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Abstract. In this chapter, we explore the application of the derivative of 

disproportion functions in developing a cryptographic system and a 

pattern recognition technique. Firstly, we present an algorithm that 

utilizes focal functions, known as functions of disproportion, in a 

cryptographic system. The transmitted symbols are encrypted using the 

weighted sum of at least two of these functions with randomly generated 

coefficients. Numerical experiments demonstrate the robustness and 

reliability of the proposed procedure. 

Furthermore, we demonstrate how the derivative of disproportion 

functions can govern a dynamic process, serving as a tool to identify the 

form of a real-valued function. This process enables us to determine the 

class to which the function belongs, independently of its unknown 

parameter values. 

 

Keywords: Pattern recognition, cryptographic systems, derivative of 

disproportion functions, decoding algorithms, recognition schemes.  

Key function -> focal function; derivative of disproportion function  -> 

derivative of disproportion function. 

Acknowledgments:  

The authors would like to acknowledge the support and financial assistance provided 

by Universidad Autónoma de Nuevo León (UANL) through the corresponding author, 

Viacheslav V. Kalashnikov. 

Unconventional Methods for Geoscience, Shale Gas and Petroleum in the 21st Century
J. Watada et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/AERD230022

244



1: Introduction 

Pattern recognition plays a crucial role in industries such as Geology, Petroleum, 
and Shale Gas, where analyzing and classifying patterns is essential (confer, for 
example [9]-[13]). This paper aims to provide an effective mathematical tool for 
pattern recognition in these industries. 

Cryptography is indispensable for protecting valuable information against 
unauthorized access, given the high value of information in industries and society. 
Cryptographic systems, which are part of information systems, employ techniques such 
as the Data Encryption Standard (DES), Advanced Encryption Standard (AES), and the 
Rivest-Shamir-Adleman (RSA) cryptosystem. However, with the advancement of 
powerful computers, network technologies, and neural computing, it becomes 
necessary to reconsider and develop new cryptographic systems that can withstand 
modern challenges. 

Modern cryptographic systems typically utilize integer numbers as keys, with 
longer keys considered more reliable and difficult to break. However, using real 
numbers or real functions as keys can enhance the security and resistance to hacking in 
cryptographic systems. 

Pattern recognition problems share similarities with cryptographic systems. There 
is often a need to recognize the form of a numerical function that describes a 
technological process. For instance, in the chemical industry, the recognition of 
membrane oscillations in a vibration granulator is crucial, as deviations from sinusoidal 
mode or the appearance of additional harmonics indicate damage or quality issues in 
production. Similarly, recognizing the exponential form in chemical reactions is 
essential to identify irregularities or deviations from expected behavior. 

The problem of function recognition can be challenging, especially when the 
function parameters are unknown or represented by a random variable with an 
unknown distribution. In this chapter, we address two problems: (i) encoding/decoding 
a signal represented by a sequence of symbols using real-valued functions, and (ii) 
efficient recognition of function patterns using the derivative of disproportion functions. 

In problem (i), symbols are encrypted by summing real-valued functions (keys) 
multiplied by randomly chosen factors. By leveraging the properties of derivative of 
disproportion functions, we can decipher the encoded symbols by recognizing the 
combined functions used in the encryption process, even when the randomly chosen 
multipliers are unknown. 

Problem (ii) is addressed using the same derivative of disproportion functions and 
their key properties for efficient recognition of function patterns. 

The structure of the chapter is as follows: Sections 2 and 3 introduce the derivative 
of disproportion functions and explain problem (i) in detail. In Section 4, the 
decryption method is presented. Section 5 provides numerical examples and 
computational experiment results. Sections 6 and 7 demonstrate the robustness of the 
developed cryptographic system and discuss the requirements for the disproportion of 
focal functions, respectively. Section 8 discusses problem (ii) and presents its solutions. 
Finally, Section 9 provides the conclusions of the chapter. 

2: Derivative of Disproportion Functions 

The derivative of disproportion functions, introduced in previous works [5]-[8], 
provides a basis for developing new encoding procedures and characterizing real-
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valued functions. It also enables estimation of the deflection of a real-valued function 

from a power function, denoted as n

y k x  , at a specific value of the variable x, 

regardless of the factor k. In this case, 1n   is a fixed integer number. 

Definition 1: We are given the disproportion function  y y x . The following 

expression  

                                             1
n

n

x
n n

y d y
@d y .

n!x dx
                                                 (1) 

is called the n-th order derivative of the given function with respect to x ( 0x  )   

For the case 1n  (order 1) the formula (1) takes the following form: 

                                                  
 1
x

y dy
@d y .

x dx
                                                     (2) 

It is evident that for a linear function y kx , its first-order derivative of 

disproportion is always zero for any value of the coefficient k. In formula (2), the 
derivative of the function as the main element of the computed disproportion is 
represented by the symbol “d” and the symbol "@" is used to denote the operation of 
computing the disproportion.  

Assume that the function is given in a parametric form. In this case, , the n-th order 
derivative of the disproportion function described by (1) can be obtained by the use of 
the parametric dependence of y on x and the well-known rules of the computation of  

n n

d y dx .  

If  y t  and  x t  (where t is the parameter and    0 0t , ' t    for all 

t), then the first-order derivative of the disproportion function is calculated as follows: 
 

                              
 

 
   

 

 

 

 
11 t

x t
t

t ' ty'y
@d y @d t .

x x' t ' t

 


 
                             (3) 

When a certain value of k satisfies    t k t  , the derivative of the 

disproportion (3) becomes zero over the common domain of the functions  y t  

and  x t . 

Lemma 1: Let R :


  R\{0}. The operator for taking the derivative of the 

disproportion of order n is linear and possesses the following properties: 

1. If a function  n
y C R


  is multiplied by any scalar k its derivative of 

disproportion is multiplied by the same scalar. 
2. The order n derivative of the difference or sum of disproportion functions 

equals the difference or sum of their derivative of disproportions. 

3. The first-order derivative of disproportion for a linear function y kx  for any 

value of the coefficient k is equal to zero. 
 

Proof: The properties can be easily verified through simple algebraic manipulations 
using Definition 1. 
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Remark 1: Consequently, the operator  n
x

@d  defined on the space  n
C R


 of n 

times continuously differentiable real functions is linear within this space. 

3: Description of Problem (i) 

In this section, we discuss a communication system, referred to as the C-system, 
which incorporates a cryptosystem K for encoding and transmits symbols (signals) 

using n-times continuously differentiable focal functions  i i
f f t ,  defined on a time 

interval  0 0 1
i i

t ,T ,T ,i , ,m   … . At a specific time moment t, a transmitted symbol 

is encoded as the sum of at least two focal functions with possible time delays (shifts) 

 0 1
i i

,T ,i , ,m.   …  

Consider the following example: when a symbol is transmitted, it is encoded as the 

weighted sum of two focal functions  and 1p qf f , p,q m,   . The encoded signal 

transmitted through the communication channel can be represented as: 

                                0 0
p p p q q q p q

y t k f t k f t ,k ,k .                                 (4) 

Now, let's assume that an unauthorized invader (hacker) gains access to the channel 
and does not obtain information about the focal functions, their time delays (shifts) , or 
the coefficients . 

On the C-system (channel) side, the list of focal functions and their delays is 
completely known. However, it is unknown which functions (and with what 
coefficients) are detected as the received signal coded as in equation (4). These 
functions and their coefficients are recognized in (4) as decoded and represented as the 
received symbol. The problem is to solve this issue using the method described in the 
next section. 

4: Explanation of the Decoder 

Solving the problem of decoding the received signal is challenging since the focal 
functions and their coefficients can only be approximately known. The received 

message, denoted as  y t , is expanded in time, requiring the exact or approximate 

derivatives of this function. In the case of discrete data, such as 

        0 1 1

T

Ny t y t , y t , , y t


 … , the desired approximate "derivative" of the 

discrete function can be obtained using a certain method, similar to the Gregory-
Newton interpolation method (cf., [4]). 

The proposed decoding algorithm is complex, and due to space limitations, we 
provide an explanation here for the case 3m  . For the complete version, refer to [6]. 

The general algorithm can be illustrated as follows: assuming the known time 

delays (shifts) 1i ,i ,m  …   for the focal functions, the received message can be 

expressed as the sum of all focal functions with the yet-unknown coefficients 
ik : 

                                                   
1

m

i i i

i

y t k f t 



  .                                                   (5) 
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The objective is to determine these coefficients at the current time moment t . Some 
of these coefficients may be zero for functions that are not actually present in the 
encoded signal (5). 

Let's outline the algorithm for the case 3m  , which involves three steps: 

Step 1: Arbitrarily select one of the focal functions, for example, the first one 

 1 1 1f f t   . Calculate the derivative of the disproportion for the signa  y t using 

equation (3) and denote it as      
1

1

01 f
F t : @d y t . Compute the derivatives of the 

disproportions F21(t) and F31(t) for the focal functions  2 2f t   and  3 3f t   with 

respect to  1 1f t  . Due to the linearity of the operator @ (as mentioned in Remark 

1), equation (5) simplifies to (for 3m  ): 

                                  

     
 

 

 

 

 

 

 

 

 

 

 

 

       

   

1

1 1

1

01

1 1 1 1

2 2 2 2

1 2

1 1 1 1

3 2 3 2

3

1 1 1 1

1 1

2 2 2 3 3 2

2 21 3 31

0

          

          

f

f f

y t y' t
F t @d y t

f t f ' t

f t f ' t
k k

f t f ' t

f t f ' t
k

f t f ' t

k @d f t k @d f t

k F t k F t .

 

 

 

 

 

 

   
 

  
     

  

  
   

  

    

 

                   (6) 

 
The first term on the right-hand side of equation (6) is zero due to condition 3 of 

Lemma 1. 
 
Step 2: Randomly choose another derivative of the disproportion, say F21(t). 

Calculate the derivatives with respect to F21(t) of the disproportion functions F01(t) and 
F31(t), which we denote F0121(t) and F3121(t), respectively. Apply the derivative operator 
of the disproportion of order 1 to both sides of equation (6) and use the linearity and 
condition 3 of Lemma 1 to obtain: 

                                          

 
 

 

 

 

 

 

 

 
 

01 01

0121

21 21

31 31

2 3 3 3121

21 21

0

F t F' t
F t

F t F' t

F t F ' t
k k k F t .

F t F ' t

  

 
     

 

                   (7) 

           
Step 3: Equation (7) shows that the function F0121 is linearly dependent on the 

function F3121. As condition 3 of Lemma 1 implies, the derivative of the disproportion 
function F01213121(t) of the function F0121 with respect to F3121 is zero for all feasible t: 

     
 

 

 

 3121

1 0121 0121

01213121 0121

3121 3121

3 3 0

F

F t F' t
F t @d F t

F t F' t

k k .

   

  
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From equations (6) and (7), the relationships can be used in reverse order to 

compute the desired values of the unknown coefficients 
i
k . Starting from (7), the 

following can be obtained: 

                                                          0121
3

3121

F
k ;

F
                                                          (8) 

Combining (8) with (6) results in: 

                                                     01 3 31
2

21

F k F
k .

F



                                                      (9) 

Finally, by substituting the found coefficients 2k and 3k  into (5), we get the 

following: 

                                      
     

 
2 2 2 3 3 3

1

1 1

y t k f t k f t
k .

f t

 



   





                              (10) 

After decoding the received message  y t , the algorithm stops, having determined 

the unknown coefficients and their association with the focal functions. Coefficients 
related to non-used focal functions should be set to zero. 

Remark 2: Knowing the involved functions and their delay (shift) values i
  

enables the use of this simplified version of the decoding algorithm. However, the 
research [6] provides more sophisticated procedures to decipher the received message 
even in the absence of such crucial information. 

5: Numerical Experiments and Examples 

In the operation of the cryptosystem, let's illustrate the binary coding using an 
arbitrary sequence of symbols: a transition to a new line (""), space "_", "0" and "1". In 
this model three real focal functions are used. The symbols are coded by the weighted 
sum of at least two of these functions with randomly assigned coefficients. The time 
shifts (delays) of the standard functions are assumed to be zero from the current time t. 

The C-system (channel) can only generate binary-coded symbols. If any other 
symbol appears that is not listed above, it is received as a paragraph return. 

In order to numerically explain the methods for computing approximate derivatives, 
the signal y(t) must be controlled within an interval containing at least 10 discrete 
points of the time variable t. In this case, the number of points in this interval is 
selected as a constant value of 75 (refer to [6] for more details). The stability 
(resistance) of the cryptosystem increases with a higher number of points in the interval. 

During the simulation of the cryptosystem's operations, the focal functions are 
assumed to be the following three functions: 

                        

      

        

     

1 1 1 1

2 2 2 2 2

3 3 3

100 15

100 0 1 10

100 0 1 400

f t sin t cos t ;

f t exp . t sin t cos t ;

f t exp . t sin t ,

  

   

 

 

  

 

 

where 1 = 1; 2 = 0.12; 3  = 0.5; 1 = 0.1; 2 = 1.2; 3 = 0.7.  

 
When the focal functions encode the signal y(t) using equation (5) before being 

ejected, the coefficients k1, k2, and k3 are randomly selected using a pseudo-random 
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number generator with a uniform distribution from zero to 10 for each symbol. Only 
when encoding a symbol '1', y(t) includes the entire weighted sum of all three focal 
functions, so their coefficients k1, k2, and k3 are not equal to zero. When encoding '0', 

we set 1 0k  , and for encoding a space, we set 3 0k  . If another symbol or the 

"paragraph return" is encoded, then 2 0k  . 

The formulas (8) – (10) are used by the receiver in order to calculate  1 2 3

i
k , i , ,

and determine the key functions involved in the formula for the coded message and 

after that, the received message must be decoded. 
Numerical examples are provided to illustrate the decoding algorithm: 
 

 
Figure 1 shows the signal corresponding to the serial transmission of four symbols '0'. 

 
 

 

Figure 2 shows the signal corresponding to the serial transmission of four symbols '1'. 
 
In all considered cases, the received message was deciphered exactly as what was 

transmitted. However, as can be seen from the figures, it is challenging to understand 
the message produced by the transmitted signal through the communication channel 
without using the decoding algorithm. 

6: The Cryptosystem Is Robust 

The robustness or stability of the developed cryptosystem depends on the selection 
of focal functions and their total quantity. The more components are involved in the 
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signal, the more challenging it becomes to decode the signal in case of hacking. It is 
not only necessary to identify the type and number of focal functions but also to 
determine the coefficients involved. 

Fitting the coefficients is a difficult task. We illustrate the said words using a simple 

example. In the numerical example presented in Section V in the function f3(t) the 

numerical parameter 400 is replaced with the numerical parameter 400.0001, or in the 

function f2(t) we replace  210sin t by  29 9999sin . t , then as a result of these 

changes, the codeword consisting of four 0’s will be decrypted as the codeword 

consisting of four 1’s.   

The considered example shows that even after having found the key functions 

involved any venture of “guessing” the ciphered word by a search for the coefficients-

weights, will most probably fail. Thus, the random search for the coefficients of the 

focal functions is almost impossible, let alone determining the number of focal 

functions and their analytical forms. The attempts to detect the number of key functions 

and their forms can be considered as completely senseless. 
Furthermore, it is important to note that the same character may be encrypted with 

different symbols depending on its position. Frequency analysis is also rendered 
useless for unauthorized access and deciphering of the messages in this case. 

All of the properties mentioned above demonstrate that the codes utilizing the 
weighted sums of real focal functions provide strong resistance against hacking. They 
are reliable, robust, and cryptographically secure. 

7: Description and Solution of Problem (ii) 

Problem (ii) involves analyzing a smooth function and determining which class it 
belongs to based on the set of sample functions given in Equation (11):  

                       

 

   2

1

   

 

bx

n

i i

i

y ca , y Asin x , y Aln x,

y A sin x , y Asin x ,

 

   



   

   
                             (11) 

 
the parameters of the above-mentioned functions are assumed to be unknown. We have 

to analyze a given smooth function  y f x  and answer the question: to which class 

it does belong. 
The function may not have the same parameters as those in Equation (11), but it is 

known to belong to one of the classes specified in Equation (11). The goal is to 
determine, based on the function's values and its derivatives at a certain point t, which 
form from Equation (11) the function belongs to. 

Proposition 1: We are given  y f x  and the calculated by formula (3) the 

derivative disproportion of this function with respect to  ý f´ x  equals zero then 

this function is the exponential one. 
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     The proof of Proposition 1 follows the application of formula (3) having set 

   x f x  and    x f ' x  , equalizing the lefthand side of formula (3) to zero, in 

order to determine the function  y f x , we get the following differential equation 

                                               

22

2

1d y dy
.

y dxdx

 
  

 
                                                     (12) 

It is well-known that the general solution of this equation is given with the exponential 

function  

                                                        bx
y ca ,                                                              (13) 

for some 0  1a , a .   

Thus, Proposition 1, in the case the derivative disproportion equals zero guarantees 
that the considered function is an exponential function.  

Proposition 2: We are given  y f x  and the calculated by formula (3), putting 

   x f x  and    x f ' x  , the derivative disproportion of the function with 

respect to its second derivative  y'' f '' x  equals zero then this function is the 

combination of sinusoidal ones. 

In order to prove Proposition 2, we use formula (3) having set    x f x  an

   x f '' x   and equalizing the lefthand side to zero we get the following 

differential equation to find the desired function  y f x  

                                                
3 2

3 2

1d y d y dy
.

y dxdx dx

  
      

                                           (15) 

Equation (15) is evidently reduced to the following second-order differential equation 

                                                         
2

2

d y
y

dx
 ,                                                         (16) 

the solution of which is given by the function 

                                           
1

n

i i

i

y A sin t . 



                                                   (17) 

Thus, Proposition 2 establishes an important fact that if the derivative of the 
disproportion function with respect to its second derivative is zero, then the function is 
a combination of sinusoidal functions.  

In addition to exponential and sinusoidal functions, there are two other classes of 
signals 

                                       2

1

n

i i

i

y A sin x 



  ,                                                   (18)  

and  

                                                y Aln x;                                                              (19) 

described by equations (18) and (19), that are frequently encountered in technological 
applications for nonlinear transformation detection.  
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     Proposition 3: Let the derivative disproportion calculated by formula (3) of the 

function’s first derivative  y f ' x with respect to its third derivative  y''' f ''' x

equal zero, hence this function is from class (18). 
    The proof of Proposition 3, as previously, follows the application of formula (3) and 
equalizing the lefthand side to zero, as a result we get the following differential 
equation 

                                                                

3 2

3 24

4

d y d y

dx dxd y
.

dydx

dx

  
  
  
                                                (20) 

 
Making the change of variables, analogical to that used when proving Proposition 2, we 
come to the fact that the solution of (20) can be found in the following form: 

                                             2

1

n

i i

i

y A sin t , 



                                                    (21) 

    Therefore, Proposition 3 says that if the derivative of the disproportion function's 
first derivative with respect to its third derivative is zero, then the function belongs to 
class (18).  

The next Proposition 4 formulates the conditions under which the function belongs 
to class (19).  

Proposition 4: Let the derivative disproportion calculated by formula (3) of a 

function  y f x with respect to the logarithmic function y ln x   be  zero, thus the 

examined function has the form (19). 
    The proof of Proposition 4, as previously, follows the application of formula (3) and 
equalizing the lefthand side to zero, as a result we get the following differential 
equation 

                                                
dy y

dx x ln x
 .                                                           (22) 

The solution of equality (22) is easily obtained as follows: 

                                    0

dy dx d ln x
y Aln x, x .

y x ln x ln x
                                      (23) 

To summarize, the derivative of the disproportion technique allows for the 
recognition of all elementary functions from the set (11), and the properties of the 
derivative of the disproportions enable the recognition of not only the original function 
but also its inverse ratio function, expanding the set of functions that can be analyzed. 

8: Conclusions 

In this chapter, we have explored the derivative of disproportion functions and their 
applications in engineering and real-life problems. 

The first application focused on solving problem (i), where we developed a 
cryptosystem that utilizes scalar functions of real variables as key components. We 
demonstrated the encryption and decryption processes using the (weighted) sum of 
focal functions and the first-order derivative of disproportion functions. We also 
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highlighted the importance of considering the division by small numbers or the ratio of 
numbers close to zero during the decryption process to avoid information distortion. 
Additionally, we emphasized the need to re-encrypt the message with different 
coefficients if necessary. 

The second application addressed problem (ii), which involves pattern recognition 
tasks. The goal is to determine the class to which a function belongs, regardless of its 
parameters. We showed that the derivative of disproportion functions can be employed 
to solve this recognition problem. Theoretical results and proofs were presented 
regarding the solution of this problem. 

In conclusion, the derivative of disproportion functions offers valuable insights and 
practical applications in various fields. It can be utilized in encryption and decryption 
processes, as well as in pattern recognition tasks. This research was partly supported by 
the Mexico SEP-CONACYT grants FC-2016-01-1938. 
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