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Abstract. The steady increase in the number of patients equipped with mechanical 
heart support implants, such as left ventricular assist devices (LVAD), along with 
virtually ubiquitous 24/7 internet connectivity coverage is motive to investigate and 
develop remote patient monitoring. In this study we explore machine learning 
approaches to infection severity recognition on driveline exit site images. We apply 
a U-net convolutional neural network (CNN) for driveline tube segmentation, 
resulting in a Dice score coefficient of 0.95. A classification CNN is trained to 
predict the membership of one out of three infection classes in photographs. The 
resulting accuracy of 67% in total is close to the measured expert level performance, 
which indicates that also for human experts there may not be enough information 
present in the photographs for accurate assessment. We suggest the inclusion of 
thermographic image data in order to better resolve mild and severe infections.  
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1. Introduction 

An increasing number of patients with heart failure classified as severe according to the 
New York Heart Association (NYHA) Classification [1], are treated with a mechanical 
support implant. This may either be for the period while waiting for the heart 
transplantation, or as a permanent solution, the so-called destination therapy [7]. A left 
ventricular assist device (LVAD) is a pumping device implanted onto the heart, taking 
over the main pump function of the left ventricle while the heart is still functional at a 
low percentage. The device relies on a permanent electrical connection to a control 
module and battery pack situated on the outside of a patient’s body, through a driveline 
tube. The control module collects device operation data which is a valuable opportunity 
for data exchange and thus early detection of problems.  

The driveline exit site is a delicate location, requiring continuous wound treatment 
and wound dressing, the latter to be renewed typically once in five days. Driveline 
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infections occur frequently because the driveline exit site creates a conduit for the entry 
and proliferation of bacteria. This is one of the most severe adverse events for the patient, 
leading to the necessity of surgical wound revision or even the replacement of the assist 
device implant [8]. Driveline infection is defined as an infection affecting the soft tissues 
around the driveline outlet, accompanied by redness, warmth, and purulent discharge.  

Telemonitoring of driveline exit sites can provide early detection of these symptoms 
and can aid in the remote diagnosis of relevant driveline infections. The majority of 
LVAD patients have positive reactions towards telemonitoring [9]. Photographs of the 
driveline exit site, taken by caregivers or patients themselves with their mobile devices 
during renewal of the wound dressing, are sent through a mobile application to the 
physician in charge in the patient’s clinic. The image will be reviewed in combination 
with any available device data, clinical data and the accompanying patient-update on 
their well-being or quality of life. The aim is to prevent patients from having to travel to 
their clinics for check-ups too often, or to consult their local general practitioner, but 
even more so not to miss out on the early detection of an upcoming adverse event. Right 
now the state of the art is that patients are seen by their clinics once every three months, 
without any visual monitoring in between. 

Before deep learning was widely accepted as a machine learning method in the 
image processing field, the support vector machine (SVM) and multi-layered perceptron 
(MLP) were popular choices for computer aided image analysis in the domain of 
photographic imaging [11] as well as non-photographic medical imaging [12]. Deep 
learning has been applied to skin cancer classification supported by a large data set [10] 
in which a deep CNN matched (and even outperformed in certain configurations) 
dermatologists in classification accuracy.  

In the following sections we describe three applications of deep learning which 
support the diagnosis procedure by automatically predicting the presence and severity of 
driveline infections based on patient photographic data. This can be executed ‘on the fly’ 
and will not add significant transit time to the images. The physician-in-charge then 
receives the images with a severity indication, and in particular a warning sign in case of 
a recognized severe infection.  

2. Methods 

The data set we worked on for this study consists of 745 general photographs from a total 
of 61 patients, taken and provided in pseudonymized format by Schüchtermann-
Schiller’sche Kliniken and Hannover Medical School. The photographs had been taken 
and stored for documentation, without being further processed for some time. 
Photographs were taken from various positions and lack consistency in lighting. In 
addition, photographs can be out of focus or show signs of camera motion, and part of 
the wound area can be obstructed by dressing. These conditions might apply to future 
images taken by patients as well and we are prepared to handle this automatically.  

732 out of the 745 photographs are labelled as belonging to one of the following 
three classes: no infection, mild infection, severe infection. In regular operations, labels 
are assigned by clinical experts based on features such as presence of bacteria, odour and 
warmth, in addition to visual features on the surface of the wound. We intentionally only 
assessed the photographic data as this will be the data available from remote patient 
monitoring.  
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The data set is heavily imbalanced concerning the representation of the three classes, 
specifically, the severe label is assigned to only 5.1% of all photographs. The distribution 
for each class is listed in Table 1. The number of photographs per unique patient varies 
between 1 and 38 with an average of 6.8 photographs. A severe infection case occurred 
in 17 patients. For these patients on average 2.2 photographs were assigned the severe 
label. 

 
Table 1. Infection class distribution in the analysed photographic data set 

Class # samples percentage 
No infection 483 66.0 % 
Mild infection 212 29.0 % 
Severe infection 37 5.1 % 
Total 732 100.0 % 

 
The processing steps used in the machine learning classification training procedure 

were as follows. 
1. Detection and filtering of out-of-focus photographs, 
2. driveline tube segmentation, 
3. prediction of region of interest, 
4. classification of wound infection class. 

 
In the following sections each of the processing steps is explained in more detail. 

2.1. Detection and filtering of out-of-focus photographs 

We would like to filter out highly out-of-focus data samples from the training set to 
increase the quality of the training data. The aim was to automatically remove the subset 
of photographs without sufficient detail to determine the infection class. 

Quantification of blur in a photograph can be done by computing the sum of the 
partial second derivatives of the image in both dimensions, known as the Laplacian 
operator, which has an application in autofocusing for microscopes [2]. The amount of 
blur is reduced to a single number by taking the variance of the Laplacian value across 
all pixels in the image.  

Before the out-of-focus detection algorithm was developed a set of 692 photographs 
was available, which were manually classified as either out-of-focus or clear. This 
allowed us to set a threshold on the variance of the Laplacian that ensures a balanced 
ratio between precision and recall for out-of-focus detection. 

Whenever a device is used to take and send a photo, the out-of-focus detection could 
trigger an immediate request for a repeated photograph, sent back to the patient’s LVAD 
App while they are still busy with the wound dressing renewal. 

2.2. Driveline tube segmentation 

Drivelines may have different visual features, from an opaque white colour to 
transparent, granting view on different internal cable colours, sometimes reflecting flash 
lighting on their surface. They occur in all photographs and their presence may increase 
the complexity of training an infection classification network if the network itself is not 
able to ignore the irrelevant tube features. This section focuses on two separate 
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approaches for detecting the driveline tubes which allowed us to mask and negate the 
features in the driveline tube area of the image during infection classification. 

In the absence of annotated photographs, a first approach made use of the 
Felzenszwalb unsupervised segmentation algorithm [3]. It is a greedy graph-based 
algorithm which iteratively merges adjacent pixel regions based on local and global 
contrast. The Felzenszwalb algorithm is sensitive to the variations within the 
photographic data, requiring parameter tuning on a per sample basis for adequate 
segmentation performance, which is inconvenient for practical applications.  

A supervised deep learning method may be better suitable for capturing the image 
complexity. In order to facilitate supervised learning we set up a web-based annotation 
service. Anonymous images were offered to annotators in a random sequence. Images 
and annotation results were exchanged through a secure connection. LVAD experts were 
able to use this service to visually annotate driveline regions and other skin coverage 
(e.g. wound dressing) in photographs. A magnification tool allowed for the exact 
drawing of the segmentation map with usual point and click devices. 

A specific architecture of convolutional neural networks (CNN) called U-net [4] was 
used for training on the annotated data. It is a type of semantic segmentation CNN which 
can be used to assign a class label (‘driveline tube’ or ‘background’ in this case) to each 
pixel in an image. Physicians used the annotation service to annotate 185 photographs 
which we randomly split into 148 training and 37 validation samples. Data augmentation 
is applied to the training set and ground truth annotations in the form of affine 
transformations to artificially enrich the training set. 

2.3. Prediction of region of interest  

Experiments with multiple classification preprocessing configurations showed that 
selecting a rectangular area around the driveline exit site increases performance 
compared to using the full image as input to the classification module. This is also due 
to the wide variety of zooming at the exit sites and wound areas in the data set. 

A training/validation set was created by manually annotating 745 photographs. 
Similar to tube segmentation (Section 2.2) we trained a U-net on this training set to 
convert image input to region of interest “blobs” as output. The blobs, which indicate a 
region of interest prediction, were converted to rectangular sections using post-
processing, which is a requirement for our classification model. 

2.4. Classification of wound infection class 

While the first three steps above provide methods and tools for the preparation of the 
photographs to be analysed, infection class recognition is the main contribution of the 
research described in this paper. We set up a classification network that learns to identify 
one of the three infection classes (none, mild, severe) based on an input image. 

Experiments were set up using a variety of popular CNN classification architectures. 
The best performing network on our data set was the VGG-16 architecture [5], pretrained 
on ImageNet [6] and fine-tuned on the driveline photographic data. The training data was 
augmented using affine transformations to indirectly increase the effectiveness of the 
classifier [13]. 

Since the labels of our training set were initially assigned using more information 
than only the visual features observed in the photographs, we initiated a blind expert 
evaluation. In such an evaluation we can not only compare the performance of the 
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classification CNN with respect to the original labels, but also to the performance of 
human experts in an identical task. The blind evaluation set consisted of 100 photographs, 
containing an even division of samples from both heart clinics. The chosen class 
distribution reflects the class distribution of the full data set as much as possible, while 
ensuring a minimum of 15 samples per class (see Table 3). The images were drawn 
randomly from the respective class’s image pool. Physicians from both clinics were 
asked to provide their classification of infection class for each of the evaluation 
photographs. The classification CNN was trained using the leave-one-out method to 
obtain a single infection class prediction for each of the 100 photographs.  

A separate experiment was set up to analyse the effects of tube segmentation on 
classification performance. Segmentation masks from Section 2.2 were applied to the 
photographs before feeding these to the classification CNN. 

3. Results 

3.1. Tube segmentation 

The Felzenszwalb unsupervised segmentation algorithm was compared to the supervised 
U-net semantic segmentation CNN. We measured the performance of both methods on 
the annotated validation set (n=37) using the Dice score coefficient. The Dice score 
quantifies pixel overlap between ground truth annotations and masks generated by 
segmentation algorithms and is measured in the range of 0 – 1, where 0 is fully dissimilar 
and 1 is perfect similarity. On the validation set the Felzenszwalb algorithm resulted in 
a Dice score coefficient of 0.72, while U-net scored higher with a Dice score coefficient 
of 0.95. An example of Felzenszwalb and U-net output can be seen in Figure 1. In this 
example the Felzenszwalb algorithm predicted the area around the driveline exit as being 
part of the driveline, thus masking part of the wound area. 
 

 
Figure 1. Visualisation of driveline tube segmentation masks. The blue region represents the predicted 
driveline tube area. Left: Felzenszwalb segmentation method (note that the non-skin background is included in 
the blue region). Right: U-net segmentation method. 
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3.2. Prediction of the region of interest  

To assess the effect of extracting a region of interest (RoI) on classification performance 
we compared the classification accuracy on full images, manual RoIs and U-net 
generated RoIs on a validation set. Table 2 shows the results of each configuration. We 
observe that cropping RoIs either manually or generated by U-net performed slightly 
better than using the full image when evaluating infection classification performance. 
Manually cropped RoIs led to slightly better results than U-net RoIs. 
 

Table 2. Infection classification accuracy and macro (unweighted) F1 score based on different types of region 
of interest (RoI) extraction methods. 

RoI type Accuracy (%) F1 score 
None (full image) 66.7 0.472 
Manual RoI 71.7 0.498 
U-net RoI 69.8 0.496 

 

3.3 Infection classification 

Two LVAD experts, one from each of the two clinics involved in the study, have 
assigned infection class labels to each of the 100 photographs in the blind evaluation. 
For comparison, output predictions from the classification CNN have been obtained on 
the same set. We compute prediction accuracy using the original labels, and the resulting 
metrics are shown in Table 3. The total accuracy of all participants, humans and machine, 
is between 66% and 69%. The mean accuracy is derived from the results of the three 
classes, weighted by the class distribution, as shown in Table 3. The severe infection 
class, which is least represented in the data and prone to under-skin processes, shows the 
lowest accuracy for all participants. Since prediction performance in this class is at least 
as important as in the other classes, the macro F1 score is reported for each participant 
as well. We observed that due to the lower performance on the severe infection class the 
macro F1 average score of the classification CNN is lower than that of the trained 
physicians. 

Multiple approaches for applying tube masks (generated by the U-net segmentation 
CNN) to classification input photographs were explored, such as setting the driveline 
tube to a solid colour and a combination of inpainting and blurring to attempt to hide the 
tubes in the photographs. In every approach in which a tube segmentation mask was 
applied to classification input images, the resulting classification accuracy ended up 
lower than without applying the mask. 
 
Table 3. Prediction accuracy and F1 score of each participant providing predictions on the blind evaluation set 
(n=100). The macro F1 score average is reported for each candidate, which is calculated by weighing each 
class equally. Numbers in bold indicate the highest scores per class. 

 Physician 1 Physician 2 Classification CNN 

Accuracy F1 Accuracy F1 Accuracy F1 

No infection (n=58) 89.7 0.85 81.0 0.80 81.0 0.80 

Mild infection (n=27) 44.4 0.50 51.9 0.47 66.7 0.57 

Severe infection (n=15) 33.3 0.34 33.3 0.42 13.3 0.20 

Total / macro (n=100) 69.0 0.56 66.0 0.56 67.0 0.52 
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4. Discussion 

In this study we explored machine learning approaches towards providing assistance in 
applying photographic data for remote LVAD patient monitoring. Patients or caregivers 
can provide photographs without needing clinical assistance by using a mobile device 
such as a smartphone, eventually in combination with a dedicated App that might 
transmit more data, e.g. from the LVAD device itself. 

We have demonstrated that a U-net architecture can achieve high driveline tube 
segmentation performance (Dice score coefficient of 0.95) with only 148 training 
samples. When applying the segmentation masks during infection classification we 
observe that applying the segmentation masks to the input does not improve 
classification accuracy. It is possible that our attempts to hide the driveline tube distorts 
the image, affecting relevant features. Alternatively, the network may have learnt to use 
the tube for more detailed localization of the wound area. Future work could use 
segmentation masks to further improve region of interest prediction, as one can derive 
the driveline exit site, and therefore region of interest, from an accurate driveline 
segmentation mask (for a visual example see Figure 1). 

In typical specialized machine learning applications accuracy figures of 90% or 
higher on multi-class problems are common. In contrast, our classification CNN achieves 
67% accuracy on the blind evaluation experiment with three classes. However, we 
observe that human experts did not score significantly higher on a pure visual infection 
recognition task.  

We can conclude that photographic data is not in all cases sufficient to accurately 
determine the infection class without additional external data. Future planned 
developments include the application of thermographic imaging. This is expected to lead 
to improved results as infrared images can uncover the sub-surface heat sources that are 
present in infection processes. This development would thus mainly improve the 
infection classification performance, as more severe infections show an increase in 
temperature around the wound. Smartphone devices that allow users to simultaneously 
take a picture in both visible light and infrared light have recently become available on 
the market. 
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