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Abstract. In general, it is a complicated and time-consuming task for a tourist
to plan a satisfactory sightseeing tour, because he/she must take into account var-
ious factors and constraints (e.g., budget, available time, etc) at the same time.
This difficulty comes from the fact that there is a trade-off between the satisfac-
tion/experience obtained by the sightseeing tour and the resource consumed for the
tour, hence the optimal solution is not unique. To help decision making, it is desir-
able to show the tourist a variety of solutions (i.e., tours) considering the trade-off
in various ways, but to the best of our knowledge, no existing methods/systems
provide such a wide variety of solutions. In this paper, we formulate the sightseeing
tour recommendation as a multi-objective optimization problem with money, time
and stamina consumption of a tourist and satisfaction degree obtained by the tourist
as independent variables. Since this problem is NP-hard, we propose a heuristic al-
gorithm to quickly obtain semi-pareto optimal solutions based on genetic algorithm
NSGA-II. We applied the proposed method to planning tours targeting 30 tourist
spots in Higashiyama-area of Kyoto, Japan. As a result, our algorithm could output
semi-pareto optimal solutions in reasonable time.
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1. Introduction

Thanks to the wide-spread of smart devices with GPS, navigation systems that navigate a
user from the current location to the destination location are now widely available. Such
a navigation system like Google Maps has a route planning function that helps a user
decide his/her satisfactory route in terms of monetary and/or temporal constraints, by
showing multiple routes with (possibly combination of) multiple transportation means
(trains, buses, taxis, etc).

Most of the existing route planning functions/systems, however, are suffering from
its usability that a user needs to specify detailed conditions to get his/her satisfactory
route. A more easy-to-use route planning system which takes into account user’s context
and preference is desired.

In the domain of tourism, there is a route planning system called the tour planner
such as NAVITIME TRAVEL1. The tour planner suggests a user a tour plan considering

1https://travel.navitime.com/ja/
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his/her preference, but it requires a user to input a lot of information such as selection of
PoIs (Point of Interest), hence takes a lot of time to obtain a plan. To solve this problem,
there have been proposed automatic tour planning systems (ATPS) which automatically
select PoIs in the specified area and compose/show users a sightseeing tour including
moving ways between PoIs.

In existing ATPS, various objective functions are considered. Shiraishi et al.[1] pro-
posed an ATPS which solves a multi-objective optimization problem taking into ac-
count a trade-off between monetary cost and satisfaction degree. Wu et al. [2] proposed
an ATPS which maximizes satisfaction degree taking into account tourist’s remaining
stamina as a constraint.

In general, users do not always select the shortest or the cheapest route during sight-
seeing tour because their main purpose is to get satisfaction/experience through sightsee-
ing activities. Whereas, they do not always maximize the satisfaction since their resource
(money, time and stamina) is limited. Hence, for the move between PoIs, we must con-
sider the trade-off between the satisfaction of the user and the time, money and stamina
as user’s resource. For the selection of PoI, we must also compare multiple PoIs in terms
of the trade-off between the satisfaction and the resource consumption. As such, ATPS
can be formulated as a multi-objective optimization problem with several independent
factors.

In this paper, we formulate the sightseeing tour recommendation as a multi-objective
optimization problem with money, time and stamina consumption during a tour and sat-
isfaction degree obtained by the tour as independent variables. Since this problem is NP-
hard, we propose a heuristic algorithm to quickly obtain semi-pareto optimal solutions
based on genetic algorithm NSGA-II [3]. We applied the proposed method to planning
tours targeting 30 tourist spots in Higashiyama-area of Kyoto, Japan. As a result, we
confirmed that our algorithm could output semi-pareto optimal solutions in reasonable
time that could be used for decision making under trade-off.

The remainder of the paper is structured as follows: Section 2 overviews the existing
studies related to our proposal. Section 3 provides the formulation of our target prob-
lem. Section 4 describes the proposed algorithm based on GA. Section 5 provides the
experimental results to evaluate our method and finally Section 6 concludes the paper.

2. Related Work

Most of the existing tour navigation systems recommend PoIs with high average review
scores and/or according to the user’s preference [4,5,6]. These studies focus on the im-
provement of user satisfaction and recommend a single PoI using a kind of filtering sys-
tems, but they do not consider the whole tour planning including routes and other factors
related to tourism.

Some studies support the whole tour planning by connecting multiple PoIs. Kurata
et al. [7,8] created a web-based interactive tour planning service called CT-Planner. This
service plans and recommends a tour route while analyzing the user’s preference.

There are some studies that add other factors related to tourism such as money,
time and stamina as constraints [9,10,11,12]. For example, Wu et al. [2] considered the
stamina as a constraint. However, these existing studies focus only on the satisfaction of
users as the main factor and do not consider the trade-off between the satisfaction and
other factors such as money, time, and stamina.
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There have been proposed some methods that consider the trade-off with other fac-
tors. Shiraishi et al. [1] proposed a method which recommends tour routes considering
the trade-off between satisfaction and time. Tamashiro et al. [13] defined multi-objective
optimal routing problems for sightseeing by extending the optimal routing problem and
considered a trade-off between the value of the tour and the required money. These stud-
ies, however, consider only a single factor conflicting the satisfaction and multiple con-
flicting factors are not considered.

Users take into account not only satisfaction/experience by the tour but also a bal-
ance between it and other factors such as money, time and stamina during the tour. There-
fore tour planners must consider/compare multiple PoIs in terms of the trade-off between
the satisfaction and the resource consumption.

In order to help users make decision for a good sightseeing tour, we model this prob-
lem as a multi-objective optimization method with money, time and stamina consump-
tion of a tourist and satisfaction degree obtained as independent variables. PSO (Parti-
cle Swarm Optimization) and MOGA (Multi-Objective Genetic Algorithm) are popular
methods for solving multi-objective optimization problems. Some algorithms for MOGA
have been proposed so far [14,3]. Among them NSGA-II is one of the most popular
algorithms which can derive diverse solutions.

The final goal of this work is to present multiple diverse tours to users. For this
purpose, the diversity of solutions is very important. We consider three of factors: money,
time and stamina as resources retained by users, and present diverse solutions to users
by solving the tour search problem as a multi-objective optimization problem taking into
account trade-off between these resources and satisfaction.

3. Diverse Tour Routes Search Problem

3.1. Problem

We assume that user resources consumed by sightseeing activities and movements be-
tween PoIs are (1) stamina, (2) time and (3) money. Moreover, to simplify the problem,
the tourist’s purpose of the sightseeing tour is only obtaining satisfaction by the sight-
seeing.

Our target problem is a multi-objective optimization problem to derive tour plans
that have higher satisfaction with smaller consumption of resources consisting of
stamina, time and money.

The values of four variables corresponding to stamina, time, money and satisfaction
vary depending on the initial values assigned to these variables and increase/decrease of
them at each PoI and each move included in the tour plan under consideration.

3.2. Problem Formulation

Let XXX = {x0, ...,xn} denote the set of tourist spots (PoIs). Let rrrnnn = (mn, tn,sn)
T denote

the vector of the values of the remaining resources after enjoying sightseeing at each of
n spots. Here, mi, ti and si denote the remaining amounts of money, time and stamina,
respectively after enjoying i-th visiting spot in XXX . Let rrr000 = (m0, t0,s0)

T denote the vector
of initial values assigned to resource variables, where m0, t0 and s0 are initial values and
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correspond to the user’s budget, available time for the tour and the initial stamina, re-
spectively. We assume that the user will set these values manually. rrrnnn can be represented
by Eq. (1).

rrrnnn = rrr000 −
n−1

∑
i=0

[CCCRRR(xi)+mmmooovvveeeCCCRRR(xi,xi+1)]−CCCRRR(xn) (1)

where
rrrnnn = (mn, tn,sn)

T

CCCRRR(x) = (CMx,CTx,CSx)
T

mmmooovvveeeCCCRRR(x,x′) = (moveCMx,x′ ,moveCTx,x′ ,moveCSx,x′)
T

Here, CCCRRR(x) denotes the resource consumption at spot x and mmmooovvveeeCCCRRR(x,x′) denotes
the resource consumption while moving from spot x to x′. CMx, CTx and CSx denote
the consumption of money, time and stamina for enjoying sightseeing at spot x, respec-
tively. moveCMx,x′ , moveCTx,x′ and moveCSx,x′ denote the consumption of money, time
and stamina for moving from spot x to x′, respectively. We assume that these are constant
values given in advance.

We assume that satisfaction denoted by c is determined by the tour route, the stay
time at each spot and the environmental condition at the spot and route. Then, we repre-
sent c by Eq. (2).

c(XXX) =
n−1

∑
i=0

[SAT (xi)+moveSAT (moveCT (xi),xi,xi+1)]+SAT (xn) (2)

Here, SAT (x) denotes satisfaction obtained at spot x, and moveSAT (moveCT (x),x,x′)
denotes satisfaction obtained while moving from spot x to x′.

We assume that the satisfaction obtained is always a positive value. The objective of
the problem is to maximize both remaining resources and satisfaction. Then, the objec-
tive function is represented by Eq. (3).

maximize mn(XXX), tn(XXX),sn(XXX),c(XXX) (3)

4. GA-based Algorithm to Derive Diverse Tour Routes

The problem in Sect. 3 is an NP hard problem since it implies the multi-objective knap-
sack problem (known as an NP-hard problem) as a special case, so we propose a heuris-
tic algorithm to solve it in practical time. In this section, first, we describe the coding of
solutions operated in our algorithm, then describe genetic operators including mutation
and crossover used in the proposed algorithm.
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4.1. Coding of solution candidates

Figure 1. Representations of path data (right) and the corresponding Transportation type/ PoI data (left)

The solution candidates or simply solutions (i.e., chromosomes) used in our algorithm are
path data shown in the right of Fig. 1 that contains a series of moves (i.e., transportation
types) between two consecutive PoIs. These path data can be converted to PoI data and
transportation type data shown in the left of Fig. 1. Genetic operations like Mutation and
Crossover are applied to the PoI data and the transportation type data after converting
from the path data.

4.2. Detailed Algorithm

The proposed algorithm consists of the following 6 steps and iterates Steps 2 to 6 for
specified times (generations).

1. Initialization: First set the number of generations (iterations) to T , set the num-
ber of individuals (solutions) in initial population to N, and initialize the current
generation number t = 0 and searching population Q0 = /0. Next, create initial
population P0 with randomly generated path data.

2. Non-Dominated Sort: Generate new population Rt = Pt ∪Qt , and execute Non-
Dominated sort for Rt and classify all elements of Rt by their rank i (i.e., the
number of elements which dominate the element under consideration). To decide
the rank of an element, all elements in the set are compared in terms of stamina,
time, money and satisfaction which are calculated for each element (path) with
equations (1) and (2). Then, the classified elements of Rt are added to Fi (i =
0, ..,n) according to their rank i.

3. Crowding Sort: Generate the next generation population Pt+1 by adding
F0,F1,F2, ... in this order while satisfying the condition |Pt+1| ≤ N. In addition, if
|Pt+1|+ |Fi| > N, apply Crowding sort to Fi to add N −|Pt+1| better (i.e., higher
diversity) solutions in Fi to Pt+1 . When the generation number t satisfies the
condition t +1 = T , the algorithm is terminated.

4. Crowding Tournament: Apply Crowding tournament based on stamina, time,
money and satisfaction to solutions in Pt+1. It is applied to randomly selected N/2
pairs of 1-to-1 tournament to add N/2 better solutions to searching population
Qt+1.

5. Crossover: Randomly choose N/4 pairs of solutions from Qt+1 and apply
Crossover to them (Fig. 4).
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6. Mutation: Apply Decrement Mutation to randomly chosen N/20 solutions (Fig.
3), and apply Increment Mutation to other N/20 solutions (Fig. 2). Then, go to
step 2 after incrementing t. N/20 was chosen based on the default mutation rate
0.1 used in NSGA-II.

4.3. Mutation
In our algorithm, we designed two Mutation algorithms: one is to randomly insert one
PoI and the other is to randomly remove one PoI in a solution so that diverse solutions
are kept in terms of the number of PoIs. One of the algorithms is selected to use at the
probability of 0.5.
Increment Mutation: As shown in Fig. 2, first a PoI (PoI 7 in the fuigure) is randomly
chosen from the set of all PoIs except for the ones already in the solution and a trans-
portation type leaving from the added PoI (Car in the figure) is randomly chosen. Next,
the insert position in a solution is randomly chosen, and both the chosen PoI and trans-
portation type are inserted.
Decrement Mutation: This algorithm is applied only to a solution with length more
than two. If the length is more than two, as shown in Fig. 3, the point to remove PoI is
randomly chosen (PoI 21 was chosen in the figure) and the PoI and the transportation
type leaving from the PoI (Car in the figure) are removed.

Figure 2. Increment Mutation Figure 3. Decrement Mutation

4.4. Crossover

We employ single-point crossover where a single cut point in each of two parents is
randomly selected and the left (right) part of the parent 1 and the right (left) part of
the parent 2 are swapped to make new offspring, as shown in Fig. 4. However, simply
using the single-point crossover for our algorithm, it is likely to generate lethal (invalid)
solutions which include the same PoI multiple times. Hence, before concatenating the
divided parts of the parent solutions, we try to reduce generation rate of such lethal
solutions by randomly replacing either of the PoIs included in the left part of a parent and
right part of another parent (middle of Fig. 4). For convenience, when we divide a parent
solution into two parts, we remove the incoming transportation type in the right part and
add a randomly selected transportation type when concatenating the parts as shown in
Fig. 4.
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Figure 4. Single-Point Crossover

5. Evaluation Experiment

5.1. Experimental Environment

Table 1. Initial Resources

Generation Time(s) Money(yen) Stamina

low 500 15000 7500 1000
medium 500 30000 15000 2000

high 500 60000 30000 4000

We have implemented our algorithm in Python3 and executed the implemented algorithm
on a PC with Intel Core i7-8550U 1.8 GHz, 16 GB RAM and Windows 10 Home OS.
Further, we executed our algorithm for three different initial resource assignments shown
in Table 1, to investigate the correlations between the derived solutions and the initial
resources. In this experiment, we derived the information on the resource consumption
on money and time for each path (solution) by using Google Map API. Since it is diffi-
cult to know actual stamina consumption and satisfaction got on a path, we set the imag-
inary values empirically. Modeling of stamina consumption and satisfaction acquisition
(proposed in [15]) is our future work.

In this experiment, we targeted 30 PoIs in Higashiyama-area of Kyoto, Japan as
shown in Fig. 11, and we determined the start and the goal points in advance. Moreover,
because of the short distance between PoIs, we used car (taxi), bus and walking as types
of transportation.

5.2. Relationship between Initial Resource and Solutions
Fig. 5 shows the scattered plot of initial solutions generated at random (at 0-th Gener-
ation). These solutions are paths consisting of 10 randomly selected PoIs including the
start and goal points. Furthermore, Fig. 6, Fig. 7 and Fig. 8 plot 100 solutions that our
algorithm calculated at 500-th generation with low, medium and high initial resources.
Table 2 shows a part of the derived solutions, and values represent consumed/remaining
resources and satisfaction value. This result supports that our proposed algorithm can
derive diverse solutions considering the trade-offs between resources and satisfaction
values.

Moreover Figs. 6–8 indicate relationships between money, time, stamina and satis-
faction. Specifically, in Fig. 6, solutions are dense in the left-bottom area, because solu-
tions are limited by low initial resources in this case. On the other hand, medium initial
resource case (Fig. 7), solutions are more distributed in wider area than the low initial
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resource case (Fig. 6). Moreover, we found that the solutions calculated with high ini-
tial resources (Fig. 8) could fully search the solution space, because there were no so-
lutions with the remaining resource equal to 0. The figures also suggest that there are
positive correlations between resources, and negative correlations between resources and
satisfactions.

Figure 5. Random Solutions Figure 6. Solutions with low initial resources

Figure 7. Solutions with medium initial resources Figure 8. Solutions with high initial resources

Table 2. Example of solutions with low initial resources

POI and Transportation consumed (re-

maining) time

(sec)

consumed (re-

maining) money

(yen)

consumed

(remaining)

stamina

satisfaction

[0, 12, 14, 10, 8, 1, 26, 2, 23, 27]
6591 (8409) 4040 (3460) 366(634) 1859

[Walk, Bus, Bus, Walk, Bus, Bus, Walk, Bus, Car]

[0, 21, 10, 23, 19, 27]
11108 (3892) 6600 (900) 580 (420) 926

[Walk, Bus, Walk, Car, Bus]

[0, 12, 10, 27]
13076(1924) 7270 (230) 910 (90) 423

[Walk, Walk, Bus]
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Figure 9. Crowding Distance
(Random Solution)

Figure 10. Crowding Distance
(High initial resource)

Figure 11. PoIs of Higashiya-
ma-area

5.3. Diversity of Solutions
We used crowding distance as an indicator to evaluate diversity of solutions. The crowd-
ing distance distancei is defined as Eq. (4).

distancei =
M

∑
m=1

(Em(i+1)−Em(i−1))/(Em(0)−Em(n)) i ∈ {2, . . . ,n−1} (4)

In Eq. (4), n is the total number of solutions, and Em, m= [money, time,stamina,satis f action]
is sorted evaluation values in ascending order. The boundary solutions are defined as
distance1 = distancen = ∞. The crowding distance is calculated as Manhattan Distance
between the neighboring solutions, and crowding distances are equal in all neighboring
pairs of solutions (except distance1 and distancen), if the distribution of solutions are
completely uniform. When we compare the distribution of the crowding distances of
randomly calculated solutions shown in Fig. 9 and those at 500-th generation with high
initial resources shown in Fig. 10, we see that crowding distances of randomly calculated
solutions have smaller crowding distances than that of high initial resource case. This
result supports that solutions calculated with high initial resources have high diversity.
5.4. Computation Time
Table 3 shows the computation time in one generation for three different initial resources
cases. When we use 500 generations, the total computation time will be 1700 to 2900
seconds. This time may look very long, but we still believe that it is feasible when plan-
ning a satisfactory tour, by reducing the number of generations and so on. From the table,
we see that our algorithm takes more computation time in one generation in the case of
more initial resources assigned. This is because the probability of lethal solution gener-
ation is higher with low initial resources, because the lethal solutions are ignored at the
crossover and mutation steps, then computation time decreases.

6. Conclusion

In this paper, we proposed the NSGA-II based Multi-Objective Genetic Algorithm to
search the semi-pareto optimal solutions of the tour route search problem considering

Table 3. Computation Time for One Generation (sec)

N-D Sort Crowding Sort Tournament Crossover Mutation Sum

low 0.158±0.023 0.199±0.027 0.023±0.004 2.683±0.282 0.346±0.056 3.409±0.350
middle 0.210±0.041 0.261±0.049 0.023±0.004 3.596±0.625 0.454±0.101 4.544±0.773

high 0.266±0.082 0.325±0.089 0.023±0.005 4.610±1.281 0.579±0.179 5.803±1.576
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four conflicting factors: money, time, stamina resources and satisfaction degree. We eval-
uated the solutions calculated by our algorithm targeting the popular tourism area with
30 PoIs in Kyoto, Japan. As a result, we found that there are positive correlation between
remaining resources and negative correlations between remaining resource and satisfac-
tion. In addition, the solutions using high initial resources are more diverse and more
uniformly distributed than random solutions. Moreover, the algorithm using high initial
resources can search wider solution space but takes longer computation time. Our future
work includes reduction of calculation time (especially for crossover operation), support
of more transportation types as well as wider tourism areas with more PoIs and modeling
of stamina consumption and satisfaction acquisition.
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