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Abstract. Background: ChIP-seq is a method to identify genome-wide 
transcription factor (TF) binding sites. The TF FXR is a nuclear receptor that 
controls gene regulation of different metabolic pathways in the liver. Objectives: 
To re-analyze, standardize and combine all publicly available FXR ChIP-seq data 
sets to create a global FXR signaling atlas. Methods: All data sets were 
(re-)analyzed in a standardized manner and compared on every relevant level from 
raw reads to affected functional pathways. Results: Public FXR data sets were 
available for mouse, rat and primary human hepatocytes in different treatment 
conditions. Standardized re-analysis shows that the data sets are surprisingly 
heterogeneous concerning baseline quality criteria. Combining different data sets 
increased the depth of analysis and allowed to recover more peaks and functional 
pathways. Conclusion: Published single FXR ChIP-seq data sets do not cover the 
full spectrum of FXR signaling. Combining different data sets and creating a 
“FXR super-signaling atlas” enhances understanding of FXR signaling capacities. 
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1. Introduction 

Transcription factors (TF) bind to distinct recognition sites on the DNA and thereby 
regulate gene transcription. Chromatin immunoprecipitation sequencing (ChIP-seq) is a 
method to identify genome-wide binding sites of a specific TF and to gain information 
about transcriptional regulation, affected genes and pathways. Nuclear receptors (NRs) 
are a class of TFs, which are directly activated/inactivated by agonistic/antagonistic 
ligands. The NR farnesoid X receptor (FXR) is activated by bile acids, thereby 
controlling gene regulation of different metabolic pathways mainly in the liver (e.g. 
bile acid-, lipid- and glucose metabolism). FXR recently attracted attention as a novel 
drug target for various metabolic liver diseases. Therefore, understanding precise 
genomic FXR binding and transactivation of genes is important to fully reconstruct 
FXR signaling, particularly when used as therapeutic drug. 
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Several FXR ChIP-seq data sets for different species, conditions and cell lines 
have been reported, none so far for human liver tissue. Our aim was to re-analyze these 
publicly available data sets with a standardized method and combine these data sets for 
further extended downstream analysis of FXR signaling properties. In addition, we 
compared the available public data sets to our own human biopsy material.  

2. Methods 

We searched public sources for available FXR-ChIP-seq data sets to determine a 
common set of generally applicable quality criteria based on the ones proposed in the 
ENCODE- and other authoritative ChIP-seq guidelines [1, 2]. Furthermore, we 
investigated different parameter settings and control sample variants. A combined 
mouse FXR ChIP-seq data set was generated by pooling mapped reads of the available 
four standardized mouse data sets to gain a higher sequencing depth. Enriched regions 
a.k.a. peaks represent putative FXR binding sites. A de novo motif analysis and motif 
scan was performed on all called peaks. The potentially regulated genes were 
determined using proximity to peaks. Those genes were used to identify enriched 
pathways.  

2.1. Data sets 

In public repositories, FXR-ChIP-seq data sets were available for mouse, rat and a cell 
line of primary human hepatocytes. We also had access to our own FXR-ChIP-seq data 
set from human liver tissue (Table 1). Raw reads were available for all data sets except 
“Mouse-Guo” and “Mouse-Osborne”. For the “Mouse-Osborne” data set only mapped 
read tracks were available. In case of the “Mouse-Guo” data sets only the called peak 
tracks were available. 
Table 1. Available data sets for this study. Naming of the data sets is based on the species and the last author 
of the paper where the data was first published. 

Paper Samples Name Ref 
Genome wide tissue specific farnesoid X receptor binding in mouse 
liver and intestine. 2 Mouse-Guo [3] 

Genome-wide interrogation of hepatic FXR reveals an asymmetric 
IR-1 motif and synergy with LRH-1.  1 Mouse-

Osborne [4] 

Metformin interferes with bile acid homeostasis through AMPK-
FXR crosstalk.  4 Mouse-

Lefebvre [5] 

Gene expression profiling in human precision cut liver slices in 
response to the FXR agonist obeticholic acid. 4 Mouse-

Kersten [6] 

Genomic analysis of hepatic farnesoid X receptor binding sites 
reveals altered binding in obesity and direct gene repression by 
farnesoid X receptor in mice.  

4 Mouse-
Kemper [7] 

Toxicogenomic module associations with pathogenesis: a network-
based approach to understanding drug toxicity.  6 Rat-Stevens [8] 

Genome-wide binding and transcriptome analysis of human 
farnesoid X receptor in primary human hepatocytes. 2 PHH-Guo [9] 

Unpublished observation: FXR ChIP-seq in normal vs cholestatic 
patients 2 Human-Wagner -   
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2.2. ChIP-seq analysis 

We created our own ChIP-seq analysis pipeline (Fig 1). The quality of the data samples 
is assessed at relevant steps of the analysis. Most of the data processing was performed 
using a locally available Galaxy [10] instance. The analysis comprises three major 
steps:  

Raw read handling: Most of the data sets were single-end (SE) Illumina reads. 
Trimmomatic (version 0.36.5) [11] was used to trim and filter overrepresented 
sequences such as Illumina adapter. Additional parameters to the ILLUMACLIP were 
a SLIDINGWINDOW of 4 bases with an average quality of 28 and a minimum length 
of 80% of the raw read length to ensure a high read quality. FastQC [12] was used to 
confirm the quality. 

Mapping and peaks calling: Filtered reads were mapped to the human genome 
version hg19, mouse genome version mm10 and rat genome version rn6 using Bowtie 
2 (version 2.3.4.2) [13, 14] with default parameters.  

To determine putative FXR binding sites model-based analysis of ChIP-seq 
version 2 (MACS2 version 2.1.1) [15, 16] was used. Various parameter combinations 
were used to evaluate their effects on the outcome and determine the most reliable 
parameter combination. The parameters were: q-value of 0.01 or 0.05, using input, IgG 
or no control sample, having a fixed or estimated fragment length and the two different 
standard effective genome sizes for human (2.45 and 2.7Gbp). 

Downstream analyses: For the top 500 scoring peaks a de novo motif analysis 
was performed using Multiple Em for Motif Elicitation MEME SUITE (version 
4.12.0.0) [17]. The sequences flanking the peak summit by 100bp on either side were 
examined. Apart from the number of motifs which was set to 10 the default parameters 
were used. Additionally, a motif scan for the canonical IR1 FXR motif 
(AGGTCAxTGACCT) [18] was performed using the tool FIMO from MEME SUITE. 
The scan was performed for the HOMER FXR motif across the narrow peaks and 
wider peak regions. The wider peak region was defined as 1000bp up- and downstream 
from the peaks summit. 

Peaks were annotated to UCSC knownGenes using the R package ChIP-Seeker 
[19]. Each gene was defined as potentially regulated by FXR if a peak summit is 
located in the promotor (defined as +/-1kbp around TSS), intron or exon region of that 
gene. Genes were subjected to a REACTOME [20] pathways analysis; a q-value of less 
than 0.05 was considered statistically significant. 

 
Figure 1. ChIP-seq analysis pipeline: The three major steps of a ChIP-seq analysis are (i) Read quality 
control (QC), (ii) Mapping and peak calling, and (iii) Downstream-analyses such as a motif- and a pathway-
analysis. 
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2.3. Pooling the single data sets 

A combined mouse data set “Mouse-pooled” was generated by pooling the filtered and 
mapped reads of 13 individual mouse samples from 4 different mouse data sets to gain 
higher sequencing depth. By pooling the samples on the read level, a summation of the 
individual FXR-signals is achieved. This summation of the FXR-signals allows the 
detections of weaker FXR binding sites, which could not be detected in single data sets. 
Because all data sets are from different laboratories only limited summation of noise is 
expected to occur. This analytic procedure combined with the strict filtering of the raw 
reads is expected to lead to a high quality virtually deep sequenced FXR ChIP-seq data 
set. 

Subsamples were created to further investigate the saturation of FXR-related 
peaks/genes. The subsamples were created by randomly selecting reads from the entire 
combine data set. The subsamples size reached from 1/20 to 2/3 of the entire pooled 
reads. For each subsample size five distinct subsamples were created. 

2.4. Comparison 

The comparison between the data sets on a read and peak level was based on the 
quality metrics proposed in ENCODE- and other authoritative ChIP-seq guidelines [1, 
2] (Table 2). 
 
Table 2. Metrics used to assess the quality of the ChIP-seq samples. NSC/RSC were calculated using the 
phantompeakqualtools package version 2 [21, 22]. 

Quality metric Abbriviation 

Ratio of uniquely mapped reads to total number of reads UMR/TNR 
Ratio of uniquely mapped reads to total number of mapped reads UMR/TMR 
Non-Redundant Fraction NRF 
PCR Bottleneck Coefficient 1 PBC1 
PCR Bottleneck Coefficient 2 PBC2 
Normalized Strand Cross-correlation coefficient NSC 
Relative Strand Cross-correlation coefficient RSC 
Fraction of reads, which are in peak regions FRiP 
Percentage of peaks with foldchange greater than 5  %fc>5 
Percentage of peaks, which are in Dnase I HS sites % Dnase I HS 

 
The similarity between the various peak calling results and the corresponding 

genes was determined using the Jaccard distance [23]. The pairwise Jaccard distances 
were visualized with a heatmap. It was necessary to map the genes to their orthologues 
of the other species to correctly estimate the similarity between different species. 
Mouse and rat genes were mapped to their corresponding human genes. 

A dotplot was used to illustrate enrichment of pathways across samples. Some 
samples did not show any enriched pathways under the defined settings. Additional 
pathway trees for each sample with enriched pathways were created, to investigate the 
branch and subtree differences between the samples.  
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3. Results 

In public repositories, FXR-ChIP-seq data sets from three different species are 
available: five for mice, one for rat and one for human primary hepatocytes. Most data 
sets include baseline FXR binding and binding events under pharmacological treatment 
(i.e. FXR activation with different ligands) or diseased conditions (i.e. diet-induced 
non-alcoholic fatty liver disease, bile duct ligation induced cholestasis). No public data 
sets are available for human liver tissue (Table 1). Our analysis shows that these data 
sets are heterogeneous concerning baseline quality criteria (Table 3).  

Table 3. Evaluation of ChIP-seq quality for the available data sets. The number of samples/analysis results 
which pass the quality metric in respect total number of samples/analysis results is presented. Peak calling 
was performed with multiple parameter combinations; thereby the number of peak calling results is a 
multiple of the number of samples. 
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UMR/TNR 50% - - 4/4 4/4 4/4 - 4/6 2/2 2/2 
UMR/TMR 50% - - 4/4 4/4 4/4 - 6/6 2/2 2/2 
NRF 50% - - 4/4 4/4 4/4 1/1 6/6 2/2 1/2 
PBC1 50% - 1/1 4/4 4/4 2/4 1/1 6/6 2/2 1/2 
PBC2 1,00 - 1/1 4/4 4/4 4/4 1/1 6/6 2/2 2/2 
NSC 1,05 - - 0/4 0/4 4/4 - 6/6 2/2 2/2 
RSC 0,8 - - 0/4 0/4 0/4 - 6/6 2/2 2/2 
FRiP 1% - - 16/16 15/32 27/32 4/4 24/24 8/16 22/24 
%fc>5 50% - 8/8 16/16 32/32 32/32 0/4 24/24 16/16 24/24 
%Dnase I HS 80% 1/2 8/8 0/16 0/32 0/32 0/4 - 2/16 5/24 
 
When analyzed with the various analysis parameters in a standardized manner, the 

number of called FXR peaks and associated genes ranges from 103 to 40,080 and 6 to 
12,873 in the single data sets, respectively. For the combined data set, the number of 
called peaks reached from 24,747 to 59,319 and the number of associated genes from 
10,038 to 13,826 for the different parameter combinations. The called peaks/genes of 
the combined data sets represent more than just the simple addition of binding 
sites/genes from the single data sets and can be explained by enhancement of weak 
signals after virtually increasing sequencing depth.  

The comparison of the public data sets to our human data set revealed that the 
quality of the human data set (although derived from surgical tissue) is in many regards 
at least as good as published data sets. The human data set passed the RSC quality 
criteria, which is crucial for the correct estimation of the fragment length by MACS2. 
The human data set also included an input and IgG control sample, which was critical 
to analyze the impact of different control samples in ChIP-seq experiments. 

The most prevalent motif identified by the de novo search within the top 500 peaks 
was the canonical FXR IR-1 motif (AGGTCAxTGACCT). It was present in 2 to 54% 
of narrow peaks and 20 to 64% in wider peak regions for the different data sets. 

The similarity between the samples was determined using the Jaccard distance 
based on the identified genes. Samples of the same data set group together rather than 
samples from the same condition/treatment from different data sets (Fig 2). Based on 
the quality criteria and the pairwise Jaccard similarities the parameter combination of: 
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q-value 0.05, no control sample, fixed set fragment length (if the estimated fragment 
length was unrealistic) and - for the human samples - an effective genome size of 
2.7Gbp was considered as the most reliable parameter settings. Only peak calling 
results from those parameters were used for all further analysis. 

 
Figure 2. Heatmap based on the pairwise Jaccard distance. The samples are colored based on the data sets. 
The cluster tendency seems to be towards data sets rather than sample conditions. 

 
Peaks were assigned to the closest annotated genes. Based on the assigned genes 

enriched REACTOME pathways were identified (Fig. 3). The combined analysis 
revealed additional significant pathways, which are not present in any of the single 
mouse data sets. Some of those additional pathways are also present in samples of other 
species. This demonstrates both a conservation of the FXR dependency of that pathway 
across multiple species and validity of the additional pathways identified by the 
combined data set. 
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Figure 3. Top enriched RACTOME pathways represented in a dotplot. The dot color relates to the q-value 
and the size to the pathway coverage (number of pathway genes found in the pathway / total number of genes 
in the pathways). For some samples no enriched pathways were found under the defined settings. 

3.1. Insights in FXR binding events revealed by the combined data set 

The combined mouse data set shows many additional peaks, genes and pathways which 
were not present in any of the individual samples (e.g the ‘Translocation of SLC2A4 
(GLUT4) to the plasma membrane’ pathway is one of 33 pathways which are only 
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present in the combined mouse data set). Similarly, some peaks, genes and pathways 
present in one or more individual mouse samples are not present in the combined data 
set (e.g. the ‘Tspy-ps’ gene is not present in the combined mouse data set although it is 
present in 8 of the individual mouse samples). This indicates that the signal for those 
peaks is not conserved across all samples. This could be explained either by a signal 
that is only present under very specific conditions, which were only met in a single 
sample, or by incorrectly called peaks due to noise. Peaks are more prevalent in the 
vicinity of TSSs, which is expected for a TF ChIP-seq experiment. 

Interestingly, over 96% of the liver FXR ChIP-seq genes from the “Mouse-Guo” 
data set are present in the combined data set although the “Mouse-Guo” was not 
included in the pool because only the peak tracks were available. Furthermore 70% of 
the “Mouse-Guo” genes which are not present in any other single mouse sample are 
present in the pooled data set. This indicates that the pooling of FXR signal allowed the 
detection of weaker signals. Although the combined data sets revealed many new 
potential FXR related binding sites, saturation appears not to be reached. This is 
demonstrated by subsampling the combined data set (Fig. 4). 

A B

 
Figure 4. The number of reads with respect to the number of peaks (A) and number of genes (B) for the 
“Mouse-pooled” data set and its subsamples. The blue points represent the number of peaks/genes for either 
the entire “Mouse-pooled” data set or of its subsamples. A linear (black) and exponential (red) fitting curve 
was created for the data points; the exponential curve represents a much better fit.  

4. Discussion 

Several FXR ChIP-seq data sets are publicly available for various species and 
conditions. Standard ENCODE quality criteria are usually not reported for those data 
sets. We observe that the analysis results are sensitive to settings of certain analysis 
parameters such as the effective genome size and most prominently to the choice of 
control sample, which is generally underappreciated in most studies. A low-quality 
control sample can have a significant impact on the peak calling results even if the 
ChIP-seq sample is of good quality. Influences of control samples on the peak calling 
results were also reported in other studies [24]. Therefore, an analysis without a control 
sample should be considered. Interestingly, the human in vivo samples were more 
similar to rodent in vivo samples than to in vitro human primary hepatocytes.  

Individual data sets often exhibit a too low sequencing depth to identify weak/rare 
binding sites, therefore we combined all available mouse reads to create a “FXR-super-
signaling-atlas” for a profound downstream analysis of FXR signaling capacities. This 
data set allowed to detect more binding sites, genes and connected pathways. However, 
even the combined data set did not reach the theoretical determined saturation. 
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In conclusion, this meta-analysis of these different data sets with standardized 
methods should help to get a comprehensive and global overview of FXR binding 
events, FXR binding motifs, FXR-dependent gene regulation and affected pathways 
across various species. Combining standardized public data sets allows for more 
profound detection of binding events and signaling capacities. 
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