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Abstract. Deep learning combined with autonomous drones is increasingly seen as 
an enabler of automated aircraft inspection which can support engineers detect and 
classify a wide range of defects. This can help increase the accuracy of damage 
detection, reduce aircraft downtime, and help prevent inspection accidents. 
However, a key challenge in neural networks is that their stability is not yet well 
understood mainly due to the large number of dimensions and the complexity of 
their shapes. This paper illustrates this challenge through a use case that applies 
MASK R-CNN to detect aircraft dents. The results show that environmental 
factors such as raindrops can lead to false positives. The paper also proposes 
various test scenarios that need to be considered by the developers of the drone-
based inspection concept to increase its reliability. 
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1. Introduction 

The current aircraft maintenance inspection process has not evolved during the last 40 

years despite the rapid advances in technology. It is not only time consuming as it 

requires a long time to prepare work platforms, ground support, and anti-fall straps to 

conduct inspection; but also dangerous as reports of injuries during inspection are not 

uncommon. Automating the inspection process can therefore increase workplace safety 

by reducing incidents, and reduce costs related to maintenance which remains the 
second largest cost for airlines after fuel (e.g. manhours, equipment, training, PPE costs, 

etc.). In addition, automation will enable a more objective assessment of damage as 

different inspectors can have different assessments. This would prevent from the failure 

to detect critical damage as it was the case for the Aloha Airlines Flight 243 [1] and 

recently the Virgin Australia Regional Airlines ATR72 [2].  

There is no doubt that computer vision will soon revolutionize aircraft inspection 
as it’s already the case other domains that require visual assessment. This is not 

surprising given that object detection errors by a machine decreased from 26% in 2011 

to only 3% in 2016 which is less than the human error of 5% [3]. The main driver 

behind these improvements is deep learning which had a significant impact on robotic 

perception following the design of AlexNet in 2012. In medical imaging diagnosis for 
instance, technology has become so good that the FDA has recently approved many use 

cases [4]. In the automotive industry, companies such as Tesla and Waymo are working 

towards fully driverless cars enabled by computer vision technology that can detect 
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various objects around the car. In production and manufacturing environments, 

computer vision is used for the external assessment of product quality and equipment 

such as tanks, pressure vessels, and pipes. In agriculture, computer vision algorithms 

are integrated with drones that can scan large fields in a matter of minutes. Images are 

collected and processed to help farmers make informed decisions about their crops. The 

captured images include soil and crop conditions to monitor for any stress or disease 
[5].  

Recently the aviation community started to develop the drone-based aircraft 

inspection concept. For instance, Ubisense and Mrodrone [6,7] have developed an 

inspection system that has been tested by Easyjet and is planned to be rolled out across 

Easyjet’s European bases. KLM Engineering & Maintenance is also experimenting 
with drones to inspect their aircraft and the research program is currently in its second 

trial phase. Another initiative is the Air-Cobot project [8] which aims at automating 

aircraft visual inspection and involves various academic and industrial partners 

including Airbus. In the same vein, the authors have also recently developed a 

Convolutional Neural Network to detect aircraft dents [9]. All these efforts aim at 

obtaining a good accuracy in defect detection and classification. However, as sensors 
can sometimes be unreliable, the question remains how well the system would perform 

in real-life outside the hangar? How to further improve it knowing that the slightest 

error in object detection can potentially lead to an aircraft accident if defects went 

unnoticed? And how to increase the confidence of aircraft engineers [10,11] in the 

drone-based aircraft inspection?  

These are all challenging questions as most of the research efforts in deep learning 
focus on improving the detection accuracy, but lag when it comes to neural network 

safety/stability and dealing with various types of uncertainties. This is mainly due to 

the lack of understanding of deep learning technologies even by AI experts. This can be 

explained by the large number of dimensions and complexity of the shape of neural 

networks. In addition, there has been little emphasis on standards and methodologies 

which can lead to a stable and reliable intelligent environment [12].To tackle this 
problem, this paper proposes different test scenarios that need to be considered by the 

aviation community in order to make drone-based inspection more reliable. The 

scenarios can be used to further improve the stability of neural networks and robustness 

of the decision-support system and validate the concept. 

This paper is organized as follows. Section 1 provides the introduction. Section 2 
presents the motivation behind automating aircraft inspection. Section 3 presents the 

use case of using MASK R-CNN to detect dents and illustrates some of the challenges. 

Section 4 proposes test scenarios that need to be considered by the developers of the 

automated drone-based inspection concept to increases its reliability. The conclusion is 

provided in section 5. 

2. Why Automate Aircraft Inspection? 

The aircraft inspection process is a recurrent process that needs to be conducted at 

every flight cycle. The level of inspection depends on different factors. For instance, if 

the aircraft was subject to abnormal events, a thorough inspection for potential damage 

is required. Examples of abnormal events include bird strike, lightning strike, hard 

landings, and encountering turbulent air. Table 1 shows examples of the inspections 

required for the King Air following abnormal events. 

S. Bouarfa and J. Serafico / Automated Drone-Based Aircraft Inspection 73



Table 1. Areas to be inspected after abnormal conditions [13]. 

 
 

Automated aircraft inspection basically aims at automating the visual inspection 

process normally carried out by aircraft engineers. i.e. It aims at detecting defects that 

are visible on the aircraft skin which are usually structural defects. These can include 

dents, lightning strike damage, surface finish defects, fasteners defects, corrosion, 
cracks, just to name a few. Automatic defect detection can be enabled by using a drone-

based system that can scan the aircraft and detect/ classify a wide range of defects all in 

a very shorty time. Eliminating the manual process can lead to a significant impact on 

aircraft operators with numerous benefits including but not limited to: 

 Reduction of time spent on maintenance: The drone can quickly reach difficult 

places such as the flight control surfaces in both wings and empennage. This 
in turn will reduce man hours and preparation time as engineers would need 

heavy equipment such as cherry pickers to have more scrutiny. The inspection 

time can be even further reduced if the drone-based system is able to assess 

the severity of the damage and the affected aircraft structure with reference to 

aircraft manuals.  

 Reduction in safety incidents and PPE related costs: Engineers no longer need 

to work at heights or expose themselves to hazardous areas e.g. in case of 

dangerous aircraft conditions or the presence of toxic chemicals. This also 

reduces costs on Personal Protective Equipment. 

 Reduction in Aircraft-On-Ground (AOG) time: Time savings on inspection 
time can lead to reductions of up to 70% in turnaround times. 

 Reduction in decision time: Defect detection will be much more accurate and 

faster compared to the current visual inspection process. E.g. it takes operators 

between 6 to 8 hours to find lightning strike damage. This can be reduced up 

to one hour with an automated drone-based system.  Such time savings can 

free up aircraft engineers from dull tasks and making them focus on more 
important tasks. This is especially desired given the projected need of aircraft 

engineers in various regions of the world according to a recent Boeing study. 

 Objective damage assessment and reduction of human error: If the dataset 

used by the neural network is annotated by a team of experts who had to reach 

consensus on what is a damage and what not, then detection of defects will be 
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more objective. Consequently, human errors such as failing to detect critical 

damage (e.g. due to fatigue or time pressure) will be prevented. 

 Augmentation of Novices Skills: It takes a novice 10000 hrs. to become an 

experienced inspector. Using a decision-support system can significantly 

augment the skills of novices. 

3. Automated Defect Detection Using MASK R-CNN 

To demonstrate the concept of automated drone-based inspection, the authors have 

applied MASK R-CNN to automatically detect aircraft dents [9]. Mask R-CNN is an 

instance segmentation model which enables the identification of pixel-wise delineation 

of the object class of interest. In order to get instance segmentation for a particular 

image, two main tasks are required: First, the bounding box-based object detection 
(Localization task) which uses similar architecture as faster R-CNN [14]. The only 

difference in Mask R-CNN is the Regions of Interest (ROI) step. Instead of using ROI 

pooling, it uses ROI align to allow the pixel to pixel preserve of ROIs and prevent 

information loss. Second, the semantic segmentation which allows segmenting 

individual objects at pixel within a scene, irrespective of the shapes. Semantic 

segmentation uses a Fully Convolutional Network which creates binary masks around 
the bounding box objects through creating pixel-wise classification of each region. 

Hence, Mask R-CNN minimizes the total loss. 

The neural network was trained with 55 photos containing aircraft dents. Because 

the dataset was small, it was decided to use a 10-fold cross validation approach [15]. 

So, the dataset was split into 10 equally sized parts 9 of which were used for training 

and 1 one for testing. The experiment included 10 different combinations of training 
and test pairs. The performance of each fold was evaluated using precision and recall 

(see Table 2). During the initial 15 epochs of training, the RESNET weights were kept 

constants, while the layers of the head of MASK-RCNN were trained and finetuned. 

The head includes the Region Proposal Network, Masking, and Bounding Boxes, 

among others. Then another 5 epochs were used to continue training the head of the 
Mask R-CNN structure including the RESNET layer. An important improvement in 

both precision and recall was noticed. This could be explained by the fact that the 

RESNET layer functions as a feature extractor and therefore training it leads to more 

true positives. 

 

Table 2. Average results corresponding to 10 folds. Precision = TP / (TP +FP), Recall = TP / (TP + FN), TP: 
True Positives, FP: False Positives, FN: False Negatives. Confidence Threshold = 73%. 

Performance Training head only (15 epochs) Training head (15 epochs) + RESNET (5 epochs) 

Train Size 49.5 49.5

Test Size 5.5 5.5

TP 5.7 6.9

FP 3.8 3.0

FN 6.1 5.4

Precision 53.6% 69.13%

Recall 46.2% 57.32%
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Analyzing the results show that factors such as lighting and environmental conditions 

can mislead the model. For instance, raindrops and rivets can be confused with dents 

(Figure 1). Therefore, additional training with data containing these anomalies is 

required, and more experiments need to include these types of scenarios during the 

physical testing of the drone.  

 

Figure 1. False Positive examples from Fold 10 test set where raindrops and rivets are confused with dents. 
The manually labeled photo is on the left while the prediction is shown on the right.   

4. Test Scenarios 

This section presents different scenarios which can be used to improve the reliability of 

automated drone-based aircraft inspection. These scenarios can also be used to design 

neural networks architectures specifically tailored to the aircraft inspection problem. 

4.1. Environmental & Diurnal Effects 

Environmental effects such as rain, sand, and salt can drastically affect object detection 

performance. As shown in [9], It might be a challenging task for the drone to detect 

defects under this type of scenarios because it remains a challenging task even for 

humans. However, equipping the drone with advanced scanning hardware might 

resolve this problem. In addition, Diurnal effects such as changes in light and 
temperature can also affect detect detection [9] (Figures 2-3). This could be an issue if 

the drone scans the aircraft from a fixed angle, as aircraft engineers usually inspect 

aircraft parts from different angles in order not to miss critical damage. A potential 

solution is to use multi-drone teaming and swarming with the help of light beams. 
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Figure 2. The gaps could be due to lose fasteners in edge of skin lap. Defect can easily be missed if not 
inspected standing on a work stand. The light plays an important role in damage detection. Photo taken at 
Abu Dhabi Polytechnic Hangar. 

 

 

Figure 3. Dents on an engine cowling of Falcon 20 at Abu Dhabi Polytechnic Hangar. 

4.2. Allowable Damage 

Not all defects detected by human operators must be repaired. When an aircraft 

engineer detects a dent in the rear fairing skin for instance, he performs various 

reasoning processes (Figure 4). E.g. looking whether the structure is primary or 

secondary, consulting aircraft documentation to check if the defect is allowable or must 

be repaired. Engineers also look at the type of material affected (e.g. chemically milled 

section, composite structure, and laminated honeycomb) as different materials have 
different properties. Therefore, to reduce false positives, the drone should be able to 

distinguish between allowable and non-allowable damage.  
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Figure 4. Damage examination and evaluation by a human inspector. 

 

For instance, taking a scratch on the Falcon 20 as an example damage. Its importance 

depends on the nature of the scratched material, the shape of the scratch, and the depth 

of the scratch [16]. Scratches with sharp edges, triangular or trapezoidal bottom are the 
worst. Deep scratches usually eliminate the protective coating and reduce the cross 

section of the stressed material. The drone should be able to precisely measure the 

depth of the scratch using advanced scanning hardware and compare it to the thickness 

of the protective coating shown in table 3. A scratch with a depth less than the coating 

thickness will be considered negligible (less than 0,04 mm). It is prohibited to smooth 
out such scratches as it could lead to the reduction of thickness of the protective coating 

and corrosion. If the scratch is deeper than 0,04 repair actions are needed. These 

include eliminating the ‘notching effect’, protecting against corrosion, and patching the 

scratched area. Another example damage includes dents. An allowable dent must not 

exceed a specific length (Figure 5) and must be free from sharp creases, gouges, or 

cracks.  Similar requirements exist for other types of damage e.g. cracks, localized 
impact, corrosion, wear, etc. 

 

Table 3. Coating thicknesses on the Falcon 20. 

Material nominal thickness [mm] Thickness of Aluminum Coating each Face [1/100 mm] 

0.3 to 0.6 4 to 6
0.8 to 1.6 4 to 6
2 to 3.5 4 to 8
4 to 6 4 to 10

 

The above requirements show that the drone algorithm should include relevant data 

from the aircraft Structure Repair Manual, Integrated Parts Catalogue, and Aircraft 

Maintenance Manual. The challenge would be the ability to assess and evaluate the 

damage similar to what an expert does. Therefore, experiments with the drone-based 
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inspection system should include various scenarios of both allowable and non-

allowable damage. 

4.3. Rare/Unknown damage 

Not all defects on aircraft have been encountered before (e.g. Figure 6). Therefore, the 

drone should be able to also detect unknown defects or very rare defects. This can be 

achieved by using unsupervised anomaly detection with Generative Adversarial 

Networks (GANs). With this method, it becomes possible to address the challenging 

task of detecting defects that were never seen before or are very rare. This is important 
when it is unclear what an anomaly is going to look like, or when there is no labeled 

data to train an image classifier with. Through training a GAN only with normal 

aircraft pictures that do not contain defects, it learns what healthy aircraft look like and 

would flag anything unusual. This can be double checked by operators to take actions if 

necessary. 

 

Figure 6. Example of a rare defect: Gunshot Damage of an A330-300 hit by a bullet in Congo on April 11th, 

2020. 

 
Figure 5. Allowable Dent [17].
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5. Conclusion 

Automated drone-based aircraft inspection is a promising approach to further optimize 

aircraft maintenance operations. The concept could lead to important cost savings for 

aircraft operators as less time is spent on maintenance. Furthermore, inspection risk can 

also be reduced as engineers would no longer need to work at heights. However, 

significant research efforts are still needed to test the concept under various conditions 
and make it more reliable. This paper has proposed test scenarios to be considered by 

the system designers to further develop the concept and connected them with 

requirements that the automated drone-based system should satisfy. The requirements 

include 1) the ability to detect and classify defects under different environmental and 

diurnal conditions; 2) the ability to distinguish between an allowable damage and non-
allowable damage thereby reducing false positives; and 3) the ability to detect rare or 

unknown damage that was never encountered before. 
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