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Abstract. Thanks to the proliferation of IoT devices that are interconnected, huge
amounts of data are being gathered nowadays. The availability of all these new
sensors, data sources and open data platforms offers new possibilities for innovative
applications and use-cases that are many times dynamic. However, if we plan to
depend on data for the optimal provision of services, it is of utmost importance
to ensure the quality of data and the quality of information that we are handling
in an online manner. Furthermore, geolocalised data provides a richer context in
which the quality of information can be measured and in which services are more
advanced. In order to support the process of finding the right information, we have
defined several metrics in single-sensor and multi-sensor scenarios that are based
on statistical analysis, machine learning algorithms and contextual information. We
have applied them in two scenarios: smart parking and environmental sensing for
smart buildings.
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1. Introduction

With the increasing number of devices in the Internet of Things, the availability of data
has massively increased. Smart cities, industry 4.0, social networks, or even agriculture
have created dozens of new data sources. This allows the development of new applica-
tions and use cases2. Due to the heterogeneity and the sheer amount of data sources,
there is a need to ensure high quality of the used data to avoid wrong decisions and to
increase the user experience for smart applications.

A major requirement for these scenarios is quality analysis metrics for data sources
and their monitored data. False or misleading information might cause problems during
the processing and usage of the information. This problem reaches from simple miscon-
figured sensors, which deliver wrong information, to intentionally provided false infor-
mation with malicious intent, which leads to malfunctioning systems and applications.

1Corresponding Author. E-mail: aurora.gonzalez2@um.es
2http://www.ict-citypulse.eu/scenarios/
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To approach these problems, we integrate quality measures and analysis modules to rate
data sources to identify the best fitting data sources to get the needed information.

There are many definitions of Data Quality (DQ). The two predominant ones are:

• Data is of high quality if the data is fit for the intended purpose of use
• Data is of high quality if the data correctly represent the real-world construct that

the data describe

In many studies, complex algorithms claim to preserve data quality [1, 2], however,
they lack straightforward definitions of what quality is. In this work, we define metrics
for DQ and compute them in several IoT scenarios for checking their viability.

2. Related work and background

Research on data quality became popular starting in the context of databases containing
data from multiple data sources. Strong et al. came to the point, that faulty data cost
billions of dollars. As a solution, they came up with the term Quality of Information
(QoI), which they defined in four categories and defined measurable metrics for each of
them [3]. During the next years, several frameworks to address the QoI have been devel-
oped. In [4], a general QoI framework has been designed that allows creating measure-
ment models for specific settings and domains. Further development in the context of QoI
frameworks has been taken by Bisdikian et al. [5], who described context-independent
quality measurements. To do so, they split the data quality into the terms QoI and Value
of Information. QoI is also a topic of research in diverse IoT frameworks designed for
innovative applications in Smart Cities [6] or in IoT search [7]. A deeper review of data
quality for IoT scenarios is done in [8].

Nowadays, IoT data is present in many scenarios and contexts and there exist some
domain-specific approaches for estimating DQ such as health [9] or energy consumption
in smart grid [10] amongst others. These works define a set of tests as queries that are
written to check the properties specified by domain experts using mathematical formulas
or natural language, which cannot be easily updated or applied to other problems.

Data quality tools typically address data cleansing, data integration, master data
management, and metadata management. Challenges of interest have an impact when
choosing a tool: Incorrect data, duplicate data, missing data and other data integrity is-
sues can significantly impact — and undermine — the success of an initiative.

In addition to research work, several business initiatives are proposed, such as
Cloudingo3 for removing duplicates using a graphical interface, Data Ladder4 for match-
ing and cleaning using templates or Informatica5, that is a data quality validation tool
that provides a set of data quality checks as queries to validate the syntactic properties of
the target data, such as data type and not-null constraint checks. The tool allows users to
specify semantic properties to be verified by the tests.

Although these tools are general enough for use in any project, they require domain
knowledge to define and update the domain-specific properties. There is a lack of open
tools that automatically generate the properties to be checked by the data quality tests.

3https://cloudingo.com/
4https://dataladder.com/
5https://www.informatica.com/products/master-data-management.html
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In machine learning, clustering is an unsupervised technique that uses intrinsic prop-
erties of the data for dividing the studied subjects into several categories. In that division,
subjects within a group are similar to each other and dissimilar to the subjects assigned
to other groups according to a certain metric and without labelled data.

Clustering techniques have been used in the literature for IoT-based scenarios [11].
In particular, many clustering works have focused on the use of clustering for anomaly
detection. Those techniques include, but are not restricted to, K-Means and Hierarchical
Clustering [12], Expectation Maximization (EM) [13], Hyperellipsoidal Clustering al-
gorithm for Resource-Constrained Environments (HyCARCE) [14] and Gaussian Mixed
Models (GMM) [15]. Autoencoders are another representation learning approach. An
autoencoder investigates an efficient encoding from the data in an unsupervised manner.
They have also been used for anomaly detection [16]. One-class SVM [17] is an outlier
detection algorithm in which the whole training data is assumed to belong to the normal
class and any data point outside of this data region is considered as an outlier.

3. Data quality metrics

In this section, we describe the metrics that have been defined to calculate and annotate
the QoI for IoT data.

3.1. QoI basic metrics

The first set of metrics are based on the ones developed for the IoTCrawler framework
[7].

• Completeness (qcmp): missing or unusable data instances are represented with this
metric. It computes the percentage of the unusable data.

• Timeliness (qtim): refers to the time expectation for accessibility and availability
of information. In other words, expresses how long the time difference between
data capture and the real world event being captured is. In critical IoT applications
such as traffic safety and control and managing power systems knowing your
timeliness requirements is fundamental.

• Plausibility (qpla ): this metric shows if received data is coherent according to the
probabilistic knowledge of the variables that are being measured.

• Artificiality (qart ): this metric determines the inverse degree of the used sensor
fusion techniques and defines if this is a direct measurement of a singular sensor,
an aggregated sensor value of multiple sources or an artificial spatiotemporally
interpolated value.

• Concordance (qconc): This metric is used to describe the agreement between infor-
mation of the data source and the information of further independent data sources,
which report correlating effects. The Concordance analysis takes any given sen-
sor x0 and computes the individual concordances, C(x0,xi), with a finite set of n
sensors (i = 1, ...,n).

3.2. Outlier-based metrics

In machine learning, an outlier is an observation that diverges from an overall pattern.
The number of outliers in an indicator of data quality.
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We have used an Autoregressive Integrated Moving Average (ARIMA) based frame-
work [18] in order to find innovational outliers, additive outliers, level shifts, temporary
changes and seasonal level shifts [19]. The percentage of outliers in the studied sensor
is named qout . We have also studied how much the outlier deviates from what could be
considered a normal observation. The outliers are imputed with missForest [20], an it-
erative Random Forest-based imputation method. Then the difference between the value
and the imputation is another metric that has been computed by dividing the difference
of each sensors value by the mean, median or mode of the values and then calculate their
mean, median or mode (qmean, qmedian, qmode).

Another way to detect outliers is by using unsupervised methods. qprob is the prob-
ability of belonging to a certain cluster that has been computed using Gaussian Mix-
ture Models (GMM). It informs quantitatively of the anomalous values. The number of
clusters is chosen using the silhouette coefficient.

We consider that AutoEncoders (AE) are also appropriate for this task because
they learn the normal relationships inherent in the data and, therefore, when looking for
anomalies they have a huge potential [21]. The metric based on AE informs us about
how the correlations between the different variables of the system behave. AE are a spe-
cific type of feedforward neural networks where the input is the same as the output. They
compress the input into a lower-dimensional code and then reconstruct the output from
this representation. Given that, the metric qrec is based on the difference between the
input and the output value of the AE, in such a way that the greater the reconstruction
error, the less concordance there will be between the variables.

To sum up, we have defined 6 new metrics: qout , qmean, qmedian, qmode , qprob and
qrec.

3.3. Geospatial-based metrics

The exact location of measuring the physical world through IoT is highly relevant to
extract all insights. In that sense, we have also provided two metrics that are based on
the interpolation of all datapoints as if they were missing by using geostatistical models.
Those models are Inverse Distance Weighting (IDW) [22] and Bayesian Maximum En-
tropy (BME) [23]. IDW is a deterministic estimation method where the unknown data
points are calculated with a weighted average of the values available at the known points,
assuming that sensors that are close are more alike. BME is a knowledge-based proba-
bilistic modeling framework for spatial and spatiotemporal information. It allows vari-
ous knowledge bases to be incorporated in a logical manner as definite rules for prior
information, hard (high-precision) and soft (low-precision) data into modeling.

As defined before, we have computed the difference between the interpolated value
and the real one and its mean and median are going to be our metrics, named as:

• qinv mean and qinv med for IDW.
• qBME mean and qBME med for BME.

4. Real scenarios and implementation

In this section, we introduce 3 different IoT scenarios in which the previous metrics are
computed and highlight the possible drawbacks. We also introduce how we have used
OpenCPU to implement our calculations as a service that is available at any time.
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4.1. Parking Data.

This data was collected from 5 private parking sensors located in the city of Murcia 6.
Fig. 1 shows the location of these parking areas.

Figure 1. Parking zones

First, we have selected those variables that are useful for our goal: the timestamp
and the parking occupation measurements and aggregated the data in 10 minutes inter-
vals. This aggregation can generate redundancies on the timestamps, so we have aver-
aged the result. Storing information about this aggregation process will be useful for the
Artificiality metric. We have kept NA (not available) instances since they are important
for obtaining some quality metrics (Completeness). Given that the data is not measured
periodically, a lot of missing values are generated at this point.

For illustrative purposes, we have created a new variable called real time which adds
a random delay to the timestamps, simulating that the data needs some time to be stored.
These are some highlights:

• Completeness: it consists on counting instance by instance the percentage of non-
absent values there are.

• Timeliness: we use the random time lag that is included in the data (Tage), so if
we divide it by the arbitrary aggregation time W (600 seconds, in this case) we
get the time that data takes to be available, as follows: qtim = 1− Tage

W .
• Plausibility: If the data of each parking lot belongs to the interval [0,Ci], this

measure will be said to be plausible and will receive a value of 1. The values of
Ci are: 330, 312, 305, 162 and 220 respectively.

• Artificiality: Since we performed aggregation over time, the number of instances
used for computing the mean and therefore the aggregated value were considered.
Thus, if a data was obtained by means of two data-points taken in the same time
frame, its metric of artificiality will be 1

2 .
• Concordance: we used the geostatistical metrics for covering this concept.
• Outliers: given the amount of missing data, we could not use the ARIMA frame-

work for detecting outliers in this dataset.

A subset of the quality metrics and data values are shown in Table 1. Where Park101,
... ,Park105 are the parkings’ ids and Tage is the time lag. Fig. 2 shows the histograms of
all metrics that could be computed for the parking dataset together with basic statistics.

6Their locations are stored in the following web address http://mapamurcia.inf.um.es/
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timestamp Park101 Park102 Park103 Park104 Park105 qcomp Tage qtim qpla qart

2018-03-28 11:50:00 NA 163.33 NA NA 117.5 0.4 574 0.04 1 0.33

2018-03-28 12:00:00 NA 10000 NA NA 116.5 0.4 596 0.01 0 0.50

2018-03-28 12:10:00 NA 163.00 NA 10000 116.5 0.6 11 0.98 0 0.33

2018-03-28 12:20:00 NA 165.00 NA NA 118.0 0.4 299 0.50 1 1.00

2018-03-28 12:30:00 NA 166.00 NA NA 120.0 0.4 226 0.62 1 1.00

2018-03-28 12:40:00 -1 166.50 NA NA 119.0 0.6 468 0.22 0 0.50

Table 1. Parking observations (number of cars) and quality metrics subset

Figure 2. Parking metric’s histograms and statistics. Statistics are: Mean (sd); IQR (CV) and min < mean <
max

4.2. Luminosity Data

In this section, we have studied the monitored luminosity from 4 sensors located in the
Pleiades building of the University of Murcia.

First, the data is aggregated using the timestamp as in the previous section, choosing
a 10 minutes aggregation time. Table 2 shows the aggregated values and also some of the
computed metrics.

time S1 S2 S3 S4 qcmp qpla qart qprob qrec

2020-01-21 18:00:00 20 55 10 80 1.00 1 1 0.001 0.54

2020-01-21 18:10:00 25 70 20 40 1.00 1 1 0.111 0.48

2020-01-21 18:20:00 NA 70 10 NA 0.50 1 1 0.827 0.33

2020-01-21 18:40:00 20 95 10 65 1.00 1 1 0.701 0.32

2020-01-21 18:50:00 30 30 20 60 1.00 1 1 0.110 0.29

2020-01-21 19:10:00 20 75 10 280 1.00 0 1 0.021 0.29
Table 2. Luminosity (lumens) metrics subset: completeness, plausibility and artificiality, anomaly probability
and reconstruction metric

Fig. 3 shows the histograms of all metrics that could be computed for the luminosity
dataset together with basic statistics. The timeliness metric could not be calculated, since
we are not aware of any lag in the storage of the data. Also, the artificiality value always
takes the value of 1 because the timestamps of the data are far apart. Therefore, it was
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Figure 3. Luminosity metric’s histograms and statistics. Statistics are: Mean (sd); IQR (CV) and min < mean
< max

not included in Fig. 3. We have also computed the outlier metrics for this dataset using
the ARIMA framework and the metrics created in subsection 3.2.

4.3. Temperature (oC) and humidity (%) data

Finally, we have a series of temperature and humidity datasets collected by sensors lo-
cated in the Pleiades building at the University of Murcia.

time T1 T2 T3 T4 T5 T6 T7 H1 H2 H3 H4 H5 H6

06:10:00 17.26 18.53 22.63 3.14e-193 23.40 16.74 23.18 34.90 37.05 36.09 40.02 8.88e-159 29.61

06:30:00 17.26 18.53 22.67 3.14e-193 23.51 16.74 23.18 34.90 36.90 35.87 39.92 8.88e-159 29.22

06:40:00 17.26 18.53 22.69 3.14e-193 23.41 16.74 23.18 36.20 36.35 35.53 39.82 8.88e-159 29.43

07:00:00 17.26 18.84 22.86 3.14e-193 23.39 16.74 23.18 35.65 35.71 35.23 39.61 8.88e-159 29.36

07:10:00 17.26 19.04 22.78 3.14e-193 23.31 16.74 23.18 35.40 35.63 34.89 39.97 8.88e-159 29.53

07:40:00 17.26 18.22 22.74 3.14e-193 23.42 16.74 23.18 35.38 35.24 35.65 39.74 8.88e-159 29.18

Table 3. Temperature (◦C) and humidity (%) subset

Table 3 shows the temperature and humidity values for the different timestamps.
This dataset is in the ideal conditions to apply all our metrics, and the process goes

as follows:

• The timestamp of the measurement is rounded and the average is taken.
• All datasets are joined, using a time union and the mean of the values is calculated.
• For the Plausibility metric, we chose as normal for temperature the interval

[10,45] and for humidity, the interval (0,100). The metric takes the value 0 for
the measurements out of these intervals. These values have been taken arbitrarily.

• For Artificiality it is enough to count the number of values that were used in the
aggregation step. Because the frequency of data collection is very low and the
time rounding has been taken from 10 minutes, all values take 1 in the Artificiality
metric.

• Next, the outliers of the different time series are detected and the difference of the
expected value between the outlier is calculated. This will constitute the differ-
ent metrics previously calculated, that is, obtain the mean between these values,
the mean weighted by the means of each of the sensor series, the similar case
weighted by the median and by the mode.
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• We perform similarly with the rest of the metrics

Fig. 4 shows the histograms of all metrics that could be computed for the temper-
ature and humidity dataset together with basic statistics. Given that there are sensors
that always present too low values, the Plausibility metric is always 0 and we have not
included it in Fig. 4. Timeliness was again not possible to compute.

Figure 4. Temperature and Humidity metric’s histograms and statistics. Statistics are: Mean (sd); IQR (CV)
and min < mean < max

4.4. OpenCPU implementation

OpenCPU is a framework for embedded scientific computing and reproducible research.
The OpenCPU server provides a reliable and interoperable HTTP API for data analysis
based on R. We used OpenCPU so that our metrics can be computed by any user, since
all state in OpenCPU is managed by controlling objects in sessions on a server [24].
For this purpose, an R package was constructed that performs all these calculations and
supports a set of URLs in which the data is stored. The package’s functions support the
following parameters:

• n: number of data the function will return.
• W: proper time of the system in which the aggregation of times will be realized.
• metric: dummy variable to which a value is assigned depending on whether you

want to show the quality metrics or not.

Figure 5. OpenCPU interface
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When we access the IP where the OpenCPU service is hosted, athe interface in Fig-
ure 5 (left) appears. In order to compute the metrics a POST method shold be stablished
and the endpoint should point the appropriate package and functions, in this case Park-
Forecast and metrics.

5. Conclusions and Future Work

In this paper we use a combination of concepts for the calculation of Quality of Informa-
tion for real-time IoT-based sensor systems and shown its application to a more dataset
based approach. The inclusion of an outlier detection framework allows for a more de-
scriptive analysis of the sensor and its data. As future work we plan to incorporate our
metrics into real-time systems and see how they influence the quality of results in further
analysis and service provision.
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[15] J. Diaz-Rozo, C. Bielza, and P. Larrañaga, “Clustering of data streams with dynamic gaussian mixture
models: an iot application in industrial processes,” IEEE Internet of Things Journal, vol. 5, no. 5, pp.
3533–3547, 2018.

[16] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep autoencoders,” in Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp.
665–674.

[17] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support
of a high-dimensional distribution,” Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.
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[23] A. González-Vidal, P. Rathore, A. S. Rao, J. Mendoza-Bernal, M. Palaniswami, and A. F. Skarmeta-
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