes of anxiety attacks, depression, and schizophrenia are predominantly high in 

children diagnosed with ASD.  

A generalized emotion recognition model cannot be standardized in such scenarios 

because there is no one standard that covers all categories of people and the range of 

emotions they display. The objective of this paper is to develop a discriminative classifier 

that can identify the facial emotions of autistic children, in the absence of annotated 

datasets. Representative features of the target ASD population are oriented to that of a 

typically developing (TD) source population by exploiting the power of massive 

annotated datasets available in plenty in the source domain. Sensing the true inner 

emotive states of individuals and regulating them can be life-saving in many situations 

in case of neurological and cognitive disorders like schizophrenia, dementia, autism, 

depression, PTSD, etc. It also equips the caregiver or clinician to administer timely 

intervention and effective applied behavior therapy [11, 12].  

2. Generative Adversarial Networks (GAN) 

GANs follow a paradigm of deep (unsupervised or semi-supervised) generative 

modeling that enable neural networks to learn feature representations from data 

distributions in the absence of extensively annotated data [13]. GAN training can be 

characterized as an adversarial duel between two competing neural networks, a generator 

G and a discriminator D trained in unison, primarily to generate photo-realistic images 

from a random noise distribution [14]. GANs have now been adapted to a wide range of 

computing disciplines like computer vision, image synthesis, image-to-image translation, 

image super-resolution, video synthesis, and natural language processing. This has led 

to the evolution of GANs in a variety of extensions - DCGAN, AuxGAN, cGAN, 

InfoGAN, StyleGAN, CycleGAN, Pix2Pix, and BigGAN [15,16,17,18]. 

The competing neural network models are typically constituted from a stack of 

convolutional and fully connected dense layers. The generator learns to produce a 

distribution of images from a latent space, which bears a close semblance to the data 

distribution of the real images. The discriminator presented with both the synthetic and 

real images becomes an expert at tagging them as fake/real respectively [19,20,21]. 

Updating the model weights is based on the optimization strategy to maximize the 

discriminator objective function Ex[log(D(x)] + Ez[log(1-D(G(z)))] and minimize the 

generator cost function Ez[log(1-D(G(z)))]. 

2.1. Unsupervised Domain Adaptation 

Deep neural architectures learn meaningful feature representations in the presence 

of massive amounts of annotated data. Often, obtaining large, annotated datasets can be 

cumbersome, expensive, time-consuming, and sometimes infeasible. Domain adaptation 

adapts the concept of adversarial training in GANs to build classifiers that predict labels 

from an unlabeled target domain by harnessing the power of extensive, labeled datasets 

available in a related source domain, albeit with a shift in data distribution [22, 23, 24, 

25, 26]. This approach has been applied in situations where the target data is partially 
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labeled (semi-supervised domain adaptation) or totally unlabeled (un-supervised domain 

adaptation) [27]. In the course of training, a deep feed-forward network with the domain 

adaptation component embedded enables a decision model to generate feature vectors 

that are discriminative for a classifier to label [28]. Concurrently, the learned feature 

representations from both the domains are mapped together to have a near-identical data 

distribution so that a shift in the domain distribution of the source and target does not 

impede the classifier’s judgment [27]. 

3. Methodology 

The source domain constitutes images from the neurotypical population and the target 

domain distribution comprises images of facial expressions of autistic children. Figure 1 

depicts the proposed architecture for unsupervised domain adaptation. 

The architecture comprises of three components: 

 

i) Feature Generator: Constituted from layers of convolution neural network, it 

doubles as an extractor of feature vectors for the source domain as well as a 

domain invariant feature generator for both the distributions put together. The 

embeddings of the source images coupled with the class labels (source dataset 

is labeled) is provided as input to the emotion classifier model.  

ii) Label Classifier: Predicts an emotion label by interpreting the feature 

embeddings provided by the feature generator. 

iii) Domain Discriminator: Takes in features of both source and target images given 

by the generator and generates a prediction as to its true domain.  

 

In a typical training iteration, each of the network components is involved in training as 

follows - The feature generator extracts embeddings from source images, coupled with 

their labels are fed into an emotion classifier to train on. Simultaneously, the 

discriminator presented with images from both the source and the target (labeled as 

real/fake), is a binary classifier that gets better at pronouncing a verdict as to the domains 

they originate from. 

 

 
Figure 1. Proposed architecture for unsupervised domain adaptation. 
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Both the classifier and the discriminator networks are tuned independently and in 

isolation on mini-batches of data for the dual tasks of emotion classification and domain 

discrimination respectively. Unsupervised domain adaptation pits the generator and 

discriminator against each other in adversarial training. The feature generator weights 

are updated only as part of the GAN adversarial training. During GAN training, images 

from both the source and target with their labels interchanged are passed to the generator. 

The extracted feature vectors are further consumed by the discriminator. This rings in 

domain confusion with a corresponding increase in the GAN loss, a standard cross-

entropy loss. As a ripple effect, the generator updates its weights as part of the 

backpropagation process with a goal to minimize this loss. The GAN is stabilized only 

when the discriminator and the GAN losses are in equilibrium. Network weights are 

updated, after each batch is encountered, by taking samples from the source for label 

prediction, and both the source and target for domain adaptation. Figure 2 details the 

architecture of the neural network model. 

 

Figure 2. Architecture of the network with kernel size (k), number of channels (n), stride (s), 
and pool size(p) 

3.1. Datasets Used 

The GAN was evaluated using two renowned datasets widely used in facial emotion 

recognition studies, FER-2013 and CK+ datasets. FER-2013 contains around 28000 

images, 48X48 in dimension, of individuals expressing varied emotion like anger, sad, 

happy and neutral. CK+ dataset consists of around 920 images of individuals showing 

varied expressions of facial affect. Images from these datasets are considered as the 

source domain. Preprocessing of the datasets was performed to normalize the images 

before feature extraction. 

To obtain a target dataset of autistic children was difficult since there is no corpus 

of emotion expressions of autistic children. The target dataset consists of the freely 

available Autism Dataset available on Kaggle that comprises of 1200 images. A holdout 

manually annotated test data was set aside from the Kaggle dataset for evaluation of the 

GAN. 

3.2. Data Pre-processing and Data Augmentation 

Faces were detected and cropped from the original images in the target dataset using the 

MTCNN architecture for face detection. These images were further normalized, rescaled 

to 48X48 pixels, and the grayscale version was taken as the target domain. To alleviate 

the problem of an unbalanced and small domain set, the target data was further subjected 

to a slew of data augmentation approaches. Images were rotated at an angle of 40o, 
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horizontally flipped to provide a mirror of the image in the horizontal direction, distorted 

versions generated via shearing, and randomly zoomed. At each timestep during training, 

a batch of 50 samples from the source dataset was combined with a batch of 50 

augmented target samples to form a mini-batch and presented to the domain 

discriminator. 

4. Results and Discussion 

GAN models are notoriously hard to train as it involves the concurrent training of two 

competing neural network models, a feature generator and a domain discriminator. The 

neural network models are in competition with each other. An improvement in the 

loss/accuracy of one model comes at the cost of degradation in the other. 

4.1. Experimental Set-up 

Various network architectures and hyperparameter values have been experimented for 

the generator, classifier, and discriminator models in accordance with the training 

heuristics essayed by experts [29, 30, 31, 32, 36]. Unlike normal deep neural networks 

where high accuracy of the model indicates convergence, GANs are said to attain 

equilibrium when both the discriminator and generator losses are in a balance. Contrary 

to the usual practice of tagging images from the source and target domains with hard 

labels, some best practices like providing a random sample of soft labels for training the 

discriminator was followed in this experiment. 

4.2. Metrics for GAN Evaluation 

The performance of the model has been graded taking into consideration three evaluation 

measures. 

 Convergence of the discriminator and GAN loss 

 Accuracy score of the GAN model 

 Comparison against VGG-16 pre-trained model and transfer learning 

 Comparison against previous work done on emotion recognition in the field of 

autism 

 

The generator and discriminator losses go through a lot of fluctuation as each of the 

network models tries to outdo the other. As each of the network components gets better 

at their task, their corresponding losses start to stabilize. Accuracy score is a metric used 

in the evaluation of GANs that indicates the disparity between the predicted values by 

GAN and the actual test set values [33, 34, 35]. It is a reasonable indicator of the task 

performance of a network that has been trained on the facial emotions of neurotypical 

adults and tested on the facial emotion expressions of Autistic children. An approximate 

accuracy of 71.53% is obtained against the holdout Autism test dataset. No data 

augmentation was employed during testing. 
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Figure 3. Line plot of the accumulated losses and accuracy score of the model trained with FER-2013. 

 
 

 

Figure 4. Line plot of the accumulated losses and accuracy score of the model trained with CK+ 

As indicated by the line plots in Figure 3 and 4, the accumulated losses of the generator 

and the discriminator converge around 4800 epochs with an accuracy of 71.533% for the 

holdout test data. The same results were obtained when the GAN was trained on both the 

FER-2013 and CK+ datasets. The experiments were repeated ten times with each dataset 

to discount any variations that may have occurred as part of training. Table 1 displays 

the accuracy score of the GAN model trained on FER-2013 and CK+ datasets and tested 

on the Autism dataset.  

Table 1. Comparison of the accuracy score on FER-2013 and CK+ datasets 

Source Dataset Target Dataset Epoch at 

Convergence 

              Accuracy Score 

FER-2013 Kaggle Autism dataset ~5000  71.533% 
CK+ Kaggle Autism dataset ~5000 71.533% 

 

A comparison of the GAN model was also made against a pre-trained VGG16 model 

that had been fine-tuned with the FER-2013 dataset for 5000 epochs and evaluated on 

the Autism dataset. As indicated by Figure 5, the training accuracy touches a remarkable 

rate of 99.1%, but the test time accuracy remains static at around 60 % when transfer 

learning is employed, a typical indicator of data overfitting. 
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Figure 5. Training and test accuracy/loss of VGG-16 using transfer learning 

 

Numerous studies have attempted to recognize the emotions of Autistic children using 

data elicited from facial images and/or physiological signals summarized in Table 2. 

Table 2. Previous work done on emotion recognition in Autism 

Author Data 

Collection 

Sample 

Size 

Classifier Ground 

Truth 

Accuracy Evaluation       

Metric/ 

Comparison 

Krupa et al, 
(2016) [37] 

GSR, HRV 
on stimuli 

N = 10 
ASD 

N = 10 
TD 

SVM 
recognizes 
emotions: 
neutral, 
happy, 
involvement

Analysis 
of 
variation 
in 
signals.  

Neutral:93.3
% 
Happy, 
involvement:
90% 

Sensitivity, 
specificity, 
accuracy/  
Comparison 
with TD 
samples 

Chu, Hui-
Chuan, et 

al., (2018) 
[38] 

Facial images 
on applying 
stimuli 

N = 15 
ASD 

SVM 
recognizes 
basic and 
transition 
emotions 

Manual 
tagging 
by parent 
/ experts 

98%  F1-score, 
precision, 
recall, AUC/ 
Compared to 
a neural 
network 

Sarabadani, 
Sarah, et 

al., (2018) 
[39] 

Facial 
images on 
applying 
stimuli 

N = 15 
ASD 

KNN, LDA, 
SVM and 
ensemble 
classifier. 
 

Manual 
tagging 
by parent 
/ child  

78% Comparison 
of the 
accuracy of 
the 
mentioned 
classifiers 

Rudovic, 
Ognjen, et 
al., (2018) 

[40] 

Multimo-
dal 

N = 35 
ASD 

 

Autoencoder 
for 
multimodal 
data fusion

Manual 
annotatio
n by 
experts

ICC ~60% Intra-class 
co-relation 

Puli, 
Akshay, 

and Azadeh 
Kushki, 
(2019)  

[41] 

ECG and 
acceleromet
ry signals 

N = 15 
ASD 

Modified 
Kalman filter 
for anxiety 
detection 

Analysis 
of 
variation 
in signals 

 93% 
 

Sensitivity, 
specificity/ 
Comparison 
of accuracy 
of KNN, LR, 
SVM, 
Decision 
Trees 
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Kalantarian
, Haik, et 

al., (2019) 
[42] 

Facial 
images on 
game 
playing 

N = 8 
ASD 

Ensemble 
based 
classifiers on 
the cloud. 

Manual 
annotatio
n by 
parent 

Disgust: 94%, 
Neutral: 81%,  
Surprise: 
92%,  
Scared: 56%

Comparison 
of the 
accuracy of 
ensemble 
classifiers  

Han, Jing, 
et al, 

(2020) [43] 

Facial 
images 
from HRI 

FERET, 
CK+, 

N = 15 
ASD 

RVFLN and 
transfer 
learning 

Annotati
on by the 
system 

87% Comparison 
of accuracy 
with stacked 
autoencoder 
and CNN 

Jarraya, 
Salma 

Kammoun,
et.al, 

(2020)  [44] 

Video 
samples of 
ASD in 
normal and 
meltdown 
state 

N = 13 
ASD 

Feed 
Forward, 
Cascade Feed 
Forward, 
RNN and 
LSTM 

Analysis 
of video 
by expert 

RNN: 85.8%
  

Comparison 
with the 
other 
classifiers 

       

 

Investigation into automatic recognition and classification of the facial expressions of 

the autistic population has not been pursued extensively vis-a-vis a neurotypical 

population. Undoubtedly, this has been due to the complexities associated with eliciting 

and interpreting data obtained from autistic children. Reference [37] considers only the 

presence or absence of emotion, while [38] traces the transition of emotion. [39], [41] 

look at detecting only anxiety, [40] gives a low accuracy, and [44] at emotions during a 

meltdown state. The proposed work, in comparison, classifies basic emotions with an 

accuracy of 71.53%. Additionally, the existing corpus has worked with a small cross-

section of the autistic population that is not indicative of the entire ASD population [42], 

[43]. In this paper, a substantially larger dataset of autistic children has been considered. 

Coupled with data augmentation, the facial images seen by a deep neural network 

multiply manifold during training. The technique of classification proposed in this paper 

is also significantly different. The impact of the classification technique and the accuracy 

obtained can be gauged from a standpoint, taking into account the challenging task of 

acquiring labeled data of ASD children that has been validated by manual annotators 

and/or experts. The proposed method is designed to perform in the presence of unlabeled 

datasets by leveraging the power of massive amounts of data available in a similar, 

related domain.  

 

                      
Figure 6. False and true predictions on images in the dataset 

Conclusion 

This paper explores an approach of unsupervised domain adaptation to classify the facial 

emotions of children diagnosed with autism. Autistic children experience deficits in 

recognizing and expressing their own emotions. Hence, generalized classifiers fail at 

accurately detecting the emotions of ASD children, taking into account the variability in 
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their facial expressions. Also, labeled datasets in the field of autism are practically non-

existent. These challenges can be circumvented by developing deep neural models with 

the proficiency to learn data distributions from unannotated data that is significantly 

identical to that of the labeled data. This work explores the feasibility of building 

classifiers to recognize the emotions of autistic children using unsupervised domain 

adaptation. The advantages of using unsupervised domain adaptation are two-fold. It 

eliminates the requirement of amassing large annotated datasets that are essential for any 

classifier to train on. At the same time, also handles the shift in domain distribution of 

the source and target domains. At the offset, though many of the cited literature exhibit 

higher accuracy than the proposed method, the accuracy of this work can be improved 

by training on a larger dataset of real-time ASD children’s data. Various other cross-

validation metric measures can also be applied for a more subjective evaluation. 
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