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Abstract. The knowledge of spatial variability in soil organic carbon (SOC) is an 
important consideration in precision agriculture as well as site specific nutrient 
management. Geostatistical analyses coupled with GIS and GPS are effective tools 
in assessing the spatial variability and mapping of SOC. A total of 268 soil 
samples were collected in a systematic grid design (1-minute interval) using GPS 
covering four sub-districts: Delduar, Melandah, Mirpur and Fultala under two 
major alluviums - the Ganges and the Brahmaputra. The classical statistics showed 
that SOC values are normally distributed in the Fultala sub-site whereas in the 
other sub-sites, the SOC contents were not normally distributed. The 
semivariogram model also shows that the Fultala sub-site appears to have a strong 
structure and a gradual approach to the Gausian model providing the best fit where 
as the other sites show a weak spatial dependency. Due to salinity and other 
constrains, Fultala sub-site bears a relatively low cropping intensity and hence 
tillage and crop management are much lower than the other sites. GIS based 
interpolated values of SOC ranged from 0.39 to 2.02 % in the Fultala sub-site. 
Interpolated values of SOC ranged from 0.40 to 2.60% in the Delduar sub-site, 
0.40 to 1.35% in the Melandah sub-site and 0.38 to 1.39% in the Mirpur sub-site 
respectively. Clearly, the sites where SOC is low, a pragmatic and location-based 
policy should be adopted to maximize SOC sequestration. Therefore, the 
geospatial technologies can help better management of agricultural land by 
targeting management practices appropriate to the SOC levels.  

Keywords: Geostatistics; GIS-GPS; Kriging; spatial variability; precision 
farming. 

1. Introduction 

Soil organic carbon (SOC) has an important influence on the physical, chemical and 

biological properties of soil and is critical for improving soil fertility and quality, 
increasing the water holding capacity of soil, reducing soil erosion, and enhancing crop 

productivity [1-2].  
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With climate change and environmental issues dominating global concerns, SOC 

has received increasing attention worldwide because of its important role in the global 

carbon cycle and its potential feedback on the global warming [3-4]. Soil organic 

carbon and its relation to site characteristics is important in evaluating regional, 

continental, and global soil C stores and projecting future changes [5].  

However, due to high soil heterogeneity, it is difficult to obtain an accurate 
assessment of SOC stock [6]. As a result, there is a considerable interest in 

understanding the spatial variability of SOC in different terrestrial ecosystems [7-8]. 

Geostatistics has been widely used to assess the spatial characteristics of SOC [9]. SOC 

is a determinant of SOC stock [6], and its spatial distribution is intimately related to the 

changes in environmental factors [10-11]. However, the relative importance of the 
edaphic factors as drivers or constraints of spatial heterogeneity of SOC content in the 

alluvial soils of Bangladesh is not well understood. 

GIS is useful to produce interpolated maps for visualization, and for raster GIS 

maps; algebraic functions can calculate and visualize the spatial differences between 

the maps [12]. For studies on the spatial distribution patters of SOC, geostatistics has 

been widely applied [13-15] and based on the theory of regionalized variables [16], 
geostatistics provides tools to quantify the spatial features of soil parameters and allows 

for spatial interpolation. The krigged maps of soil parameters can help to become 

familiar with the characteristics related to the analysed soil properties and accordingly 

can plan prcision agricultural planning [17] 

 

The vast majority of farmers in developing countries like Bangladesh are 
smallholder farmers, meaning that they grow food on a small piece of land largely to 

feed their families. They often make field decisions on the basis of generic 

recommendations or historical information rather than factual recommendations. 

Farming practices based on historical information often do not achieve maximum 

production benefits; thus, it is important that small holding farmers should follow 

factual/science-based recommendation. In recent years, climate change has also 
become a burning issue in developing countries like Bangladesh. Considering the 

above issues, the concept of precision can help increase crop productivity and mitigate 

CO2 emissions by sequestering SOC.  

  

This study makes use of GIS and GPS in combination with classical statistics and 
geostatistics to assess the spatial variation characteristics of SOC in the Brahmaputra 

and the Ganges alluviums of Bangladesh. The specific objectives of this research were 

to measure the SOC and to make an outline on precision farming depending on the 

SOC status.  

 

2. Materials and Methods 

2.1. Soil sampling, processing and SOC analysis 

Soil samples were collected in one-minute latitude and longitude interval (1 minute = 

1600 m and 1 second = 26.5 m), equating to a grid size of 1600 m. Whilst a smaller 

size grid would have better captured the spatial variability, resource and time  
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contraints prevented the use of a more intensive sampling strategy. GPS Magellan 

(Model: 320) was used to identify the geographic coordinates as well as sampling 

locations. Land and soil resource utilization guides (LSRUG) of the Soil Resource 

Development Institute (SRDI) were used as a base material during field visits and soil 

samplings. Four Upazilas or sub-sites (Delduar, Melandah, Fultala, and Mirpur) were 

selected across the two major alluviums of Bangladesh where they fall under the 

diverse agro-ecological regions. Delduar and Melandah Upazilas under the 

Brahmaputra alluvium covered 66 and 80 grid points respectively. Mirpur and Fultala 

sub-sites under the Ganges alluvium covered 96 and 26 grid points respectively. Thus, 
268 soil samples were collected from the 0-30 cm depth on a grid basis across the four 

sub-sites. Soil samples from each sampling were collected in polythene sample bags. 

The bags were sealed properly precluding moisture loss from the samples and 

transferred as quickly as possible to the laboratory for relevant analyses. Prior to 

analysis, the soil samples were spread on a polythene sheet and big lumps were broken 

and air dried under shade. The soil samples were then gently ground by rolling a 
wooden rod and also with a wooden hammer, passed through a 2-mm (10 mesh) sieve, 

and mixed thoroughly. The samples were then preserved in plastic bags for laboratory 

analysis. Organic carbon in soil was determined by the wet oxidation method of [18] as 

described by [19].  

 

2.2. Classical statistics and Spatial Analysis  

 

SOC variability was tested within the sub-sites where a classical statistical analysis was 

used. This illustrates the trends and the overall variation of the SOC variables. This test 

includes descriptions of the minimum, maximum, mean, skewness, kurtosis, standard 

deviation (SD), coefficient of variations (CVs), histogram and Q-Q plots. All the above 
analyses were done using the statistical package SPSS version 20.0 (SPSS Ins., 

Chicago, IL, USA). Geostatistical analysis, construction of semivariogram, and spatial 

structure of SOC variability were performed with GS+ version 10.0 using Gamma 

Design Software, Plainwell, Michigan, USA [20]. Spatial interpolation through kriging 

and IDW were done with the GIS software ArcGIS version 9.3 (ESRI Inc., Redlands, 

California, USA). Data interpolation through kriging and Inverse Distance Weighting 
(IDW) were performed in ARCGIS 9.3 [21]. When the spatial structure is strong, krig 

interpolation was done and on the other hand, when the spatial structure is weak, then 

IDW interpolation was used.  

 

3. Results and Discussion 

3.1. Classical statistics and Geostatistics 

Classical statistics of the SOC dataset of the four sub-sites are summarized in Table 1. 

Mean contents of SOC across the four sub-sites of the two alluviums were different and 

ranged from 0.69 to 1.14%. From Table 1, it may be noted that Delduar and Fultala 

sub-sites have very similar mean SOC values and Melandah and Mirpur sub-sites 
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have similar mean SOC. SOC variation is higher in the Delduar and Fultala sub-sites 

than the other two sub-sites. Co-efficient of variation (CV) across the four sub-sites 

varies from 30.9 to 47.8% indicating a moderate variability in SOC. CV values also 

indicate the trends in mean SOC across the four sub-sites i.e., Delduar and Fultala  

sub-sites have similar CV whereas Melandah and Mirpur sub-sites have similar CV. 

Overall, the extent of SOC variability across the sub-sites of the Brahmaputra and  
the Ganges alluvium soils can be considered as moderate. The moderate CV of SOC 

across the study sites may be due to the heterogeneity of topographic units and soil 

types [8].  

 

Table 1: Summary statistics of SOC contents in the four subsites of the Brahmaputra and the Ganges 
Alluviums 

 

 
Variables 

SOC (%)

Delduar Melandah Fultala Mirpur

Mean 1.14 0.75 1.13 0.69

Minimum 0.40 0.40 0.30 0.38

Maximum 2.60 1.35 2.30 1.39

SD 0.553 0.246 0.511 0.214

CV(%) 47.8 32.8 45.1 30.9

Skewness 0.30 0.27 0.44 0.25

Kurtosis 0.59 0.53 0.858 0.49

SD= Standard Deviation, CV= Coefficient of Variation, 

 

It is important to test whether the SOC contents followed a normal distribution or 

not. To test this, two methods were used. First, the histograms of SOC were plotted 

with a normal distribution curve. This shows that SOC is positively skewed across the 

three sub-sites except at Fultala. Second, a Quantile-Quantile (Q-Q) plot was used, 

which also shows that the SOC is normally distributed only in the Fultala sub-site with 
a straight line. From these tests, it is important to note that SOC datasets do not fall on 

a straight line in the sub-sites of Delduar, Melandah, and Mirpur; thus Fultala is the 

only sub-site where SOC is normally distributed. In recent years, spatial dependence 

models of geostatistics have gained popularity as they allow the quantification of 

landscape spatial structure from point-sampled data. The understanding of the spatial 

variability of SOC levels between and within farms is very important for refining the 
farm management practices and implementing precision farming.The spatial 

dependence of SOC was determined by the semivariogram analysis. In the current 

study, the tested SOC in each sub-sites was modeled with linear, spherical, Gaussian or 

exponential semivariograms with a nugget effect.The values of the different 

semivariogram parameters i.e., nugget (Co), sill (C+Co), range (Ao), and nugget/sill 

ratio are given in Table 2. Generally, the nugget effect can be defined as an indicator of 
continuity at close distances.  
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Table 2: Parameters of the semivariogram models estimated for the SOC contents across the study sites 

 

Sub sites Model Nugget 

(Co) 

Sill 

(C+Co)

Co/C+Co Range 

(Ao)

RSS* R2 

Delduar Spherical 0.037 0.330 0.113 0.02 0.006 0.233 

Melandah Linear 0.067 0.067 1.00 0.10 0.005 0.138 

Fultala Gaussian 0.064 0.296 0.216 0.03 0.001 0.946 

Mirpur Exponential 0.029 0.058 0.499 0.07 0.002 0.055 

*RSS= Residual Sum of Squares 

The semivariogram for SOC across the four sub-sites are shown in Figures 1-4. 

The semivariogram of the Fultala sub-site appears to have strong structure and a 

gradual approach to the range, with the Gaussian model providing the best fit. It shows 

a nugget (Co) of 0.064; a sill (C+Co) equal to 0.296; range (Ao) equal to 0.03; 

coefficient of determination (R2) of 0.946; and a residual sum of squares (RSS) equal to 
0.001. This semivariogram appears to exhibit a pure nugget effect, possibly because of 

a too sparse sampling to adequately capture autocorrelation. On the other hand, the 

other three sub-sites (Delduar, Melandah and Mirpur) show similarity to the Fultala sub 

site regarding the nugget effect, sill, range and RSS. However, the coefficient of 

determination (R2) clearly shows that SOC datasets at these three sub-sites do not 

adequately fit to any of the semivariogram models. The lowest RSS value is one of the 
criteria of selecting the best fitted models [22]. In the case of Fultala, R2, RSS and 

nugget-to-sill ratio reveal that at this sub site SOC is strongly spatially dependent 

(Table 2). The other sub sites i.e., Delduar, Melandah, and Mirpur, show a weak spatial 

dependency as they have R2<0.5.     

 

Figure 1: The semivariogram model of SOC at the Delduar sub-site of the Brahmaputra alluvium 

 

Figure 2: The semivariogram model of SOC at the Melandah sub-site of the Brahmaputra alluvium 
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Figure 3: The semivariogram model of SOC at the Fultala sub-site of the Ganges alluvium 

 

Figure 4: The semivariogram model of SOC at the Mirpur sub-site of the Ganges alluvium 

        

Spatial variability of soil properties may be affected by both intrinsic i.e., soil 

forming factors such as parent materials and extrinsic factors i.e., soil management 

practices such as fertilization, tillage and general soil management practices [23]. They 

also added that strong spatial dependency of SOC can be attributed to intrinsic factors 

whereas weak spatial dependency can be attributed to extrinsic factors.Thus, the strong 

spatial dependence of SOC across the Fultala sub-site may be attributed by the 
structural or intrinsic factors which is governed by the larger resolution sampling 

design.The structural or intrinsic factors are the topographic units, SOC contents, 

mineral composition and soil type, etc. The possible causes of spatial variability in 

SOC may be the topographic land units and soil types, though other factors such as 

land use and management are also associated. The spatial variation in SOC may be 

partly attributed to the complex topography in the landscape [8]. The Fultala sub-site 
occupies three diverse physiographic units, Ganges tidal floodplain i.e., saline soils, 

peat soils with high SOC contents and non-saline soils. Due to its inherent low fertility 

nature [24], this sub-site bears a relatively low cropping intensity. Hence, tillage and 

crop management activities are much lower than any other sites.  

             

As a result, the spatial structure of SOC in the Fultala sub-site is not influenced by 

the soil fertilization and cultivation practices. As such, the spatial dependence remains 

strong in this sub-site. On the other hand, agricultural activities (such as tillage, 

irrigation practices; and land use intensification by higher cropping intensity), are the 
random factors which prevail across the other three sub-sites. Thus, it would appear 

that the SOC in the three sub-sites lacks spatial dependence. This is possibly attributed 

due to extrinsic factors of soil fertilization, which weakened their spatial correlation 

after a long history of cultivation. The weak spatial dependence of SOC across the 

Delduar, Melandah and Mirpur sub-sites is likely attributed by the human activities 
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such as tillage, cropping system management, irrigation practices, land use cover, 

manure and fertilizer, crop residue management and cropping intensity etc. [25].   

3.2. Spatial Interpolation of SOC 

In order to apply agricultural practices precisely and appropriately, it is important to 

investigate the spatial distribution of SOC across the four sub-sites. The parameters 

derived from the geostatistical models were used for kriging and inverse distance 

weighted (IDW) i.e., spatial interpolation by which spatial distribution maps of SOC 

across the study sites were produced (Figures 5-8). The maps of SOC distribution 
clearly show how the predicted values are spatially distributed. The interpolated krig 

map for Fultala (Figure 5) shows a strong spatial dependence. SOC concentration in 

this sub-site decreased from south to north, which was apparently related to the nature 

of soil and topographic conditions. On the other hand, weighted interpolation SOC 

maps were prepared for the other three sub-sites (Figures 6-8) which showed weak 
spatial dependence. It may be noted that weighted interpolation is used where data have 

weak spatial dependence or no spatial dependence. IDW is based on values at nearby 

locations weighted only by distance from the interpolation location, Bulls eye effect 

was found in this IDW datasets. Thus, IDW helps to compensate for the effects of data 

clustering, assigning individual points within a cluster less weight than isolated data 

points or treating clusters more like single points. IDW-interpolated maps for the other 
three sub-sites indicate that the spatial structure is dispersed due to the continuous 

management of the soil resources i.e., a weak SOC spatial dependency. Besides, it 

should be mentioned that the SOC were concentrated in some particular areas or land 

types of the Delduar, Melandah and Mirpur sub-sites which may be due to their local 

variability of land types and differences in land management practices and intensities. 

 

 

Figure 5: Distribution of SOC contents (%) in the Fultala sub-site using Kriging 
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Figure 6: Distribution of SOC contents (%) in the Delduar sub-site using IDW 

 

Figure 7: Distribution of SOC contents (%) in the Melandah sub-site using IDW 

 

Figure 8: Distribution of SOC contents (%) in the Mirpur sub-site using IDW 
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In this study, the weak spatial dependent sites possess a relatively flat topography 

(only 2 m elevation variation), the SOC distribution should not only be linked to water 

erosion processes, but also to tillage erosion. Indeed, widespread adoption of 

mechanized agriculture that promotes more intensive continuous tillage accelerates 

SOC oxidation [26] and predisposes soils to increased erosion [27]. Tillage, especially 

the conventional 30-cm deep tillage, is one of the major practices that affects SOC. 
Tillage thus accelerates runoff during the rainy season and destroys natural soil 

aggregates. This traditional tillage does not leave any residues on the soil surface to 

reduce rainfall erosivity. Thus, conventional tillage reduces SOC, weakens soil 

structure, ultimately causing soil compaction and sealing -affecting soil porosity, 

aeration and decomposition of organic matter that exacerbates the soil pulverization 
during the dry periods which are also reported in case of conventional tillage [28]. 

Interpolated values of SOC in the surface layer (0-30 cm), obtained by kriging ranged 

from 0.39 to 2.02% in the Fultala sub-site (Figure 5). The highest SOC tended to occur 

in the Fultala sub-site, where the landscape is diverse with low cropping intensity. This 

sub-site belongs to the south-western coastal plain of Bangladesh where the major land 

use is the rice-shrimp integrated farming. This topographic diversity mainly causes 
high variability in SOC. SOC levels are generally reflecting the intensity of agriculture 

and land management practices [29]. On the other hand, SOC interpolated by IDW 

ranged from 0.40 to 2.60% in the Delduar sub-site, 0.40 to 1.35% in the Melandah sub-

site and 0.38 to 1.39% in the Mirpur sub-site respectively (Figures 6-8). The lower 

SOC levels in these sub-sites may be attributed to more intensive cropping with high 

yielding varities (HYV) of rice.  
 

4. Conclusion 

Understanding the spatial variability of SOC is important for best soil management and 

targeted precision farming practices. The findings revealed that the SOC is low in all 

stdudy sites. Agricultural activities such as excessive tillage, improper cropping system 

management, land use intensification by high inputs, etc. are the random factors that 
prevail which may be responsible for the weak spatial dependence after a long history 

of agricultural use. While reducing cropping intensity is difficult given the need to 

increase food production better crop residue management and reduced tillage should be 

considered to increase SOC levels. It is important to initiate location-based policy to 

maximize SOC sequestration as well as precision farming in Bangladesh and other 
similar climatic and framing situations to restore soil health and agricultural 

productivity at farm level.  
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