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Abstract. Speaker attribution and labeling of single channel, multi speaker audio 
files is an area of active research, since the underlying problems have not been 
solved satisfactorily yet. This especially holds true for non-standard voices and 
speech, such as children and impaired speakers. Being able to perform speaker 
labelling of pathological speech would potentially enable the development of 
computer assisted diagnosis and treatment systems and is thus a desirable research 
goal. In this manuscript we investigate on the applicability of embeddings of audio 
signals, in the form of time and frequency-band based segments, into arbitrary vector 
spaces on diarization of pathological speech. We focus on modifying an existing 
embedding estimator such that it can be used for diarization. This is mainly done via 
clustering the time and frequency band dependant vectors and subsequently 
performing a majority vote procedure on all frequency dependent vectors of the 
same time segment to assign a speaker label. The result is evaluated on recordings 
of interviews of aphasia patients and language therapists. We demonstrate general 
applicability, with error rates that are close to what has been previously achieved in 
diarizing children’s speech. Additionally, we propose to enhance the processing 
pipelines with smoothing and a more sophisticated, energy based, voting scheme. 
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1. Introduction 

Aphasia is a language disorder usually acquired from strokes or other causes of brain 
damage. It is usually not related to motoric or sensoric incapabilities, but a loss of the 
brains capability to formulate language. The gold standard for aphasia classification and 
severity measurement in Germany is the Aachen aphasia test (AAT) [1]. It consists of 
several procedures, testing the patient’s linguistic capabilities in scenarios like image 
description, storytelling and spontaneous speech. Conducting and evaluating a complete 
AAT takes up to eight hours of work by a professional speech and language therapist or 
neurologist and requires that the patient is present at the clinic. 
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Our long term goal is to develop a method to automatically estimate aphasia severity 
and syndrome classification based on a preexisting recording of a patient interview. In 
order to do this, we need to separate the therapist's speech segments from the patient's 
speech segments. This process, also called diarization, has seen significant research 
interest in the past. While originally conducted using clustering procedures based on 
immediate features of the underlying audio signal, recent developments (such as [2, 3]) 
suggested that generating clustering features using neural networks yields better results. 

The specific use case of aphasic speech also yields some additional challenges and 
characteristics with regard to diarization. Since a symptom of aphasia can be stuttering 
and extensive use of filler words, we require that these are included in the diarization 
output. We also cannot rely the diarization on semantic or syntactic linguistic properties, 
since both capabilities might be severely reduced as an effect of aphasia. Lastly, 
recordings of aphasia patients are rare and hard to obtain, because the prevalence of 
aphasia within the population is relatively low and obtaining recordings usually includes 
adhering to strict data protection rules. This results in significant problems when training 
any machine learning based classifier, as training material is rare. Additionally, virtually 
all recordings of aphasia patients are single source recordings, eliminating the possibility 
to use multi-source diarization procedures. This specifically holds true for a set of 
aphasic speech data we currently possess and are planning to analyze, and which was the 
original motivation to perform single source diarization. 

In general, single source speaker diarization systems require a set of metrics that can 
be used to locally cluster temporal segments of speech, such that each cluster represents 
a segment of speech by the same speaker. This can be implemented either bottom up, by 
first creating many small segments and subsequently merging those segments, or top 
down by splitting segments as long as they are suspected to be comprised of more than 
one speaker. One possibility to perform bottom up clustering is to implement the initial 
splitting based on a sliding window over the audio signal and subsequently clustering 
these segments. Such an approach has recently been investigated by Wang et al. [3]. 
Their diarization system uses a long short-term memory (LSTM) network, which is a 
memory cell based recurrent neural network [4], to derive a vector space embedding of 
the sliding window segments and clusters them using different procedures. The most 
promising clustering procedures are k-means clustering and spectral clustering, with a 
diarization error rate of roughly 12%, depending on the evaluation data set. They 
compared their results to the diarization error rate of a similar system that uses Gaussian 
mixture models (GMMs [5, pp. 40-42]) instead of LSTMs to derive the embeddings, 
which performed worse by at least 8 percentage points. 

A combination of both, bottom up and top down clustering, has been implemented 
by Bozonnet et al. in [6]. Their integrated approach led to an improvement in diarization 
error rate by 4 percentage points, although generally performing worse than the system 
developed by Wang et al, albeit their usage of different evaluation data. This is most 
probably because the latter uses LSTM based embeddings, while the system by Bozonnet 
used Gaussian mixture models. 

In 2010, Meignier and Merlin published a paper describing the LIUM toolkit for 
development of diarization systems [7]. Contrary to the other systems presented, this 
system provides several building blocks for the implementation of diarization utilities, 
based on agglomerative clustering. Due to its release date, this framework does not use 
LSTMs but the older GMM approach. 

Lastly, in 2016 Hershey et al. proposed a method to generate vector space 
embeddings from speech data using LSTMs [2, 4]. These embeddings are generated 
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based on logarithmically scaled short term Fourier transformations of segments 
originating from the input speech audio file. Each of these segments is comprised of a 
time and frequency interval of said input audio. The LSTM is subsequently used to 
compute and optimize an affinity matrix, denoting which time frequency segments 
belong to the same speaker. Subsequently, several clustering methods such as the 
aforementioned spectral clustering and k-means clustering are used to determine which 
segments belong to the same speaker. Since the clustering is not only time but also 
frequency band agnostic, this allows to separate overlapping speech, which is an 
inherently more complex task. 

Here, we investigate on how to adopt the method proposed by Hershey et al. to 
speaker diarization, specifically for diarizing aphasic speech. 

2. Methods 

Applying deep clustering as introduced by Hershey et al. in [2] in practice leads to several 
details that might influence the results dramatically. These details resolve around how 
much training data is required to train an estimator, such that the embeddings are 
sufficiently discriminative to fulfill the aforementioned criteria for successful clusterings. 
Additionally, we are not interested in speech separation but diarization, requiring a slight 
alteration of Hershey's proposed algorithm. In order to collapse the time frequency bins 
into time bins, we employ a majority voting scheme: For each set of time frequency bins 
representing the same time slot , we count how many frequencies have been assigned 
to which speaker. In the next step we assign the time slot  of the input signal to the 
speaker to whom the most time frequency bins were assigned. Under the hypothesis that 
the acoustically dominant speaker of a time slot also dominates most of the time 
frequency bins of said time slot, this majority voting allows us to diarize an input file 
such that we always get the whole spectrum assigned to a single speaker. This saves us 
from having to deal with a signal reconstruction problem that the original separation 
procedure suffers from: If one does assign time-frequency bins of a signal to different 
speakers, all those frequency bands that have not been assigned to a speaker would be 
missing from the output signal. Isik et al. proposed some reconstruction methods for 
these parts of the signal [8], but since we are dealing with pathological speech any 
reconstruction methods based on assumptions of non-pathological speech could 
introduce incorrect additions and reduce the quality of a diagnosis based on the 
reconstructed signal. 

Our implementation of the deep clustering algorithm itself is based on an 
implementation by Haroran Zhou, who implemented deep clustering using Tensorflow 
(https://github.com/zhr1201/deep-clustering). We modified his work, such that it 
supports Python 3, resolved some minor bugs and adopted the frequency band majority 
voting strategy presented in the previous section. 

We preprocess data by down-sampling the signal to 8kHz, and generate 129 Fourier 
transformation points per frame, with a window size of 256 separate Fourier 
transformations, such that we get Hanning windows of length 256/8000Hz = 0.032s.  The 
network itself consists of four bidirectional LSTM layers with 300 memory units per 
layer, followed by a layer with a hyperbolic tangent activation function to estimate the 
embedding. Finally, the embedding is normalized based on its L2 norm. 

We use a dropout of 50% for the forward propagation and 20% for the recurrent 
propagation of errors, the estimated embedding space has 40 dimensions. 
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The classifier has been trained for a week using an Nvidia Titan X (Pascal 
architecture), which was sufficient for 352000 training steps. For the training corpus, we 
mixed (non-aphasic) speech files from the 360 hours LibriSpeech audio book corpus [9], 
such that we get training files with two simultaneously speaking speakers per file. We 
do this by combining 20 files per speaker with some other randomly chosen file 
containing another speaker. The training is thus based on the original usage of the 
classifier, as proposed by Hershey et al. and the resulting classifier could also be used 
for speech separation. Our majority voting scheme is only applied after the training is 
completed and the classifier is being evaluated. 

2.1. Diarization error rate 

In order to evaluate the results, we use a slightly modified version of the diarization error 
rate (DER), which was originally proposed by the National Institute of Standards and 
Technology (NIST) (cf. [10]). Given a prediction and a ground truth set of speaker labels, 
the DER quantifies the correctness of the prediction. The ultimate goal is to develop a 
diarization procedure that yields predictions with a DER of 0. While the NIST definition 
measures how much of the overall recording time was incorrectly attributed, we want to 
measure how many of the potential speaker labels are incorrect. This penalizes classifiers 
that do not detect overlapping speech properly more than the NIST definition: In the 
NIST definition, a segment that actually contains two speakers but was classified as 
silence increases the DER just as much as a segment that contains two speakers but was 
classified to contain one speaker. In our definition, classifying this segment to contain 
silence is twice as bad as classifying it to contain a single speaker. 

For an audio recording of length   with a frame rate , for which we know that it 
contains  speakers, we define the maximum amount of possibly incorrectly assigned 
labels  . Furthermore, we define  to be our ground truth 
speaker label matrix where  iff in the th frame, the th speaker is active, and 

 to be the estimated speaker label matrix. Then we can decompose the DER 
of  given  into the following components: 
 

 (1)

 (2)

  (3) 

 
 is the false alarm rate, which we define as the percentage of possible speech 

label tags that were marked as non-silence but were actually silence. A high false alarm 
rate indicates that there is an issue with the voice activity detector (VAD) of the 
diarization procedure. Analogously  is the percentage of speech labels that were 
classified as silence but were actually speech. If this value is high, then the VAD 
algorithm is too restrictive, as it misses some speech. Lastly  is the percentage of 
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incorrectly assigned speech labels, in regions where there was no silence according to 
the ground truth and the diarization algorithm's VAD. 

Given these components, the DER can be calculated as described in equation 4. 

 (4) 

2.2. Benchmarking 

We developed an automatic benchmarking procedure along with a set of Python scripts 
performing the benchmarks. These scripts take a list of input folders containing audio 
files, where each folder represents a speaker. Each file in each folder is then mixed 
alternatingly with every file of the other speakers. Information about which part belonged 
to which speaker is stored, in order to later on compare this ground truth to the results of 
the diarization. Therefore, we evaluate the quality of deep clustering on a computer-
generated test set.  This allows us to generate many different test audio files with different 
lengths of individual utterances and the whole file, allowing more flexible test scenarios 
compared to using the original recordings. Additionally, this allows us to evaluate the 
performance of diarization algorithms on arbitrary speaker pairs, not just those that are 
present in the test data set. 

Currently our benchmarking script supports the following options: 
 

1. Arbitrary amount of evaluation speakers, but a fixed amount of two speakers 
per generated output file 

2. Minimum/maximum length of each utterance in the output file 
3. Length of a crossfaded overlap between utterances 
4. Length of silence between utterances 
5. Maximum number of output files to generate 
6. Minimum length of output file (if two input files do not result in sufficient 

length of the output file, the algorithm will append additional files from the 
same speakers) 

 
The scripts are capable of benchmarking arbitrary diarization algorithms and 

implementations. Each of these implementations has to provide a Python 3 class with a 
method, that takes a file path to a sample audio file to diarize, and optionally an integer 
specifying into how many prediction frames this file should be split. Speaker vectors 
generated by this method must always be two dimensional, and the overall return value 
of the method must follow the same semantics that we defined for the prediction matrix 

 in our definitions of DER (see equation 4 in section 2.1). 
After the diarization procedure returned its predicted diarization  to the 

benchmarking script, it compares this value to the ground truth labels  that are based on 
its knowledge about the original combination of different speakers and quantifies this 
using the DER metric presented in the previous subsection 2.1. Lastly, the results are 
summarized and mean, minimum, maximum, standard deviation and variance are 
calculated over the set of diarization error rates. 
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3. Results 

Our evaluation data set is based on the AphasiaBank dataset [11]. AphasiaBank is a data 
set composed of transcribed video recordings of semi standardized interview scenarios 
between aphasia patients and therapists. We downloaded and automatically split all those 
recordings into utterances labeled with information whether the therapist or the patient 
is speaking in that particular utterance, based on the timestamps and speaker labels of 
the transcripts. Since the therapist usually does not change between different recordings 
of the same data set, we store all therapist utterances of the same institution as it came 
from one recording, while patient utterances are separated such that each recording leads 
to a separate set of patient utterances. 

We recombined a subset of the AphasiaBank speaker files, such that we get audio 
files with a minimum length of 5 seconds and at most 3 seconds per utterance. The latter 
value roughly matches average speaker durations in common evaluation data sets for 
diarization of healthy speech [12]. For each speaker of the subset, we randomly choose 
at least 5 utterances and combined each of them with an utterance from another, 
randomly chosen speaker. If that combination was not at least 5 seconds long, we 
appended additional utterances from the same speakers until 5 seconds of file length were 
reached. This length requirements ensures that we get a balanced set of evaluation data. 
This is particularly relevant because, depending on the aphasia syndrome, patients tend 
to speak significantly longer or shorter than the therapist. Additionally, we did not only 
mix speech of patients with speech of therapists, but also with speech of other patients. 
This allows us to judge the quality of the classifier for diarization of aphasic speech in 
general, and not only in scenarios where exactly one speaker suffers from aphasia. This 
would not be possible, if we would not have recombined the files, as we do not possess 
recordings containing multiple patients. 

The result of this process were 125 separate audio files. Diarizing them with deep 
clustering led to a DER of 27.94%, minimally 13.9%, maximally 39.19% and a standard 
deviation of 0.0439. Since the way we compose the input file does not allow for overlap 
(no crossfade) or gaps, the "false alarm" and "miss" error rates do not play a role in this 
evaluation, and we only rely on the "error" part of the diarization metric. 

4. Discussion and Future Work  

We conducted an evaluation using specifically remixed audio segments of the 
AphasiaBank data set, ensuring a well-balanced amount of speaker duration in all 
evaluation files. 

Comparing the achieved result to other diarization systems is hardly possible, due 
to the fact that most speaker diarization systems are evaluated on professionally recorded, 
healthy adult speech. An evaluation conducted by Anguera et al. in 2012 showed 
diarization error rates between 7% and 49% for the RT09 data set, consisting of healthy 
speech [12]. However, large amounts of this error are caused by overlapping speech, 
which is a scenario we have not evaluated yet. Incorrectly attributed speaker information 
accounts for 5 to 10 percentage points of the diarization error rate in this scenario. While 
this is considerably better than our implementation of deep clustering, it was achieved 
on healthy speech that is probably an easier task, and on recordings that were made using 
professional equipment. 
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In 2018 Cristia et al. attempted to diarize conversational speech of children [13]. 
Since speech of children is located on a much smaller and therefore less discriminative 
frequency band than adult speech, they argue that this is a much harder problem then 
diarization of adult speech. Furthermore, since children are still learning to comprehend 
sentences and are generally more affected by language disorders [14], diarization of such 
speech might be more comparable to aphasic speech. Their system led to a DER of 20% 
to 40% for two speakers. 

The diarization result turned out to be mediocre compared to diarization systems for 
non-aphasic speech. This could be related to insufficient amount of training data, 
improvable network architecture or an incorrect voting scheme. Compared to common 
diarization systems for healthy speech, our approach is worse by 10 to 15 percentage 
points but performs roughly on the same level as diarization of children’s speech, which 
is also prone to some issues that impair diarization of aphasic speech. 

The performance of the deep clustering algorithm leaves a lot of room for 
improvement. Some of these are general improvements that are beneficial for both, 
pathologic and healthy speech diarization tasks, including improvements to the voice 
activity detector by means such as adding a dynamic threshold to determine whether the 
signal energy is sufficiently to be speech. More advanced techniques like spectral 
analysis, as proposed by Ma et al. in [15] could improve this even more and might even 
be able to cope with significant background noise. 

The majority voting scheme that we used to adopt the algorithm to diarization 
instead of separation might also be improvable. In its current implementation, a speaker 
who gets assigned many low energy frequency bands of a time slot wins over a speaker 
to whom few, but high energy bands were assigned. Taking the energy of the frequency 
bands into account would lead to a weighted voting scheme that might work better than 
our naive implementation. 

The exact parameterization of the neural network, along with the training data used, 
is currently also mostly arbitrary. Investigating how different parameters affect the 
diarization error rate of the final classifier could lead to the ability to fine tune the system 
to pathologic and especially aphasic speech. Apart from hyper parameter tuning, that 
could be performed using grid search, it would be interesting to optimize the training 
data set. Due to the lack of sufficient data, it is highly unlikely that it will become possible 
to train the classifier exclusively on aphasic speech. It is therefore desirable to determine 
a way to apply transfer learning to the classifier, such that it is trained on healthy speech 
and subsequently adapted to pathologic speech in a way that does not require huge 
amounts of pathologic speech. Unfortunately, any changes to the neural network's layout 
require re-training the classifier, which requires a significant amount of computing time. 
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