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Abstract. It is important to be able to judge the performance or dependability met-
rics of a system and often we do so by using abstract models even when the sys-
tem is in the conceptual phase. Evaluating a system by performing measurements
can have a high temporal and/or financial cost, which may not be feasible. Math-
ematical models can provide estimates about system behavior and we need tools
supporting different types of formalisms in order to compute desired metrics. The
Mercury tool enables a range of models to be created and evaluated for support-
ing performance and dependability evaluations, such as reliability block diagrams
(RBDs), dynamic RBDs (DRBDs), fault trees (FTs), stochastic Petri nets (SPNs),
continuous and discrete-time Markov chains (CTMCs and DTMCs), as well as en-
ergy flow models (EFMs). In this paper, we introduce recent enhancements to Mer-
cury, namely new SPN simulators, support to prioritized timed transitions, sensitiv-
ity analysis evaluation, several improvements to the usability of the tool, and sup-
port to DTMC and FT formalisms.
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1. Introduction

There are many tools for supporting performance and/or dependability analysis of com-
puter systems. Some tools have limitations regarding the evaluation of non-exponential
models and they support only one formalism or a small set of them, or even a limited
number of evaluations. Considering this, the MoDCS2 research group3 started the devel-
opment of the Mercury tool in 2008, having a vision to deliver to the community a tool
for supporting performance and dependability evaluations overcoming the limitations
found in other tools.

1Corresponding Author: Head of MoDCS Research Group and Full Professor at Centro de Informática, Av.
Jorn. Anı́bal Fernandes, s/n - Cidade Universitária, Recife - PE, 50740-560, Brazil; E-mail: prmm@cin.ufpe.br.

2Modeling of Distributed and Concurrent Systems.
3http://www.modcs.org/.
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The Mercury tool has been developed to enable the creation and evaluation of
stochastic models, such as: stochastic Petri nets (SPNs) [1], continuous and discrete-time
Markov chains (CTMCs and DTMCs) [2], reliability block diagrams (RBDs) [3] and
dynamic RBDs (DRBDs) [4], fault trees (FTs) [5], and energy flow models (EFMs) [6].
The tool has been widely adopted in numerous research projects, which had the results
published in peer-reviewed journals4 and conferences5. Mercury supports a considerable
number of formalisms and empowers a large range of evaluations for each of them, so
it can help the academy and industry to make predictions in several application fields.
Among other distinguished features of this tool are: the possibility of evaluating non-
exponential models through SPN and RBD simulations, supporting more than twenty-
five probability distributions; a scripting language; a random variate generator (RVG);
computation of reliability importance indices; moment matching [7] of empirical data,
as well as sensitivity analysis evaluation of CTMC, SPN, and RBD models.

The MoDCS team is frequently improving the tool by adding new features, updating
existing functionalities, and fixing bugs, and new versions are usually released every
six months. In this paper, we introduce recent enhancements to Mercury up to version
5.0.2 that were not covered by the previous papers presenting the tool [8,9,10], namely:
support to DTMC and FT formalisms; new SPN simulators; prioritized timed transitions;
sensitivity analysis evaluation of RBDs; and several improvements to the usability of the
tool.

This work is organized as follows. Section 2 presents a comparison between Mer-
cury and similar tools. Section 3 provides an overview of the tool. Section 4 presents the
recent enhancements. Section 5 presents a case study as an example to demonstrate the
feasibility of using Mercury for supporting infrastructure planning, and finally Section 6
draws the final remarks.

2. Related Tools

This section presents a general comparison of formalisms supported by Mercury and
other similar tools. There are many modeling tools available worldwide, each one with
its respective pros and cons, as well as with a set of modeling formalisms associated,
which varies according to their representation power and complexity. Among the most
cited tools, we can mention ReliaSoft BlockSim6, Relex7, SHARPE [11], TimeNet [12],
Snoopy [13], SPNP8, and GreatSPN9. BlockSim provides the way to evaluate some de-
pendability attributes (reliability, availability, and maintainability) with RBDs and FTs
models. The main limitation of BlockSim is that it cannot evaluate components de-
pendencies with its current modeling formalisms. To evaluate more complex scenarios,
it is necessary to employ tools that can handle space-state models, such as Relex and
SHARPE. Other tools like TimeNET and Snoopy provide powerful Petri Net (PN) mod-
eling and evaluation mechanisms but are limited to PN extensions. On the other hand,

4Publications in journals: https://www.modcs.org/?page_id=521.
5Publications in conferences: https://www.modcs.org/?page_id=525.
6BlockSim: https://www.reliasoft.com/BlockSim.
7Relex: http://www.relex.com.
8SPNP: https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db/spnp.html.
9GreatSPN: http://www.di.unito.it/~greatspn/index.html.
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SPNP and GreatSPN support generalized stochastic Petri nets (GSPNs). Table 1 presents
a general comparison of Mercury and these tools.

Table 1. Modeling tools comparison (DRBD only through Script Language).

Tool
Formalism

RBD DRBD FT CTMC DTMC SPN EFM

BlockSim � �
Relex � � � �
SHARPE � � � �
TimeNet �
Snoopy �
SPNP �
GreatSPN �
Mercury � � � � � � �

3. Overview and Software Architecture

This section presents the main features available on Mercury for all supported modeling
formalisms. Currently, Mercury supports six formalisms via its GUI editor (see Figure 1)
and an overview is depicted in Figure 2.

Figure 1. Mercury GUI.

The SPN editor and evaluator allow modeling and evaluating GSPNs. Mercury im-
plements numerical analysis and simulation techniques to support performance and de-
pendability evaluations for SPN models including steady-state and time-dependent met-
rics. Steady-state metrics are obtained by performing stationary evaluations and time-
dependent metrics are obtained by performing transient evaluations. Regarding tran-
sient evaluation, the tool provides a simulator to evaluate the mean time to absorption
(MTTA) of absorbing models with non-exponential transitions. For stationary analysis,
two solution methods are available: Grassmann-Taksar-Heyman (GTH) [14] and Gauss-
Seidel [2]. For transient analysis, two solution methods are available: Uniformization
(also known as Jensen’s method) and Runge-Kutta (4th order) [2]. Additionally, the SPN
evaluator allows the execution of experiments, which evaluate the impact of varying a
parameter of the model on a chosen metric. The SPN editor has also a feature called token
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Figure 2. Mercury - Formalisms.

game to assist the validation of models. By using this feature, users can simulate graph-
ically the firing of transitions, step by step. This mechanism allows one to change the
state of the model under evaluation considering the current marking state. For example,
users can simulate equipment failures as well as the corresponding consequences on the
availability of a system. This feature can be useful to test the behavior of transitions that
have guard expressions or priorities assigned to them, making it possible to test whether
the logical rules applied to the model are properly implemented. Another important fea-
ture regarding SPN evaluation is the structural analysis. This allows the user to evaluate
the structural properties of the model through analysis of place invariants, siphons, and
traps [15].

The CTMC editor and evaluator allow modeling and evaluating CTMCs. Regard-
ing stationary analysis, the GTH and Gauss-Siedel numerical techniques are supported.
Regarding transient analysis, the Uniformization and Runge-Kutta numerical techniques
are supported. Probabilities of absorption and MTTA may be computed when evaluating
absorbing CTMCs. Experiments are also supported. Algebraic expressions using sym-
bolic parameters can be used to define transition rates between states. Also, greek letters
can be used to compose the name of parameters. In addition to states and transitions,
users can define reward rates assigned to states, which enables the modeling of Markov
reward models. Mercury also supports sensitivity analysis on CTMCs, making it possi-
ble to evaluate the sensitivity of state probabilities with respect to each input parameter
entered.

The DTMC editor and evaluator allow modeling and evaluating DTMCs. The
same numerical techniques available for CTMCs are also available for DTMCs. When
performing stationary analysis, it is possible to compute sojourn times and recurrence
time [2]. For absorbing models, Mercury also enables computing mean time to absorp-
tion and probabilities of absorption. Expressions including state probabilities may com-
pose metrics. Unlike CTMCs, transitions between states are based on probability in
DTMCs. Transition probabilities can be defined by means of algebraic expressions using
symbolic parameters. Using greek letters for parameter labels and experiments are also
supported.

The RBD editor and evaluator allow modeling and evaluating availability and re-
liability using block diagrams. The tool supports three types of block configurations:
series, parallel, and K-out-of-N (KooN). RBDs provide closed-form equations making
it possible to obtain the results more quickly than using other methods, such as SPN
simulation. However, there are many situations (e.g., dependency among components)
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in which modeling using RBD is more difficult than adopting SPN. Mercury provides
two methods for computing dependability metrics: SFM (a method based on the struc-
tural function) and SDP (sum of disjoint products). The SDP method, based on Boolean
algebra, computes metrics considering minimal cuts and minimum paths. Mercury sup-
ports the evaluation of the following metrics: mean time to failure (MTTF), mean time
to repair (MTTR), steady-state availability, instantaneous availability, reliability, unre-
liability, uptime, and downtime. In addition, when evaluating time-dependent metrics,
multiple points on time may be computed. Experiments are also supported. Additionally,
the RBD evaluator allows the calculation of component importance measures, bounds
for dependability analysis, structural and logical functions as well as sensitivity analysis.
Component importance measures indicate the impact of a particular component with re-
spect to the overall reliability or availability. Thus, the most important component (i.e.,
that one with the highest importance) should be improved in order to obtain an increase
in reliability or availability. Evaluation of dependability bounds [16] is a method to cal-
culate dependability metrics when the model is very large. By applying such a method,
approximations of the chosen metric can be obtained more quickly than solving all the
closed equations involved. Structural and logical functions are alternative ways of rep-
resenting the system mathematically, in which the former adopts algebraic expressions
and the latter adopts boolean expressions. Mercury also provides a feature to reduce the
complexity of RBD models.

The Fault Tree editor and evaluator allow modeling and evaluating availability
and reliability using fault trees. FTs and RBDs differ from each other in their purposes.
RBDs are success-oriented while FTs are a failure-oriented modeling approach. Using
the Mercury tool, it is possible to handle two types of nodes: basic events and gates
(logic ports). Leaf nodes represent basic events. Mercury supports three types of gates:
and, or, and KooN. The events leading to the top-event failure must be directly linked
to a gate, making it possible to evaluate the probability of an event happening based on
the probability obtained by joining basic events and child gates. Converting FT to RBD
models is supported by the tool.

The EFM editor and evaluator enable the evaluation of availability, sustain-
ability, and cost of cooling infrastructures and datacenter/clouds power, consider-
ing the power constraints of each component. Mercury supports five types of eval-
uations for EFM models. Cost Evaluation evaluates operational, acquisition, and to-
tal costs. Exergy Evaluation computes the sustainability through the exergy met-
ric. Exergy estimates energetic efficiency. Energy Flow Evaluation evaluates the en-
ergy that flows through each device considering the power constraints of each one.
Combined Evaluation provides an integrated evaluation of dependability, sustainabil-
ity impact, and cost of cooling infrastructures and data center/cloud power [6].
Combined Evaluation provides an integrated evaluation of dependability, sustainabil-
ity impact, and cost of cooling infrastructures and data center/cloud power [6].
Flow Optimization (PLDA, PLDAD, and GRASP) evaluates SPN, CTMC, RBD, and
EFM models. Three optimization techniques were implemented for supporting this eval-
uation: power load distribution algorithm (PLDA) [17], power load distribution algo-
rithm depth (PLDAD), and GRASP-based algorithm.

The Mercury scripting language was designed to facilitate the creation and evalua-
tion of complex models. It allows greater flexibility in model evaluations using the Mer-
cury engine. The language supports SPN, CTMC, DTMC, and RBD/DRBD formalisms.
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Scripts can be executed by a command-line interface (CLI) or via an editor available
inside the Mercury tool. The tool has a feature that automatically generates the script
representing the selected model in the GUI. The advantage of using this language in con-
junction with the CLI tool, using shell scripts, for example, is the possibility to automate
an evaluation workflow. In addition, there are other advantages offered by the language
which are not supported by modeling through the graphical interface:

• Support for hierarchical modeling. The resulting metric of a model can be used
as input parameters for any other model, independent of the modeling formalism
being adopted;

• Support for hierarchical transitions on GSPNs. This type of transition can be
used as a way to reduce the complexity of models or to express a recurring struc-
ture in a model. It is important to highlight that for some tools [12] the support for
hierarchical SPN models is only for coloured Petri nets;

• Support for symbolic evaluations and experiments. Parameters of a model can
be defined as variables left open. Thus, these variables can be changed at the time
of evaluation in order to measure the impact of these new parameter values on
certain metrics;

• Support for loop and conditional structures. It allows the creation of nets with
variable structures. The variables for controlling those structures can be treated as
parameters of the model;

• Support for phase-type distributions [18]. The family of phase-type distribu-
tions can be used to approximate any distribution that does not fit an exponential
distribution. A number of approximate analysis techniques are based on match-
ing the moments of continuous-time phase-type distributions. Models having non-
Markovian properties may only be evaluated numerically through the adoption of
phase-type approximation technique [19].

A script contains models, each one with its metrics and parameters, and a main sec-
tion where values for input parameters are defined. Listing 1 presents a CTMC extracted
from [20].

1 markov RedundantGC{
s t a t e fu up ; s t a t e fw ; s t a t e f f ; s t a t e u f up ; s t a t e uw up ;

3 t r a n s i t i o n fw −> fu ( r a t e = s a s 2 ) ;
t r a n s i t i o n fu −> f f ( r a t e = lambda s2 ) ;

5 t r a n s i t i o n f f −> uf ( r a t e = mu s1 ) ;
t r a n s i t i o n u f −> uw ( r a t e = mu s2 ) ;

7 t r a n s i t i o n uw −> fw ( r a t e = lambda s1 ) ;
t r a n s i t i o n fw −> uw ( r a t e = mu s1 ) ;

9 t r a n s i t i o n uw −> uf ( r a t e = l a m b d a i s 2 ) ;
t r a n s i t i o n u f −> f f ( r a t e = lambda s1 ) ;

11 t r a n s i t i o n fw −> f f ( r a t e = l a m b d a i s 2 ) ;
t r a n s i t i o n fu −> uw ( r a t e = mu s1 ) ;

13 m e t r i c a v a l = a v a i l a b i l i t y ;
} main {

15 l ambda s1 = 1 / 1 8 0 . 7 2 ; mu s1 = 1 / 0 . 9 6 6 9 0 2 ; mu s2 = 1 / 0 . 9 6 6 9 0 2 ;
l a m b d a i s 2 = 1 / 2 1 6 . 8 6 5 ; l ambda s2 = 1 / 1 8 0 . 7 2 1 ; s a s 2 = 1 / 0 . 0 0 5 5 5 5 5 5 5 ;

17 p r i n t ( ” A v a i l a b i l i t y : ” . . s o l v e ( model=RedundantGC , m e t r i c = a v a l ) ) ;
}

Listing 1. Mercury script for a CTMC model.
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4. New Functionalities and Updates

Several new features, updates, and bug fixes have been included in Mercury. These fea-
tures include support for two new formalisms, namely DTMC and FT. In addition, the
stationary and transient simulators were reimplemented. Improvements were also made
to the usability of the tool, such as the possibility to assign a description to each com-
ponent of a model. A description represents additional information about the component
for the comprehension of the model under construction. Another improvement increases
the readability of models. Once a component has been inserted, it is possible to read its
properties in the drawing area by positioning the mouse cursor on it. A tooltip appears
showing all properties of the component. Mercury provides this feature for all compo-
nents of all supported formalism. As follows, new functionalities and improvements are
presented.

The DTMC editor is one of the main features that have been added to Mercury. The
analysis of DTMC models comprehends the computation of holding time and recurrence
time [2], besides the usual state probabilities that are already obtained for CTMC mod-
els. The fault tree editor is another main feature that was included in the latest Mercury
release. FT is a top-down logical diagram and it makes it possible to create a visual rep-
resentation of a system showing the logical relationships between associated events and
causes lead that may lead the evaluated system to a failure state. In the current version,
Mercury supports and, or and koon logic gates. In the future, we intend to add suport to
other logical operations such as xor and priority and.

The two main updates on the RBD editor were the implementation of sensitivity
analysis and the change in the way the nodes are represented. Mercury computes partial
derivative sensitivity indices for RBDs, which indicate the impact that every input pa-
rameter has on availability. Sensitivity analysis can only be performed when the model
under evaluation has only exponential blocks.

Several improvements were performed on the SPN editor and evaluator. Regarding
the drawing area, Mercury now supports two types of arc styles: rectangular and curved.
An expression editor was implemented to make it easy to create large and complex guard
expressions and metrics. The editor highlights parentheses, brackets, and braces as well
as some keywords. Also, a reference updater was implemented to update all properties
marking references to a definition when it is updated or removed. A definition is a vari-
able that stores a numeric value. It may be attached to some properties of others SPN
components. More than one property or expression may refer to the same definition.
Definitions are useful for supporting experiments. In this case, by changing the value of
a definition, it is possible to evaluate the impact of that change on an evaluated metric.
Regarding the SPN evaluator, similar to immediate transitions, Mercury now supports
prioritized timed transitions. It is important to highlight that in that case immediate tran-
sitions always take precedence to fire over timed transitions. Both SPN simulators were
reimplemented. Besides several improvements, such as on the GUI and the possibility to
export detailed information of the simulation, the stationary and transient simulators can
detect the occurrence of rare events, which occur when the difference between the delays
assigned to the transitions is very large.

• Stationary Simulator. Stationary simulation can be used when evaluating steady-
state metrics of non-Markovian SPN models. Mercury implements the method of
batch means [21]. This method comprises three steps: running a long simulation
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run, discarding the initial transient phase, and dividing the remaining events run
into batches. In this new simulator, it is possible to follow the simulation step by
step on the GUI. A large number of statistics are computed and displayed at the
end of the simulation;

• Transient Simulator. Transient simulation may be adopted when evaluating met-
rics of non-Markovian SPN models considering a specific point in time. A tran-
sient simulation is composed of a set of replications where each replication is
composed by a set of runs [21]. Each run executes from time 0 until the evaluated
time t ′ is reached. A set of sampling points may be evaluated considering this time
interval. When the current set of runs is finished, the value of each sampling point
of the current replication is computed. A replication represents the mean values
of the points in its set of runs. Mercury supports two methods for computing the
value of each point:

* DES10 + Linear Regression 1 computes the value of each sampling point at
the end of each run using linear interpolation between two known points. When
the required number of runs is executed, the obtained values for each point are
stored. Also, the mean of the obtained values is assigned to the corresponding
point in the current replication;

* DES + Linear Regression 2 calculates the value of each sampling point of
the current replication when its set of runs has been executed. Unlike the first
method, this technique involves the computation of each point of the current
replication considering its entire set of runs. Linear regression is applied be-
tween multiple known points.

MTTA Simulator. The Mercury tool also provides a transient simulator, which eval-
uates the behavior of non-Markovian absorbing models. This simulator generates
a large number of related statistics.

4.1. Supplementary Tools

An RVG is available in the Mercury tool, which is capable of generating random numbers
from a range of probability distributions. The RVG module provides descriptive statistics
from the generated data, and the sample data can be exported in order to be used in other
applications. Moment Matching is another module from which it is possible to estimate
what exponential-based probability distribution best fits the mean (first moment) and
standard deviation (second moment) for a data sample.

5. Case Study

This section presents a case study to demonstrate the feasibility of adopting the Mercury
tool for supporting the deployment of a cloud system. We investigated the gain in the
availability by implementing a redundancy mechanism using a warm-standby strategy in
the main component of a cloud architecture. Detailed information can be found in [20].
This case study considers an architecture with three nodes, where at least one node must
be available for the cloud to work properly. An FT and a CTMC are adopted to represent

10Discret Event Simulation.
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the hierarchical heterogeneous models. The FT describes the high-level components and
is used to compute the total availability of the system, whereas the CTMC represents the
components involved in the redundancy mechanism. Figure 3 shows the FT model with
one non-redundant General Controller (GC) and its three nodes. It is important to stress
that a warm-standby replication strategy cannot be properly represented by FT models,
due to dependency between component states. In this case, a CTMC needs to be adopted
to represent the redundant mechanism, with one active GC and one replicated GC host
configured in warm-standby (see Figure 4). Through the computation of the availability
of the redundant mechanism using the CTMC model, the availability of the cloud system
can be known. Table 2 presents the measures obtained with Mercury. As we can see,
there is a difference of 24 hours less in downtime when using redundancy.

Figure 3. FT for the non-redundant cloud system. Figure 4. CTMC to redundant system (two hosts [20]).

Table 2. Availability Measures of the System with and without Redundancy.

Metric GC without redundancy GC with redundancy

Steady-state availability 0.997192102190714 0.9999731974218314

Number of 9’s 2.5516187019805443 4.571823428711702

Annual downtime 24.61 h 0.23 h

6. Conclusions

In this paper, we introduce the recent enhancements to Mercury. We evolved the Mer-
cury tool aiming to support discrete-time Markov chain (DTMC) and fault tree (FT) for-
malisms. In addition, among other updates, both SPN simulators were reimplemented,
and now stationary and transient simulations can detect the occurrence of rare events.
One case study demonstrates the feasibility of applying Mercury for supporting infras-
tructure planning. Many research projects have been supported by Mercury and have
been published in peer-reviewed journals and conferences. Mercury has proven to be a
useful tool for what it has been designed. As future works, we intend to implement sup-
port for project creation where multiple models of the same formalism can be created in
a single project file.
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