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Abstract. An expanding attention regarding human emotion is a pressing motive towards 
the current research in neuroscience and artificial intelligent. People need to communicate by 
exchanging information through verbal or nonverbal communication via sound, visual 
gestures (facial expression or hand/body gestures). In today’s society, digital multimedia is 
one of the essential elements in daily life activities that can emphasize communication and 
emotions adequately. People with severe motor disabilities have difficulties in 
communicating and showing their emotions directly. Therefore, brain computer interface 
(BCI) can be a helpful tool as an alternative and assistive communication tools for sharing 
emotional information. This paper has conducted a review analysis to present the current 
trend in using digital multimedia to express the human feelings for the latest five years. 
Twenty-nine studies were selected from IEEEXPlore, PubMed and ScienceDirect, and 
classified into three major categories: methodology, multimedia type and number of emotion 
classes. The results show the need for more case studies and games in this area. There is also 
a need to increase the quality and quantity of research in emotion using the 
electroencephalography (EEG). 

 
Keywords. Brain computer interface, BCI, Human emotion, Digital multimedia, Electroencephalography, 
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1. Introduction 

Communication is one of the essential tools to deliver messages and exchange 

information. It can be either human to human communication or human to 

machines/devices interaction. Some people might not have full abilities or 
capabilities to communicate directly because they lost control of their voluntary 

muscles, such as people with severe motor injuries. Technologies have dependably 

been helpful instruments for this matter for collecting the information to 

communicate based on noninvasive brain waves using biosignals measurements 

such as electroencephalogram (EEG) [1] or magnetoencephalogram (MEG) [2]. 
Recently, brain computer interface (BCI) had risen as a popular field cross the 

multidisciplinary work. BCI system is moreover characteristically connected with 

the human brain because the brain is the primary and critical part that makes human 
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system functioning [3]. Today’s technologies even promise a variety of tools to help 

people with information. Progressively the video, audio, and text are widely used as 

tools for communication using BCI [4]. Other than that, the BCI can also be 

implemented in the real time environment and applications [5,6,7,8]. 

BCI is being mostly used in the rehabilitation process especially for people who 

had severe motor injuries. Previous research [9] showed that BCI can help people 
perform hand movements to communicate, and can restore the motor and sensory 

function for finger movement [10]. BCI can also be used in games for health-related 

project and communication. For instance, Brainio Bros 300 is a game that allow two 

players to communicate using BCI [11]. By playing this games, someone’s intention, 

impression and action can be predicted. Emotions play an important contribution in 
communication. Emotions can imitate the human intention [12] to inform others 

about their feelings. The amygdala part in the brain is associated with emotion 

centrality, so emotion and brain have a connection to react to some of the events [13]. 

This happens especially when retrieving emotional events, whether they are pleasant 

or unpleasant ones [14]. Emotions play also essential parts in interaction, impression 

and decision-making. People tend to show their passion based on an emotional event. 
For example, people will be sad if someone is passed away. They can also be sad if 

they see a picture or image of people that already passed away. Digital multimedia 

can help to increase the way of human emotion [15] especially for the impaired 

people. Brainwave can be one of the tools that can be showing and detecting their 

emotion-based on digital multimedia, e.g. pictures, audio or   text. 

This paper aims to review the adaptation of digital multimedia with emotion 
based on BCI using only the EEG method. Based on the previous research by using 

EEG method is helpful, safe, and modest. The most significant EEG does not hurt 

the subject. It involves recording and analyzing the artifact of the brainwave. This 

survey of literature presents the fundamental foundation of emotion using the 

common digital multimedia in BCI such as pictures and videos. This paper aims also 

to investigate the current patterns of using digital multimedia for retrieving the 
emotion to propose further direction. The rest of the paper is organized as follows. 

EEG and emotion are explained in Section 2. While Section 3 describes the method 

used. Section 4 summarizes the results and discussion and conclusion are presented 

in Section 5 and 6, respectively 

2. Emotion 

Research on emotion recognition is rapidly increasing due to the era of artificial 

intelligent [16]. Many numbers of experiments have been done, and system have 

been designed for various application specifically for human to interact with 

computer or devices on an emotional level. The essential target of emotion 

recognition is to transform the signals and interpret the information and feelings. 

Emotion itself can be clustered into three categories which are: (i) arousal and 
valence; (ii) primary emotion; and (iii) secondary emotion. Arousal and valence for 

two-dimension to measure effective experiences. While the six primary emotions, 

the feelings that prompt in response to an event are happiness, sadness, disgust, fear, 

surprise and anger [17]. The secondary emotion is the reaction based on the primary 

emotion such as optimism, irritation or nervousness. For instance, if a student gets 

good marks in examination, s/he feels happy and because of this, s/he is more 
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motivated to do well next time. Here, happiness is the primary emotion and 

motivation becomes the secondary emotion. Plutchik et al. [18] proposed the three-

dimensional emotion that arranges the emotion in the circle where the inner circle is 

primary emotion while the outer circle, which is more complex, represents the level 

of intensity for each of the emotions. Example: the inner circle is grief and the outer 

circle is pensiveness. 

EEG signals can relate to emotional changes and identify the current state of 

human emotion especially for the impaired people who cannot express their feelings. 

EEG is considered one of the crucial tools to detect emotion directly from the human 

brain [19]. From a psychological perspective, especially for autism patients, it is 

difficult to communicate and transfer the information to them. Hence, their emotion 
plays a significant contribution during transferrable knowledge and therapy. 

Additionally, observing their feelings can help people around them understand and 

fathom their behavior. Overwhelmingly, many researchers focusing on emotion 

recognition have applied the EEG for reading the stimulus [20,21]. Some of them 

used several machine-learning algorithms to classify the emotion based on EEG 

[22,23,24,25]. However, they used a survey to study the impact of multimedia EEG-
based tools on recognizing emotions [26] but they did not provide further direction 

on multimedia contents. 

Nowadays, multimedia plays a vital role in society, especially in communication, 

learning, entertainment or professional work. Barletta et al. [27] showed the 

invention to control the emotion while presenting the multimedia content. Byun et 

al. [28] using music to investigate the characteristic for the EEG pattern to analyze 
emotion and Tseng et al. [29] proposed the multimedia controller to choose music 

based on the prevailing emotion. Likewise, a video clip is used to interpret emotions 

while watching the video [30,31]. 

3. Method 

This paper followed the guidelines by Preferred Reporting Items for Systematic 

Reviews and Meta- Analysis (PRISMA) specification [32]. The electronic search 
online database was performed to find candidate papers from the following database: 

PubMed, Science Direct and IEEE Xplore to locate publication dealing with emotion 

and multimedia in the BCI area using the EEG signal. The reason for searching 

papers from 2015 to 2019 is because we want to analyze the current trend in terms 

of digital multimedia. The primary keywords used were: “emotions” AND “EEG” 
AND “multimedia”. Only full text with the English language were selected. The 

search was limited to the title, abstract and keywords.  

The main inclusion criteria were: (1) The healthy participants can be volunteers 

or a patient, (2) The tools to recognize the emotion must use the digital multimedia 

elements, (3) Using only the EEG method. The articles of the following exclusion 

criteria (EC) were not included in this paper: (1) expert opinion and book chapter; 
(2) physiological signal or biosignal as a task, such as focus on doing the exercise 

and physical movement to detect the emotion; and (3) not focusing on emotion as 

the final outcomes. A descriptive analysis table was built to extract significant 

information including the classes of emotions, methodology and multilmedia types. 

The categories of emotion did not focus on primary emotion but secondary emotion 

as well as the dimensional models of emotion. While the methodology was 
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concerned about the type of research such as experiments, case study or questionnaire, 

other elements being considered in this paper were tools of digital multimedia. 

4. Results 

After retrieving all the articles from three digital databases, 218 articles were 

identified that included the searching keywords. Only 29 articles satisfied the 

inclusion criteria and were selected for review. The remaining articles were 
discarded because they fulfilled the exclusion criteria. The overall result of this paper 

is presented in Table I. 

Figure 1 shows the diagram of selected studies. Uzun et al. [33] classified the 

emotion using multimedia but not with EEG as a conventional method, while [34] 

applied the EEG but focused on classifying the ethnic-based on music. Tech et al. 
[35] and Mothes et al. [36] experimented with the multimedia and EEG for 

depression for mental illness and healthy exercises, respectively.  

 

 
Figure 1. Flow diagram of study selection 

 

Figure 2 shows the proportion of methodology being used in the selected articles. 
The majority of the selected articles (82%) used experiments to classify or recognize 

human emotion. Five articles combined both questionnaire with experiment. Only 

one paper used a case study in which the participant is a game player whose emotion 

is examined after the game and after killing enemies. The reason because to match 

the evaluation with the result using EEG since emotion can be very subjective and 

hard to identity. 
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Table 1. Characteristic and result of Included Articles. 
 

Author Methodology 
Multimedia 

Type
Emotion class 

Mohammadpour et al. 

[37]   
Experiment Pictures 

fear, sad, frustrated, happy, 

pleasant and satisfied  

Pan et al.[38] Experiment Pictures happy and sad 

Shahnaz et al. [39] 
Experiment & 

Questionnaire 
Music Video 

valence, arousal, dominance 

 and liking 

Mehmood and Lee 

[40 ,41] 
Experiment Pictures happy, calm, sad and scared 

Raheel et al. [42]  Experiment Mulsemedia 
happy, relaxed, sad, and 

angry

Xing et al. [43] Experiment Video Clip arousal and valence 

Syahril [44]  Experiment Video Clip 
sad, fear, happiness and 

disgust.
Katsigiannis and 

Ramzan [45]  
Experiment Video Clip 

valence, arousal, and 

dominance

Soleymani et al.[46]  Experiment Video Clip arousal and valence 

Yoo and Hong [47] Experiment Pictures arousal and valence 

Ntalampiras et al [48]  Experiment Music arousal and valence 

Abadi et al. [49]  Experiment Music Video 
valence, arousal, and 

dominance

Al Madi and  Khan 
[50]  

Experiment & 
Questionnaire 

Video Clip 
Text 

arousal and valence 

Ding et al. [51] Experiment Video Clip arousal and valence 

Miranda-Correa and 
Patras [52]  

Experiment & 
Questionnaire

Video Clip arousal and valence 

Antons et al. [53]  Experiment Video Clip 
valence, arousal, dominance, 
 liking, quality 

Raheel et al. [54] Experiment Video Clip arousal and valence 

Clerico et al. [55] Experiment Music Video 
arousal, valence, dominance  
and liking 

Han et al. [56] 
Experiment & 
Questionnaire 

Video Clip arousal 

Liang et al. [57]  Experiment Video Clip 
arousal, valence, dominance  
and liking 

Kaur et al. [58]  Experiment Video Clip calm, anger and happiness 

Qayyum et al. [59]  Experiment Video Clip 
happy sad, neutral, love,  

angry, surprise 

Gauba et al. [60] 

 Experiment Video Clip valence 

Riaz et al. [61] Experiment Pictures arousal and valence 

Kurbalija et al.[62]  Experiment 
Speech 

Music 

angry, fear, happy, neutral, 

sad, and surprise 

Singhal et al. [63]  
Experiment & 
Questionnaire

Video happy, sad and neutral 

Stein et al. [64]  Case study Game arousal and valence 

Gupta and Falk [65]  Experiment Music Video 
arousal, valence, dominance  
and liking 
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Figure 2. Methodology 

 

Figure 3. Multimedia Type 

 

Figure 3 presents the multimedia types identified in all the selected studies. The 
majority of the human emotion based on digital multimedia are empirically 

evaluated using the video clips. Music videos and pictures were mainly conducted 

during the experiments. Text, games and mulsimedia were used in a few papers. 

Figure 4 illustrates the categories of emotion identified in the selected papers. The 

emotion was classified and recognized based on two class of model dimensional 

(arousal or valence), 4 class of model dimensional (arousal, valence, liking and 
dominance), primary emotion and combination within primary and secondary 

emotion. Many kinds of research focus on classifying the emotion within two classes 

that belong to arousal and valence. Additionally, other class such as only valence or 

only arousal also become the major contribution for human motion with 13% equally 

with two models dimensional. This class belongs to emotion that being classified or 
recognized using one emotion, which can be either valence or arousal, or classified 

the emotion into three categories: arousal, valence and dominance. The combination 

between primary and secondary emotion was identified only in 3% of the selected 

papers. 
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5. Discussion 

The study of emotions crosses disciplinary boundaries with the contribution and 

collaboration between medical, psychology, education, and entertainment. Human 
emotion is a research topic that has implications to be extended to future technologies 

with artificial intelligence [66]. Digital multimedia is now progressively used in 

every single aspect of human life. However, individual affection for multimedia 

elements can affect emotions and daily life performance. This paper investigated the 

current trend of different multimedia elements for the future direction to identify 

human emotion. Despite the fact that multimedia and emotion are becoming 
increasingly important, only 29 selected studies discussed the usage of digital 

multimedia that can erupt emotions. This might be due to the search keyword used 

since we used the general terms of “multimedia” rather than using the specific 

multimedia keyword such as “Games”, “Music” or “Video”.  The majority of the 

selected studies used experiments to handle EEG and classify feelings.  
The results showed also that video clips consisted of the majority of tools to 

perform emotion recognition [43,44,45,46,51,52,54]. This can be because video is 

the most popular digital multimedia, which includes audio and continuous images. In 

this case the emotion is triggered based on two media at the same time. Only [42] used 

mulsemedia combined with the action of smelling while watching the video during 

an experiment. Text [50] and games [64] are less favorable to be tested for human 
emotion. The reason might be because nowadays more people communicate with 

emoji or .gif rather than direct text. The quantity of the games as multimedia elements 

can be increased to identify the human emotions due to the demand. Most of people 

spend their free time playing video-games. Future games can be developed to control 

human emotion. In line with this paper, the emotion can be classified into few 

categories which can be extended to include more complex human emotions. More 
research is needed to study human emotion that relates to digital multimedia. In 

future work, we intend to conduct an EEG experiment in this topic. 

Figure 4. Emotion classification / recognition 
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