
Unrestricted Character Encoding
for Japanese

Antoine BOSSARD a,1 and Keiichi KANEKO b

aGraduate School of Science, Kanagawa University
2946 Tsuchiya, Hiratsuka, Kanagawa, Japan 259-1293

bGraduate School of Engineering, Tokyo University of Agriculture and Technology
2-24-16 Nakacho, Koganei, Tokyo, Japan 184-8588

Abstract. e glyphs of the Japanese writing system mainly consist of Chinese
characters, and there are tens of thousands of such characters. Because of the amount
of characters involved, glyph database creation and character representation in gen-
eral on computer systems has been the focus of numerous researches and various
software systems. Character information is usually represented in a computer sys-
tem by an encoding. Some encodings target specifically Chinese characters: this is
the case for instance of Big-5 and Shift-JIS. ere are also encodings that aim at
covering several, possibly all, writing systems: this the case for instance of Uni-
code. However, whichever the solution adopted, a significant part of Chinese char-
acters remain uncovered by the current encoding methods. anks to the properties
and relations featured by Chinese characters, they can be classified into a database
with respect to various attributes. First, the formal structure of such a database is
described in this paper as a character encoding, thus addressing the character repre-
sentation issue. Importantly, we show that the proposed logical structure overcome
the limitations of existing encodings, most notably the glyph number restriction and
the lack of coherency in the code. is theoretical proposal will then be followed by
the practical realisation of the proposed database and the visualisation of the corre-
sponding code structure. Finally, an additional experiment is conducted to measure
the memory size overhead that is induced by the proposed encoding, comparing
with the memory size required by an implementation of Unicode. Once the files are
compressed, the memory size overhead is significantly reduced.

Keywords. code, information representation, database, glyph, logogram, symbol,
Chinese

1. Introduction

Since the early days of computing, various encoding have been described to address the
issue of character representation. In practice, they are databases that include thousands
of entries (i.e., characters). When the number of characters involved in a targeted writ-
ing system remains low, such as with the Latin alphabet, it is rather easy to describe a
corresponding code structure. Obviously, this is completely different in the case of Chi-

An extended abstract of this paper has been published in [1].
1Corresponding author; e-mail: abossard@kanagawa-u.ac.jp.

Databases and Information Systems X
A. Lupeikiene et al. (Eds.)
© 2019 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-941-6-161

161



nese characters, and this for two main reasons: first, there is a huge number of glyphs
involved, and this number remains unknown, and second, character properties, such as
reading, may differ depending on the language or dialect [2].

Figure 1. otodo.

On current computer systems, numerous Chinese characters
are left behind: since not covered by the existing encodings, they
are impossible to input, or even simply represent in the system.
is is the case for example of the otodo, taito character given
aside in Figure 1 which is notorious for its numerous strokes. is
is our aim in this paper to address this essential and critical in-
formation representation issue that has plagued Chinese character
processing for too long.

Concretely, we shall describe an unrestricted encoding to
cover Chinese characters as found in Japanese. e proposed encoding will implement
the following key features:

• e collection of an unlimited number of characters.
• High flexibility: glyphs can be added with no code disturbance.
• Ease-of-use: character lookup in the code with minimum effort.
• Character duplicates are not allowed.

While focusing on Japanese, the proposal could be generalised with minor adjustments
to all Chinese characters given the essential overlapping of these two character sets.

e rest of this paper is as follows. First, the state of the art is presented in Section 2.
en, we recall in in Section 3 various properties of Chinese characters. Next, we describe
in Section 4 the proposed encoding, detailing both the code structure and character lookup
methods. Practical work follows with first in Section 5 the realisation of a database that
implements the proposed encoding, and the visualisation of the advanced code structure.
An empirical evaluation of the memory size overhead induced by the proposed encoding
is conducted in Section 6. Finally, this paper is concluded in Section 7.

2. State of the Art

A variety of character encodings are implemented by modern computer systems. ese
encodings are mainly based on two distinct approaches: the unified approach versus the
non-unified approach. In the former method, one encoding is designed to cover all the
characters of all writing systems. Unicode [3] is the most well-known encoding that im-
plement this approach. With respect to Chinese characters, this concretely means that the
characters used in Chinese, Japanese, Korean, Chu Nom, etc. are merged into the unique
encoding, and thus rendered identically whichever the writing system considered. Fonts
are sole responsible for the rendering of stylistic differences between the same glyphs of
distinct languages.

e unified approach has for obvious advantage that it greatly facilitates the edition
of multilingual documents. Nonetheless, the soundness character representation method-
ology has been much debated over the years; see for example [4]. To begin with, the es-
sential idea of this method, unification, is criticised. How pertinent is it to merge the char-
acters of different cultures, not withstanding the fact that they share some characteristics?
In addition, this character merging induces poor code accessibility. It is in fact painfully

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese162



long to traverse the code in search of a glyph, with a high probability of missing it, since
the merged writing systems have their own character ordering and classification methods
(for instance based on character reading, number of strokes, etc.).

Even though Unicode’s Ideographic Variation Database (IVD, a.k.a. IVS) system [5]
enables the declaration of character variants, these additional glyphs remain dependent
of font providers and the Unicode consortium’s approval (and payment of the registration
fee). Moreover, since such characters are defined as variations, they do not appear in
the code (i.e., Unicode) and are thus clearly impractical since requiring for example font
analysis.

Encodings that target a specific set (or a restricted few) implement the non-unifying
approach. Examples include the JIS [6] encoding for Japanese, the Big-5 encoding for
Chinese [7] and the EUC-KR encoding for Korean [8]. While the code accessibility in
these cases is overwhelmingly higher than that of Unicode – the code being for one writ-
ing system can thus be organised homogeneously according to that language’s properties
– they are severely limited with respect to the number of glyphs represented. Precisely,
only a few thousands of Chinese characters are covered by each of these encodings, any-
way smaller than or equal to 10,000 glyphs. As a result, the glyphs that are covered are
naturally the most frequently used ones, while the others are literally left in the dark. For
glyphs to be left aside like this is definitely problematic as computer systems are ubiqui-
tous in the 21st century, and it is well-known that failing to enable the usage of writing
systems on them would inevitably result in language extinction.

On the other hand, the IPA mojikiban database [9] includes a grand total of about
70,000 characters, which is thus a good indicator of the gap between actual needs and
current encoding solutions. Some might argue that the vast majority of the Chinese char-
acters that remain uncovered by current encodings are unused, which is a vicious circle
since their absence from computer systems will definitely not help regarding their usage.
ese characters are perfectly valid, appearing for instance in ancient texts, but not only,
and thus deserve to be covered.

For the sake of completeness, it is worth mentioning finally the Shikaku gōma
(四角號碼) lookup method for Chinese characters [10] which has some relation to the
encoding proposed in this paper. is lookup method assigns to each character four or
five digits depending on morphological criteria, and thus enables to rather easily locate
a character into a dictionary sorted according to these digits. While the Shikaku gōma
character classification and lookup method has some advantages, it ignores most char-
acter properties and therefore is short of structuring. In addition, the character codes in-
duced by the four or five digits are not guaranteed to be unique (i.e., two characters can
be assigned the same number), and as a result this method is not suitable as encoding.

3. Definitions and Properties

Terminology is first recalled.e encoding proposed in this paper is focused on the subset
of Chinese characters that are found in Japanese. ese characters are commonly desig-
nated as kanji. And to be precise, the Japanese kokuji characters are also covered in this
work. Character formal identification and unambiguous naming are indeed far from being
trivial. Hence, in this paper the code glyphs are simply referred to as (Chinese) characters,
and formally gathered in the set J (additional details on character sets and algebra can be
found for example in [2]).

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese 163



Essential character properties on which the proposed encoding relies are now pre-
sented. One should note that only the properties that are required for this work are de-
tailed, and that a more complete ontological discussion is conducted in [2,11].

Radicals Each Chinese character has one unique radical. Relying on radicals is thus a
natural way to classify characters, and the conventional method for character dic-
tionaries. In total, there are 214 (modern) radicals.

Strokes A character consists of one or more strokes, which are drawn one by one ac-
cording to a predefined order.

Variants Some characters have variants, that is, in some cases a character can be drawn
in several ways.

4. Information Representation Methodology

In this section, the code structure of the proposed encoding is first described, with then
formal tools given for practical code usage.

4.1. Code Structure

Each character is mapped to a unique coordinate in a three-dimensional space. Concretely,
the code C is organised according to a three-dimensional structure with the following
three axis.

X axis character radicals;
Y axis number of strokes (not counting the radical ones);
Z axis character variants (if any).

Since the standard 214 character radicals are considered, the X axis spans the integers
from 0 to 213, with each radical being assigned a unique index i with 0 ≤ i ≤ 213.
Radical index assignment is performed conventionally, ordering radicals according to
their stroke numbers in ascending order. Formally, let Ĵ be the set of the 214 character
radicals ri (0 ≤ i ≤ 213) as defined in Japanese. We define the radical indexing function
r : Ĵ → N that associates to a radical a unique positive integer (index). To this end, we
consider the ordered set R̄whose elements are those of Ĵ, and with the total order relation
ri < rj for any two distinct radicals ri, rj ∈ Ĵ holding if and only if the radical ri is
listed before the radical rj in the conventional radical ordering of Japanese dictionaries –
the sequencing details are abbreviated here, refer for instance to the Kadokawa Shinjigen
dictionary [12]. Hence, assuming R̄ =

{
rp(0), rp(1), . . . , rp(213)

}
in this order for some

permutation p of the integers 0, 1, . . . , 213, the radical ri (0 ≤ i ≤ 213) is indexed to
r(ri) = p(i).

For the sake of clarity, the technical details of the Y axis are discussed later in this
section. For now, the Y axis simply represents the number of strokes of characters, ex-
cluding the radical strokes. For instance, the character沖 has in total 7 strokes: 3 strokes
for the radical (⺡), and 4 other strokes (中); the Y coordinate is thus 4. One should note
that the radical⺡ is actually a radical variant of the radical水 (4 strokes), which besides
does not impact the way strokes are counted.

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese164



e third axis, Z, is used to represent character variants. e character of coordinate
0 on the Z axis is called the “regular” (i.e., standard) variant. Since we are focusing on
the Japanese writing system, it is natural to define the regular variant of a character as the
one listed in the Ministry of Education’s “Table of regular-use Chinese characters” [13],
and in general the new form of a character if a new–old distinction is made. In short, we
abide by the rules followed by Japanese modern dictionaries. One should note that the
radical of a variant is naturally the same as that of the corresponding regular character.
Finally, the variants of a regular character are not sorted, that is, for a regular character
of coordinate (x, y, 0), the characters of coordinates (x, y, z) with z > 0 are arbitrarily
sequenced (i.e., unordered).

An example involving the two characters 杉, 枝 both of radical 木 and of stroke
numbers (not counting the radical strokes) 3 and 4, respectively, is illustrated in Figure
2.

杉

枝
杉

枝

木
木

0

1

3

4 ...

...

...
...

X axis

Y axis

Z axis

Figure 2. Illustrating the code structure with the characters杉,枝 both of radical木 and of stroke numbers 3
and 4, respectively.

From the above definitions, the following two code properties can be deduced.

Property 1 Any coordinate (i, 0, 0) (0 ≤ i ≤ 213) of the code C designates a radical,
and conversely.

Property 2 A radical of index r may also have variants, thus spanning the (r, 0, z) (0 ≤
z) line.

Obviously, there may exist several characters of a same radical that have the same
stroke numbers. So as to address this multiplicity issue, that is with characters possibly
colliding on the Y axis, we rely on decimals: the Y axis thus represents the set of the non-
negative rational numbers Q≥. Even though it is possible to further regulate (i.e., order)
the affectation of decimals to characters, this would be at the expense of code flexibility:
insertion of new characters into the code would be hampered. Hence, decimals are af-
fected to characters of same radicals and same stroke numbers with the only requirement
that two characters must not have the same coordinate, which is easily implemented for
instance by incrementing the decimal value.

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese 165



Since there may be more than ten characters of same radical and same stroke number,
one single decimal is not enough. erefore, we fix the number of decimals to 6, which
is obviously sufficient given that the overall number of Chinese characters is of the ten
thousand order (it might border 100,000, but anyway strictly less than a million). For
example, considering the two characters杉 and村 which are both of radical木 and of
stroke number 3, their X coordinates are r(木) = 75 the index of the radical木 and their Y
coordinates are in the range [3, 4), say for instance 3.000000 and 3.000001, respectively.

Several properties of the proposed code are briefly summarised below. Consider two
characters c1 and c2 of respective coordinates (x1, y1, z1) and (x2, y2, z2). Assume that
they are of same X coordinates, that is x1 = x2. erefore,

• they have the same radical;
• if they are both of Z coordinate 0 (i.e., z1 = z2 = 0), then they are sorted in
ascending partial order according to their stroke numbers (i.e., y1 ≤ y2 if and only
if c1 has a stroke number greater than or equal to that of c2);

• if they both have positive Z coordinates (i.e., z1 > 0, z2 > 0), their respective
standard variants (i.e., (x1, y1, 0) and (x2, y2, 0)) are sorted in ascending partial
order according to their stroke numbers (i.e., y1 ≤ y2 if and only if the character
at (x1, y1, 0) has a stroke number greater than or equal to that of the character
at (x2, y2, 0)). In other words, only the characters of Z coordinates 0 are sorted
according to their stroke numbers (i.e., according to their Y coordinates).

An illustration in the YZ plane, thus considering characters of one particular radical,
is given in Table 1. In this table, “char”, “var” and “rad” stand respectively for “charac-
ter”, “variant” and “radical”, and the arrow next to the 0 on the Z axis indicates that rows
are sorted in ascending order according to the values of this column. Also, by noticing the
decimals on the labels of the Y axis as presented previously, one can understand that the
characters char2, char3 and char4 have the same stroke number, which is strictly greater
than that of char1 and strictly smaller than that of char5.

Table 1. Code structure example in the YZ plane (i.e., the character radical is fixed).

Y axis
3 char5

2.000002 char4
2.000001 char3 char3 var1
2.000000 char2

1 char1 char1 var1 char1 var2
0 radical rad var1

0 ↑ 1 2 3 Z axis

Consequently, a basic lookup function f that partially maps a character to a coordi-
nate in the previously defined three-dimensional space can be defined. is function is
used to easily locate one character inside the code (i.e., lookup operation). e function
f is said partial as it is surjective. As a prerequisite, we define the stroke number function
s : J → N∗ which associates to a character its number of strokes (not counting the radical
ones). It should be noted that ∀c ∈ J \ Ĵ, s(c) > 0, that is, unless a character is a radical,

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese166



it has at least one stroke in addition to the those of its radical. In addition, let k : J → Ĵ
be the function that associates a character to its radical.

e function f takes one character or radical as parameter, its domain thus being J∪Ĵ.
e codomain of the function f is N×N, thus representing two-dimensional coordinates
(x, y), with x, y being non-negative integers. erefore, the function f is used to point at
an approximate location in the code, with the interval of rational numbers [y, y + 1) and
the Z axis being the approximation range. From this discussion, the basic partial lookup
function f is simply defined as f(c) = (r(k(c)), s(c)).

Finally, the proposed code features in addition pointers: because two characters may
share one common variant, pointers are used to avoid duplicates in the code. For instance,
the radicals邑 and阜 both have⻏ as variant. us, assuming that the characters邑 and
阜 have coordinates (x1, y1, 0) and (x2, y2, 0), respectively, the coordinate (x2, y2, 1)
designates a pointer which in turn designates the character⻏ of coordinates (x1, y1, 1).
Conversely, (x1, y1, 1) could designate a pointer which in turn designates the character
⻏ of coordinates (x2, y2, 1). is situation is illustrated in Figure 3. A pointer may point
at another pointer, in which case the character glyph in the code would be obtained by
following the chain of pointers until reaching a non-pointer code element.

阝
邑
邑

0

1 ...
...

...

X axis

Y axis

Z axis

阜
阜

Figure 3. Illustrating pointers in the code: the radicals邑 and阜 both have⻏ as variant; the greyed character
block is a pointer.

4.2. Refined Code and Enhanced Lookup Function

Obviously, the more the character properties considered, the more accurate the partial
lookup function, which, in other words, is about steering the initial lookup function from
surjection towards bijection. In this section, we refine the proposed code – retaining its
structure and properties – and its basic lookup function as given previously.

e improvement relates to the Y coordinate of a character. Previously, it was cal-
culated by taking into account the sole number of strokes of the character, thus almost
always resulting in the use of decimals in order to distinguish characters of same rad-
icals and same stroke numbers. In addition to the stroke number, we now consider the
stroke order, that is the order in which the strokes that make the character are drawn, as
well as the types of the used strokes. e former character property (stroke order) is non-
ambiguously set by the Japanese government: a character has one unique stroke order.
e latter property (stroke types) may be subject to discussion. For the sake of clarity, we
restrict the considered stroke types to the basic eight ones as defined for instance by Coul-

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese 167



mas [14]:㇔,㇐,㇑,㇒,㇏,㇀,㇙ (assimilated with㇚,㇟, and㇂) and㇕ (assimilated
with㇖).

e main idea to implement these two additional character properties into the code
without disturbing the code structure is to further rely on decimals as described below.

First, it should be noted that the highest number of strokes for a character in Japanese
is 84: this is the character otodo, taito of Figure 1mentioned in introduction. Furthermore,
only the eight basic character strokes as recalled above shall be considered. erefore,
the stroke order and the stroke types of a character can be represented at the same time
by using 84 decimals, say from right to left for the stroke order, with each decimal being
in the range 1 to 8 to distinguish between the eight stroke types; the eight strokes are
numbered from 1 to 8 in the order they are given above. For instance, the 84 decimals
00…028328 correspond to the character司. In fact, this character is drawn in the order
㇕,㇐,㇑,㇕,㇐. It should be noted that the radical strokes are included in the decimals.

To these 84 decimals, it is required to further add say 6 decimals in order to distin-
guish two characters in the exceptional event that they both have the same radical, stroke
number, stroke order and stroke types. e characters丁 and丅 are such an exceptional
character pair, with thus the 84 decimals not enough to distinguish them: they both induce
the 00…032 decimals. Hence, 6 decimals are once again used since this guarantees the
possibility of encoding all characters. e 6 decimals are set on the right of the previous
84 decimals so as to retain the code structure previously defined. erefore, in total, 90
decimals are required in this code enhancement.

As a result, and as stated at the beginning of this section, the Y coordinate of a char-
acter has been refined while importantly retaining the previously described code struc-
ture: characters are still ordered on the Y axis according to their stroke numbers. In ad-
dition, characters are ordered according to their stroke orders and stroke types with the
corresponding decimals.

e enhanced lookup function f ′ can thus be derived as follows. e domain of f ′

is that of f , that is J∪ Ĵ. Unlike f , the codomain of f ′ is N×Q≥, thus representing two-
dimensional coordinates with the Y axis spanning the non-negative rational numbers. Let
S be the set of the eight basic character strokes as listed previously. For a character c,
assume that Sc = {sc0, sc1, . . . , scn} ⊆ S is the totally ordered multiset of stroke types
such that the character c consists of the n+ 1 strokes sci (0 ≤ i ≤ n), strokes which are
drawn in the order sc0, sc1, . . . , scn. Let t : S → {1, 2, 3, 4, 5, 6, 7, 8} be the function that
associates a stroke type to its numerical representation (i.e., an integer in the range 1 to
8). erefore, the enhanced partial lookup function f ′ is defined as

f ′(c) =

(
r(k(c)), s(c) + 10n−83

n∑
i=0

10isci

)

As with the basic lookup function f , the 6 additional decimals for collision handling are
not covered by the function.

Because there still exist some extremely rare cases where two characters have the
same radical, the same stroke number, the same stroke order and the same stroke types –
it was indeed hard for the authors to exhibit one such character pair example – the refined
lookup function remains surjective. erefore, even though in most cases the function
will directly point at the character being looked up, there may be some possibility that it

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese168



does not, in which case the function is pointing at a restricted area in the code – actually
a very restricted area now that the lookup function has been refined.

In other terms, we have defined a hash function for any Chinese character as used
in Japanese. is hash function is a non-perfect one as there remains a few (extremely)
rare cases where two distinct characters are hashed to the same value. But because of the
extreme rarity of such colliding characters, and obviously of the extreme morphological
(rendering) similarity of the two characters, this hash function can be safely used for the
conventional hashing purposes: database, cryptography, etc.

5. Database Realisation and Code Visualisation

An important objective of the proposed encoding is an improved accessibility. In order
to demonstrate this property, a large character database is implemented and the proposed
code is illustrated by means of visualisation. As the introduced code is based on a three-
dimensional structure, we naturally rely on 3D graphics to illustrate this spatial charac-
teristic of the database.

e data used for the implementation of the proposed encoding and the correspond-
ing visualisation system has been obtained from the Japanese governmental Information-
technology Promotion Agency (IPA): this is the mojikiban (文字情報基盤) character
database [9], including nearly 70,000 entries. Precisely, our implementation includes
56,875 characters of the IPA database. As the character stroke information included in the
IPA database is limited to the stroke number, thus including neither the stroke order nor
the stroke types, the described code enhancements (see Section 4.2) are absent from this
implementation. Expansion of the IPA database to include such missing information, and
subsequent updates to the code implementation are part of future work. As an implemen-
tation note, it is finally mentioned that in the case the database mentions several radicals
for one character, the first radical was retained; refer for instance to [2] for additional
details on this issue. Besides, this radical plurality explains the low number of characters
in the database for a few radicals such as匸).

is database implementation based on the proposed code structure as well as the
corresponding visualisation system were realised on an Intel i7-6700 CPU, 16 GB RAM
machine running a 64-bit Windows 10 operating system. e database was built in two
steps as follows. First, selected character information such as radical and stroke number
was retrieved from the IPA database and compiled into a flat text file for fast database
loading. is process takes about 2 hours 30 minutes on this experiment machine since
requiring multiple traversals of the IPA database. Importantly, this first step is executed
only once: the IPA database is not used afterwards.

Second, the resulting file is loaded into memory and the proposed database structure
realised in two passes (so as to address the memory allocation issues). is process is
completed in the order of a minute, which is very fast considering the number of charac-
ters involved – this loading time is to be compared with, for example, the time required
for the first step. e program takes about 260 MB of memory at run-time, mostly due
to the textures generated for every glyph. anks to this optimised approach, the visuali-
sation (rendering) of the assembled database remains smooth at all time, enabling seam-
less navigation (e.g., zoom, camera movement) on portions of the rendered code, thus
providing a high accessibility for the code as glyphs can be easily located as previously
explained.

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese 169



Figure 4. Overview in the XY-plane of the assembled database (only cut at the top), from the first radical (left)
to the last one (right).

Figure 5. Zoom-in on an excerpt of the assembled database.

Several sample illustrations are given below. First, an overview in the XY-plane of
the assembled database is shown in Figure 4. en, a more detailed view that shows
characters in a readable form is given in Figure 5. Next, sample characters on the Z axis,
that is non-regular character variants, are shown in the “rear” view given in Figure 6.

Finally, the repartition of the regular characters (i.e., the characters of coordinate
z = 0) considering radicals, and that of the non-regular characters (i.e., the characters
of coordinate z > 0) are given for reference in Figures 7 and 8, respectively. ese
repartitions show character counts for each of the 214 radicals. It is especially interesting
to see with Figure 8 that the repartition of non-regular characters is not uniform, most
notably with the radical艸 including in total 894 non-regular characters.

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese170



Figure 6. A detailed view on characters on the Z axis (i.e., non-regular character variants).

0

500

1000

1500

2000

2500

C
h

ar
ac

te
r 

co
u

n
t

Radical (0 to 213)

Repartition of the regular characters

Figure 7. Repartition of the regular characters (i.e., of coordinate z = 0) considering radicals.

0

100

200

300

400

500

600

700

800

900

1000

C
h

ar
ac

te
r 

co
u

n
t

Radical (0 to 213)

Repartition of the non-regular characters

Figure 8. Repartition of the non-regular characters (i.e., of coordinate z > 0) considering radicals.

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese 171



6. Empirical Evaluation: Memory Size Overhead

In this section, we empirically evaluate the overhead induced by the proposed encoding
when representing Chinese character strings in memory. is experiment relies on the
encoding implementation as detailed in Section 5 and has been similarly conducted on
the same environment (Windows 10, 64-bit operating system).

More precisely, we shall compare in this experiment the occupied memory size of
two identical strings when stored with the proposed encoding and with the UTF-16 im-
plementation of Unicode, which is standard for the Windows API. Once again and for
the same reason, this experiment does not include the code enhancements as detailed in
Section 4.2.

First and foremost, it is required to define a binary convention for character storage
in memory. is can be directly deduced from Section 4: the X coordinate of a charac-
ter is included in the integer range 0 to 213 and thus stored with one single byte. e Y
coordinate is a rational number of at most 6 decimals and whose integral part is at most
84 (i.e., the highest number of strokes for a Japanese character as explained). Hence, ac-
cording to the IEEE 754 floating-point standard, 27 bits are required in the mantissa (i.e.,
bit exponents ranging from +6 to -20). Since a single precision float (32-bit) has only 23
bits in the mantissa, a double precision float (64-bit) is required; it has a 52-bit mantissa,
which suffices in our case. Finally, regarding the Z coordinate, which is an integer, the
maximum number of variants for one representative character in our database is 15 (i.e.,
at most 16 characters on the Z axis for any X, Y coordinates). Hence, the Z coordinate is
just the X coordinate stored as one single byte. Obviously, this convention can be adjusted
upon needs. is binary convention is summarised in Table 2 and examples, including
variants, are given for reference.

Table 2. Binary convention for character storage in memory. e representation of several characters is given
as example (in hexadecimal notation).

Size 1 byte 8 bytes 1 byte

Description X (radical) Y (representative character) Z (variant)

Examples:

Character⻲ 0x04 0x 4024000064A9CDC4 0x00

Character乳 0x04 0x 401C000000000000 0x00

Character㚒 0x04 0x 401C000000000000 0x01

So as to empirically evaluate the memory size overhead induced by the proposed
encoding, each of the first 1024 characters of the database has been processed as follows.
First, the character’s X, Y and Z coordinates are calculated according the proposed en-
coding. en, these coordinates are converted in binary according to the previously de-
scribed binary convention (see Table 2). Next, the obtained binary sequence is written on
disk, concretely appended at the end of the file fileE. Hence, fileE consists in a sequence
of 10-byte records, one per character. For comparison, the Unicode (UTF-16) sequence
corresponding to the character is then generated, and the obtained binary sequence is
written on disk, concretely appended at the end of the file fileU. As an illustration, the
first 32 bytes of the two files are given in Table 3. Colours are used to match and separate
character bytes.

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese172



Table 3. e first 32 bytes of the generated files corresponding to the proposed encoding (i.e., fileE) and the
UTF-16 Unicode implementation (i.e., fileU). Character bytes are matched and separated with colours.

Proposal (i.e., fileE) Unicode (UTF-16) (i.e., fileU)
0x000 02 00 00 00 00 00 00 00 05 30 06 30 3B 30 00 34
0x008 40 00 03 00 00 00 00 00 01 34 02 34 04 34 40 DB
0x010 00 F0 3F 00 02 00 00 00 01 DD 04 34 40 DB 00 DD
0x018 00 00 00 F0 3F 00 00 00 05 34 06 34 0C 34 16 34
0x020 ... ...

0

2000

4000

6000

8000

10000

12000

Uncompressed bzip2 lzma lzma2 ppmd

Fi
le

 s
iz

e 
(b

yt
es

)

Compression algorithm

Memory size comparison (1024 characters)

Unicode Proposal

Figure 9. Empirical evaluation of the memory size overhead induced by the proposed encoding.

ememory size overhead has been subsequently measured as follows: file size mea-
surement for the uncompressed files (fileE and fileU), and file size measurements for
the files when compressed with various algorithms (namely, the bzip2, lzma, lzma2 and
ppmd compression algorithms). e results are given in Figure 9. From these results, it
can be noticed that while the uncompressed file size of fileE is obviously – since our
proposal is a higher-expectation encoding – larger than that of fileU, the file size gap
is significantly shrunk when applying whichever of the tested compression algorithms.
Nevertheless, one can note that the lzma compression algorithm produces the best results:
the file size is lowest, the compression ratio is highest (82%), and while not the smallest,
the overhead compared with Unicode is at 34%. Additional details are given in Table 4.
is very good compression ratio is mostly due to the occurrence of sequences of 0 bytes
as illustrated in Table 3 (this is to be compared with the Unicode file). ese 0 sequences
are induced by the decimals of the Y coordinate.

Table 4. Details of the memory size measurements. File sizes are given in bytes. e overhead percentage is
calculated with the Unicode file size as reference.

Compression algorithm

Encoding Uncompressed bzip2 lzma lzma2 ppmd

Unicode (UTF-16) 2,530 1,760 1,386 1,393 1,748

Proposal 10,240 2,620 1,851 1,858 2,250

overhead (+305%) (+49%) (+34%) (+33%) (+29%)

compression ratio (74%) (82%) (82%) (78%)

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese 173



7. Conclusions

In this paper, a formal database structure for Chinese characters in the form of a character
encoding has been proposed. To the difference of previous works such as Unicode and the
IPA mojikiban database, the described model has been designed to rely on, and retain as
much relationship information between entries (i.e., characters) as possible. As a result,
the proposed code is significantly easier to use, for example for searching operations. In
addition, the proposed encoding remains flexible by allowing the addition of new glyphs
when necessary, and this without any code disturbance (i.e., modifying the code map-
ping). And, the number of characters covered is not limited as in other encodings. Besides
the formal definition of the proposed encoding, we have shown as a proof of concept
how to concretely build such a database, providing a three-dimensional visualisation of
the code structure to illustrate the spatial characteristic of the realised database and the
induced high accessibility. Finally, we have conducted another experiment to empirically
evaluate the memory size overhead that is induced by the proposed encoding, comparing
with an implementation of Unicode. e obtained results showed that once compressed,
the memory size overhead was significantly reduced to (e.g., less than 29% overhead with
the ppmd compression algorithm).

Regarding future works, the inclusion of stroke order and stroke type information in
the assembled database ismeaningful so as to implement the enhanced lookup function. In
addition, further refining the initial binary representation that was proposed in this paper
is an important future work with respect to the practicability of the presented encoding for
current computer systems. As a refining strategy, the stroke type and order information
would first need to be included into the binary representation, before considering the
optimisation of this representation.

Acknowledgements

e authors sincerely thank the reviewers for their insightful comments and suggestions.
is research project is partly supported byeTelecommunications Advancement Foun-
dation (Tokyo, Japan).

References

[1] Bossard, A., Kaneko, K.: Proposal of an Unrestricted Character Encoding for Japanese, Proceedings of
the 13th International Baltic Conference on Databases and Information Systems, Communications in
Computer and Information Science 838, 189–201, Trakai, Lithuania, July 2018.

[2] Bossard, A.: Chinese Characters, Deciphered. Kanagawa University Press, Yokohama, Kanagawa, Japan
(2018).

[3] e Unicode Consortium: e Unicode Standard 5.0. Addison-Wesley, Boston, MA, USA (2007). More
recent versions accessible online at http://www.unicode.org/versions/latest/.

[4] Sekiguchi, M. (Fujitsu): 標準化教育プログラム - 第12章 文字コード標準 (in Japanese). Japanese
Standards Association (JSA) (2006).

[5] Lunde, K., Cook, R., Jenkins, J. H.: Unicode Ideographic Variation Database, Unicode Technical Stan-
dard no. 37, version 5.0 (2018). http://www.unicode.org/reports/tr37/. Last accessed September
2018.

[6] Japanese Industrial Standards Committee (JISC): 7-bit and 8-bit Coded Character Sets for Information
Interchange (７ビット及び８ビットの情報交換用符号化文字集合, in Japanese). (1969).

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese174

http://www.unicode.org/versions/latest/
http://www.unicode.org/reports/tr37/


[7] Lunde, K.: CJKV Information Processing. O’Reilly Media, Sebastopol, CA, USA (2009).
[8] Choi, U., Chon, K., Park, H.: Korean Character Encoding for Internet Messages (Request for Comments

#1557, Network Working Group). Internet Engineering Task Force, Fremont, CA, USA (1993). https:
//tools.ietf.org/html/rfc1557. Last accessed March 2018.

[9] Information-technology Promotion Agency (Japan): Mojikiban Database (文字情報基盤
文字情報一覧表, in Japanese). http://mojikiban.ipa.go.jp/. (2016). Last accessed February 2018.

[10] Morohashi, T.: Daikanwa Jiten (大漢和辞典, in index). Taishukan Publishing, Tokyo, Japan (2007).
[11] Bossard, A., Kaneko, K.: Chinese Characters Ontology and InducedDistanceMetrics, International Jour-

nal of Computers and eir Applications 23(4), 223–231 (2016).
[12] Ogawa, T., Nishida, T., Akatsuka, K. (editors): Kadokawa Shinjigen (角川新字源, in Japanese), revised

version. Kadokawa, Tokyo, Japan (1994).
[13] e Agency for Cultural Affairs, Japanese Ministry of Education, Culture, Sports, Science and Technol-

ogy (MEXT): Table of the Regular-use Kanji Characters (常用漢字表, in Japanese). (2010).
[14] Coulmas, F.: e Writing Systems of the World. Basil Blackwell, Oxford, England (1989).

A. Bossard and K. Kaneko / Unrestricted Character Encoding for Japanese 175

https://tools.ietf.org/html/rfc1557
https://tools.ietf.org/html/rfc1557
http://mojikiban.ipa.go.jp/

