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Abstract. The main objectives of geosciences is to find the current state of the
Earth – i.e., solve the corresponding inverse problems – and to use this knowledge
for predicting the future events, such as earthquakes and volcanic eruptions. In both
inverse and prediction problems, often, machine learning techniques are very effi-
cient, and at present, the most efficient machine learning technique is deep neural
training. To speed up this training, the current deep learning algorithms use dropout
techniques: they train several sub-networks on different portions of data, and then
“average” the results. A natural idea is to use arithmetic mean for this “averaging”,
but empirically, geometric mean works much better. In this paper, we provide a
theoretical explanation for the empirical efficiency of selecting geometric mean as
the “averaging” in dropout training.
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1. Introduction

1.1. Main Objectives of Science

The main objectives of science are:

• to determine the state of the world, and
• based on this knowledge, to predict the future state of the world.

For example, in geosciences:

• we want to determine the density at different depths and at different locations
based on the observed data – seismic, gravitational, etc. (this is known as the
inverse problem) and

• based on this knowledge, we would like to be able to predict catastrophic events
such as earthquake and volcanic eruptions (this is known as the prediction prob-
lem).
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1.2. Machine Learning Is Often Needed

In some situations, we know the equations describing the physical phenomena, and we
can use these equations to make necessarily determinations and predictions. This is how,
e.g., weather is predicted.

In many other situations, however, we either do not know the exact equations – or
these equations are too difficult to solve. In such situations, instead of using specific
equations, we can use general machine learning tools. In both problems:

• we start with a tuple of measurement results x, and
• we would like to estimate the tuple y of the desired quantities – e.g., the density

values or the values describing the future volcanic activity.

To make this prediction, we need to have a database of patterns, i.e., pairs
(

x(k),y(k)
)

corresponding to past situations in which we know both x and y.
For example, if we are interested in predicting volcanic activity at least a week in

advance, we need to use patterns in which y(k) is the observed volcanic activity and x(k)

are measurement results performed at least a week before the corresponding activity.

1.3. Which Machine Learning Techniques Should We Use: Need for Deep Learning

Learning is what living creatures have to do in order to survive. To learn, living creatures
use signals processed a network of special cells – neurons. It is reasonable to assume that
as a result of billions of years of improving winner-takes-all evolution, nature has come
up with an optimal – or near-optimal – way of learning. And indeed, artificial neural
networks – that are based on simulating networks of biological neurons – are, at present,
the most efficient machine learning technique; see, e.g., [10].

Specifically, the most efficient technique involves deep learning, where we have a
large number of layers with reasonably few neurons in each layer; the advantages of such
an arrangement are presented in [2,10].

Deep neural networks has indeed been efficient in geosciences, both in inverse prob-
lem (see, e.g., [9]) and in prediction problem (see, e.g., [8,12,13,14]).

1.4. Need to Speed up the Learning Process

To get a good description of the corresponding phenomenon, it is desirable to have a
large number of patterns. As a result, training on all these patterns takes time. It is thus
desirable to speed up computations.

When a person has a task that takes too long to do it by him/herself, a natural idea
of speeding it up is to ask for help and to have several people performing this task in
parallel. Similarly, a natural way to speed up computations is to perform them in parallel,
on several processors.

1.5. Need to Speed up the Learning Process Naturally Leads to Dropout Training

For traditional neural networks, when we had a large number of neurons in each layer,
parallelization was reasonably natural: we just divide the neurons into several groups,
and have each processor simulate neurons from the corresponding group.
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However, for deep neural networks, there is a relatively small number of neurons
in each layer, so we cannot apply the above natural parallelization. A natural alternative
idea is:

• to use different parts of the data for training (in parallel) on different sub-networks
of the network, and

• then to “average” the results.

Since for each of these trainings, we drop some of the patterns and some of the neurons,
this idea is known as a dropout; see, e.g., [10,15,16].

1.6. Which “Averaging” Works Better in Deep Learning-Related Dropout Training?

What is the best way to “average” the values v1, . . . ,vm obtained from different parallel
trainings? The original idea was to use an arithmetic average, i.e., to use the value v for
which

• adding m identical copies of the value v leads to exactly the same result as
• adding m training results v1, . . . ,vm:

v1 + . . .+ vm = v+ . . .+ v.

In this scheme, we get

v =
v1 + . . .+ vm

m
.

However, it turned out that better results are attained if, instead of addition, we use
different combination rules a∗b. In this case, as the result of such “averaging”, we take
the value v for which

v1 ∗ . . .∗ vm = v∗ . . .∗ v.

In particular, it turned out the empirically, the best results are attained if, as a combination
a∗b, we use product instead of the sum [10,18]. In this case, the result of “averaging” is
the geometric mean:

v = m
√

v1 · . . . · vm.

Comment. Usually, the values are re-scaled, so that they fit into an interval, e.g., [0,1]. So,
without losing generality, we can assume that all the averaged values vi are non-negative.

1.7. How Can We Explain This Empirical Success?

The paper [18] has some qualitative explanations of why geometric mean works better
than arithmetic one in deep-learning related dropout training. However, it does not pro-
vide a quantitative explanation of why namely the “averaging” based on multiplication
works best.
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1.8. What We Do in This Paper

In this paper, we provide an explanation for the empirical success of geometric mean
in deep learning-related dropout training. To be more precise, we list all “averaging”
operations corresponding to optimal combination functions – optimal under all possible
reasonable optimality criteria. As a result, we get a 1-D family of possible “averaging”
operations – and it turns out that this list contains arithmetic and geometric means as
particular cases.

Thus, we provide a quantitative explanation of the empirical success of geometric
mean in deep learning-related dropout training.

Comments.

• Cannot we do better and explain why only the geometric mean is the best? Proba-
bly this is possible if we explicitly select one optimality criterion. However, in our
general formulation, when we allow all possible optimality criteria, the appear-
ance of the arithmetic average is inevitable: it corresponds, for example, to using
the Least Squares optimality criterion

m

∑
i=1

(vi − v)2 → min,

a criterion that often makes sense in machine learning; see, e.g., [4,10].
• Material from this chapter first appear in the PhD dissertation of the first au-

thor [9].

2. What Is a Combination Operation? What Is a Reasonable Optimality

Criterion? Towards Precise Definitions

2.1. What Is a Combination Operation?

A combination operation (also known as an aggregation operation or an aggregation
function) a ∗ b is a function that maps two non-negative numbers a and b into a non-
negative number a∗b.

There are many different combination operations; see, e.g., [3,5,6,7,11,17]. What
are the reasonable properties of the combination operations used in deep learning-related
dropout training?

2.2. First Reasonable Property of a Combination Operation Used in Deep
Learning-Related Dropout Training: Commutativity

We have several results vi that were obtained by using the same methodology – the only
difference is that we randomly selected a different set patterns and we randomly selected
a different sub-network. From this viewpoint, there is no reason to believe that some of
these results are more valuable than others. Thus, it makes sense to require that the result
of combining two values should not depend on the order in which they are presented,
i.e., that a∗b = b∗a for all a and b.

In other words, it is reasonable to require that the combination operation be commu-
tative.
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2.3. Second Reasonable Property of a Combination Operation Used in Deep
Learning-Related Dropout Training: Associativity

If we have three values a, b, and c, then we can:

• first combine a and b and get a∗b, and
• add, combine the result a∗b with c, resulting in (a∗b)∗ c.

Alternatively, we can:

• first combine b nd c into a single value b∗ c, and
• then combine a with the result b∗ c of combining b and c, thus getting

a∗ (b∗ c).

It is reasonable to require that the result of combining the three values should not depend
on the order in which we combine them, i.e., that we should have

(a∗b)∗ c = a∗ (b∗ c).

In other words, it is reasonable to require that the combination operation be associa-
tive.

2.4. Third Reasonable Property of a Combination Operation Used in Deep
Learning-Related Dropout Training: Monotonicity

It is reasonable to require that if one of the combined values increases, then the result
of the combination should also increase (or at least not decrease). In other words, it
is reasonable to require that a ∗ b is a (non-strictly) increasing function of each of the
variables:

• if a ≤ a′, then a∗b ≤ a′ ∗b, and
• if b ≤ b′, the a∗b ≤ a∗b′.

2.5. Final Reasonable Property of a Combination Operation Used in Deep
Learning-Related Dropout Training: Continuity

In practice, all the values are estimated only approximately. It is therefore reasonable to
require that a small difference between the ideal value vi and the corresponding approx-
imate computational result should not drastically affect the result of the combination.

In precise terms, this means that the operation a∗b should be continuous.

2.6. Towards the Resulting Definition of a Combination Function

So, we define a combination operation as a commutative, associative, monotonic contin-
uous function a∗b of two real non-negative variables.
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2.7. What Is Optimality Criterion: A General Discussion

Out of all possible combination operations ∗, we should select the one which is, in some
reasonable sense, optimal for deep learning-related dropout training. How can we de-
scribe the corresponding optimality criterion?

In many practical problems, when we talk about optimization, we have an objective
function whose value we want to maximize or minimize. However, this is not the most
general case of optimization.

For example, if we select an algorithm a for solving a certain problem, and we are
interested in achieving the fastest possible average computation time A(a), we may end
up with several different algorithms a, a′, . . . , that have the exact same average compu-
tation time A(a) = A(a′) = . . . In this case, it makes sense to use this non-uniqueness to
optimize something else: e.g., the worst-case computation time W (a), or the robustness
R(a) relative to uncertainty of the inputs. Then, the actual optimality criterion that we use
to select the optimal algorithm can no longer be reduced to a single numerical objective
function, this criterion is more complex. Namely, in the resulting criterion, a is better
than or of the same quality as a′ (we will denote it by a ≥ a′) if:

• either A(a)< A(a′),
• or A(a) = A(a′) and W (a)≤W (a′).

If there are several algorithms which are optimal with respect to this new optimality
criterion, then we can use the remaining non-uniqueness to optimize something else, and
thus, get an even more complex optimality criterion.

This can continue until we finally get a criterion for which there is exactly one
optimal alternative.

From this viewpoint, to define an optimality criterion, we should not restrict our-
selves to numerical objective functions, we should have the most general definition.

No matter how complex the criterion, what we need is to be able to compare two
different alternatives:

• either a is better than b (a > b),
• or b is better than a (b > a),
• or these two alternatives are of the same quality (a ≡ b).

Of course, this selection must be consistent: if a is better than b and b is better than c,
then we should be able to conclude that a is better than c. In other words, the preference
relation should be transitive.

From this viewpoint, it is reasonable to define an optimality criterion as a pre-
ordering relation, i.e., a relation a ≥ b which is transitive and reflexive (i.e., a ≥ a for
all a).

Which optimality criteria are reasonable?

2.8. First Reasonable Property of an Optimality Criterion for Comparing Different
Deep Learning-Related Combination Operations: The Optimality Criterion Should
Be Final

As we have mentioned earlier, if the optimality criterion selects several different alter-
natives as equally good, this means that this optimality criterion is not final: we still
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need to come up with an additional criterion for selecting one of these “optimal” alter-
natives. Selecting this additional criterion means that we modify the original optimality
criterion ≥.

At the end, we should end up with a final criterion, for which there is only one
optimal alternative.

Comment. It goes without saying that there should be at least one optimal alternative –
otherwise, if no alternative is optimal, what should we choose?

2.9. Second Reasonable Property of an Optimality Criterion for Comparing Different
Deep Learning-Related Combination Operations: The Optimality Criterion Should
Be Scale-Invariant

As we have mentioned earlier, the values vi are usually obtained from re-scaling. Usually,
we re-scale to the interval [0,1] by dividing all the values by the largest possible value of
the corresponding quantity.

The resulting re-scaling is not unique: e.g., if we add one more quantity which is
somewhat larger than what we have seen so far, then the maximum increases, and we
need to re-scale the original values some more, i.e., replace the original values vi with
res-scaled values λ · vi.

In some cases, the values vi are not values of the physical quantity but probabilities.
In this case, the value are already in the interval [0,1]. However, re-scaling is possible
in this case as well. Namely, most probabilities that we deal with are conditional prob-
abilities, and if we slightly change the condition, this leads to a re-scaling of the corre-

sponding probabilities. Indeed, in general, P(A |B) = P(A&B)
P(B)

. So, if B ⊂ B′, then for

each event A ⊆ B, we have P(A |B) = P(A)
P(B)

and P(A |B′) =
P(A)
P(B′)

. Thus, if we replace

the original condition B with the new condition B′, then all conditional probabilities are

re-scaled: P(A |B′) = λ ·P(A |B), where λ def
=

P(B)
P(B′)

.

If instead of the original values a and b, we consider re-scaled values a′ = λ · a
and b′ = λ · b, then, instead of the combined value a ∗ b, we get a new combined value
(λ ·a)∗ (λ ·b). We can re-scale it back into the old units, and get a new operation

a∗λ b = λ−1 · ((λ ·a)∗ (λ ·b)).

This re-scaling should not affect the relative quality of different combination opera-
tions:

• if a combination operation ∗ was better than a combination operation ∗′, i.e., if we
had ∗> ∗′,

• then after re-scaling, we should get the same preference: ∗λ > ∗′λ .

In this sense, the optimality criterion for comparing different deep learning-related com-
bination operations should be scale-invariant.

This, we arrive at the following definitions.
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3. Definitions and the Main Result

Definition 1. By a combination operation, we mean a commutative, associative, contin-
uous operation a∗b that transforms two non-negative real numbers a and b into a non-
negative real number a∗b and which is (non-strictly) monotonic in each of the variables,
i.e.:

• if a ≤ a′, then a∗b ≤ a′ ∗b, and
• if b ≤ b′, then a∗b ≤ a∗b′.

Definition 2. By a reasonable optimality criterion, we mean a pre-ordering (i.e., transi-
tive and reflexive) relation ≥ on the set of all combination operations which is:

• final, in the sense that for this criterion, there exist only one optimal combination
operation ∗opt for which ∀∗ (∗opt ≥ ∗); and

• scale-invariant: for every λ > 0, if ∗ ≥ ∗′, then ∗λ ≥ ∗′λ , where

a∗λ b def
= λ−1 · ((λ ·a)∗ (λ ∗b)).

Proposition. For every reasonable optimality criterion, the optimal combination opera-
tion has one of the following forms: a ∗ b = 0, a ∗ b = min(a,b), a ∗ b = max(a,b), and
a∗b = (aα +bα)1/α for some α .

3.1. Discussion

What are the “averaging” operations corresponding to these optimal combination opera-
tions?

For a∗b = 0, the property v1 ∗ . . .∗ vm = v∗ . . .∗ v is satisfied for any possible v, so
this combination operation does not lead to any “averaging” at all.

For a∗b = min(a,b), the condition v1 ∗ . . .∗ vm = v∗ . . .∗ v leads to

v = min(v1, . . . ,vm).

For a∗b = max(a,b), the condition v1 ∗ . . .∗ vm = v∗ . . .∗ v leads to

v = max(v1, . . . ,vm).

This “averaging” operation is actually sometimes used in deep learning – although not
in dropout training [10].

Finally, for the combination operation a∗b = (aα +bα)1/α , the condition v1 ∗ . . .∗
vm = v∗ . . .∗ v leads to

v =
(

vα
1 + . . .+ vα

m

m

)1/α
.

For α = 1, we get arithmetic average, and for α → 0, we get the geometric mean – the
combination operation which turned out to be empirically the best for deep learning-
related dropout training.
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Indeed, in this case, the condition v1 ∗ . . .∗ vm = v∗ . . .∗ v takes the form

(vα
1 + . . .+ vα

m)
1/α = (vα + . . .+ vα)1/α ,

which is equivalent to

vα
1 + . . .+ vα

m = m · vα .

For every real value a, we have

aα = (exp(ln(a))α = exp(α · ln(a)).

For small x, exp(x)≈ 1+ x, so aα ≈ 1+α · ln(a). Thus, the above condition leads to

(1+α · ln(v1))+ . . .+(1+α · ln(vm)) = m · (1+α · ln(v)),

i.e., to

m+α · (ln(v1)+ . . .+ ln(vm)) = m+m ·α · ln(v),

and thus, to

ln(v) =
ln(v1)+ . . .+ ln(vm)

m
=

ln(v1 · . . . · vm)

m
;

hence to v = m
√

v1 · . . . · vm.
So, we indeed have a 1-D family that contains combination operations efficiently

used in deep learning:

• the arithmetic average that naturally comes from the use of the Least Squares
optimality criterion, and

• the geometric mean, empirically the best combination operation for deep learning-
related dropout training.

4. Proof

1◦. Let us first prove that the optimal combination operation ∗opt is scale-invariant, i.e.,
(∗opt)λ = ∗opt for all λ .

Indeed, let us take any λ and consider the combination operation (∗opt)λ . By def-
inition, ∗opt is the optimal combination operation, so ∗opt ≥ ∗ for all combination op-
erations ∗. In particular, for every combination operation ∗, we have ∗op ≥ ∗λ−1 . Thus,
by scale-invariance, we have (∗opt)λ ≥ (∗λ−1)λ = ∗. So, (∗opt)λ is better than or of the
same quality than any other combination operation ∗. This means that the combination
operation (∗opt)λ is optimal.

However, our optimality criterion is reasonable hence final; thus, it has only one
optimal combination operation. Hence, (∗opt)λ = ∗.

By definition of the re-scaling operation ∗λ , this means that
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λ−1 · ((λ ·a)∗ (λ ·b)) = a∗b,

i.e., equivalently, that

(λ ·a)∗ (λ ·b) = λ · (a∗b). (1)

2◦. To complete the proof of the Proposition, we can now use our result – proven in
[1] – that every combination operation * that satisfied the condition (1) has one of the
following forms: a∗b = 0, a∗b = min(a,b), a∗b = max(a,b), and a∗b = (aα +bα)1/α

for some α .
The Proposition is thus proven.

5. Conclusions

In many application areas, it is important to make accurate predictions of future events.
At present, among all machine learning techniques, deep learning algorithms leads to
the most accurate predictions. However, this accuracy comes at a price – deep learning
algorithms require much more computation time for training than any other machine
learning techniques. To speed up the training, researchers have proposed the “dropout”
idea:

• we train different patterns on different sub-networks on the neural network, and
then

• we “average” the results.

Which averaging operation should we use? In many similar situations, a simple
arithmetic average works the best – this can be explained by the fact that in many prac-
tical cases, the errors are normally distributed, and for normal distributions, arithmetic
average is indeed provably the best averaging operation. So, researchers originally ex-
pected that arithmetic average should work the best in dropout training as well. Just
in case, they also tried other statistics-motivated averaging operations. Surprisingly, it
turned out that for deep learning-related dropout training, neither the arithmetic average
not other statistics-motivated arithmetic operations work well. What works the best is the
geometric mean, a mathematical operation that does not seem to have a direct statistical
motivation.

In this paper, we provide a theoretical explanation for this surprising empirical suc-
cess of geometric means. Specifically:

• We first analyze what would be reasonable properties for a combination operation
used in deep learning-related dropout training and what kind of optimality criteria
are appropriate for selecting the best combination operation.

• After that, we prove that for all reasonable optimality criteria, the optimal combi-
nation operation belongs to a special 1-parametric family, a family that includes
both the usual arithmetic mean and the empirically efficient geometric mean.
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