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Abstract. In this paper, we propose a structured approach for transforming legal ar-
guments to a Bayesian network (BN) graph. Our approach automatically constructs
a fully specified BN graph by exploiting causality information present in legal ar-
guments. Moreover, we demonstrate that causality information in addition provides
for constraining some of the probabilities involved. We show that for undercutting
attacks it is necessary to distinguish between causal and evidential attacked infer-
ences, which extends on a previously proposed solution to modelling undercutting
attacks in BNs. We illustrate our approach by applying it to part of an actual legal
case, namely the Sacco and Vanzetti legal case.
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1. Introduction

Bayesian networks (BNs) are probabilistic reasoning tools that are being applied in many
complex domains where uncertainty plays a role, including forensics and law [1]. A BN
consists of a graph, which captures the probabilistic independence relation among the
modelled domain variables, and locally specified (conditional) probability distributions
that collectively describe a joint probability distribution. BNs are well-suited for reason-
ing about the uncertain consequences that can be inferred from the evidence in a case.
However, especially in data-poor domains, their construction needs to be done mostly
manually, which is a difficult, time-consuming and error-prone task. Domain experts
such as crime analysts and legal experts, therefore, typically resort to using qualitative
reasoning tools, such as argument diagrams and mind maps [2] and Wigmore charts [1].

The benefits of BNs can be exploited if their construction can be facilitated by ex-
tracting information specified by experts using the tools and techniques they are famil-
iar with. In previous research, Bex and Renooij [3] contributed to this idea by deriving
constraints on a BN given structured arguments [4]. Their approach suffices for automat-
ically constructing an undirected graph. However, for setting arc directions, as required
for the directed BN graph, the authors resort to the standard approach used in BN con-
struction: the BN modeller and the domain expert together specify the arc directions us-
ing the notion of causality as a guiding principle [5]. The resulting graph then has to be
verified and refined in terms of the independence relation it represents.
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From a legal perspective, it is, however, justified to assume that information regard-
ing causality is present in the domain expert’s original argument-based analysis [6, 7]. In
this paper, we therefore propose to make causality information explicit in the argument-
based analysis and to exploit this information in automatically constructing a completely
directed BN graph. Moreover, we demonstrate that causality information in addition pro-
vides for constraining several conditional probability distributions. We illustrate our ap-
proach by applying it to the Sacco and Vanzetti legal case and compare our results to a
previous BN modelling of the same case [1].

2. Preliminaries

2.1. Argumentation

Throughout this paper, we assume that the domain expert’s analysis of a case is captured
in an argument graph, in which claims are substantiated by chaining inferences from the
observed case evidence; an example is depicted in Figure 1a. Argument graphs, which
we define below, are closely related to Wigmore charts [1], mind maps and argument
diagrams [2] with which many crime analysts and legal experts are familiar. We note
that our formalism is an abstraction of existing argumentation formalisms (an overview
is provided by [8]). Specifically, the evaluation of arguments is not taken into account, as
it is not needed for our current purposes. By embedding our formalism in other existing
formalisms, the dialectical status of arguments can be accounted for (cf. [9]).

Formally, an argument graph is a directed graph AG = (P,A), where P is a set of
nodes representing propositions and A is a set of directed (hyper)arcs. Nodes Ev ⊆ P

corresponding to the (observed) case evidence are shaded root nodes in the argument
graph. We assume that for every p ∈ Ev, there is no node representing proposition p’s
negation ¬p elsewhere in the graph. The set of directed (hyper)arcs A is comprised of
three pairwise disjoint sets S, R and U, which are sets of support arcs, rebuttal arcs and
undercutter arcs, respectively. A support arc is a solid (hyper)arc s : p1, . . . , pn → p ∈ S,
indicating an inference step from one or more propositions p1, . . . , pn ∈ P (the tails of
the arc) to a single proposition p ∈ P (the head of the arc). Two support arcs s1 and s2
form a support chain (s1,s2) in case the head of s1 is a tail of s2.

There are two types of attack arcs. A rebuttal arc r ∈ R is a bidirectional dashed arc
in the argument graph that is drawn between two nodes in P iff these nodes represent
a proposition p and its negation ¬p. An undercutter arc u ∈ U is a dashed hyperarc
directed from a node p∈P (the undercutter of the inference) to a support arc s∈ S. Figure
3a depicts an example including undercutter arcs. Informally, a rebuttal is an attack on
a proposition, while an undercutter attacks an inference by providing exceptional case
circumstances under which the inference is not applicable.

In reasoning about evidence, a distinction can be made between causal and evidential
inferences [6, 10]. Causal inferences are of the form ‘c is a cause for e’ (e.g. fire causes
smoke), whereas evidential inferences are of the form ‘e is evidence for c’ (e.g. smoke
is evidence for fire). We assume that every support arc s ∈ S is annotated with a causal
‘c’ or an evidential ‘e’ label; S then falls into two disjoint sets SC and SE of causal
and evidential support arcs, respectively. We consider the tails of two causal arcs with
the same head to be competing (but not necessarily mutually exclusive) causes for the
common effect expressed by the head. Similarly, in case two evidential support arcs have
distinct heads and a single, identical tail, we consider the heads to be competing causes
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for the common effect expressed by the tail. In case a causal or evidential support arc has
multiple tails, we assume that the tails are not in competition, as the arc expresses that
only the tails together allow us to infer the head.

As noted by Pearl [10], the chaining of a causal inference and an evidential inference
can lead to undesirable results. Consider the example in which a causal inference states
that a smoke machine causes smoke and an evidential inference states that smoke is
evidence for fire. If we now know that there is a smoke machine, then this is evidence
that there is a fire, which is clearly undesirable. To this end, we assume that an argument
graph does not contain a support chain (s1,s2) where s1 ∈ SC, s2 ∈ SE.

2.2. Bayesian Networks

A BN [5] is a compact representation of a joint probability distribution Pr(V) over a
finite set of discrete random variables V. The variables are represented as nodes in a
directed acyclic graph G= (V,E), where E⊆V×V is a set of directed arcs Vi →Vj from
parent Vi to child Vj. Each node describes a number of mutually exclusive and exhaustive
values; in this paper, we assume all nodes to be Boolean. The BN further includes, for
each node, a conditional probability table (CPT) specifying the probabilities of the values
of the node conditioned on the possible joint value combinations of its parents. A node is
called instantiated iff it is set to a specific value. Given a set of instantiations, or evidence,
the probability distributions over the other nodes in the network can be updated using
probability calculus [5]. An example of a BN graph and one of its CPTs is depicted in
Figures 1b and 1c, where ovals denote nodes and instantiated nodes are shaded.

The BN graph G captures the independence relation among its variables. Let a chain
be defined as a sequence of distinct nodes and arcs in the BN graph. A node V is called a
head-to-head node on a chain c if it has two incoming arcs on c. A chain c is blocked iff
it includes a node V such that (1) V is an uninstantiated head-to-head node on c without
instantiated descendants; or (2) V is instantiated and has at most one incoming arc on c.
A chain is inactive if it is blocked; otherwise it is called active. If no active chains exist
between V1 and V2 given instantiations of nodes in Z, then they are considered condition-
ally independent given Z. After constructing an initial BN graph, it should be verified
that this graph is acyclic and that the graph correctly captures the (conditional) indepen-
dencies. If the graph does not yet exhibit these properties, arcs should be reversed, added
or removed by the BN modeller in consultation with the domain expert. We will refer to
this step as the ‘initial validation step’.

In case the two parents of a head-to-head node are seen as causes of a common
effect, then instantiation of the head-to-head node or one of its descendants will induce an
active chain between the causes. If one of the causes is now observed, then the probability
of the other cause being present as well can either increase, decrease or stay the same
upon updating, depending on the probabilities in the CPT for the head-to-head node. In
case the probability of the other cause decreases, this is called the ‘explaining away’
effect [11]. To achieve the explaining away effect between two causes V1 = true (denoted
v1) and V3 = true (v3) of V2 = true (v2), the CPT for V2 needs to be constrained such that
V1 and V3 exhibit a negative product synergy wrt v2: Pr(v2 | v1,v3) ·Pr(v2 | ¬v1,¬v3) ≤
Pr(v2 | v1,¬v3) ·Pr(v2 | ¬v1,v3). A zero product synergy is a special case of a negative
product synergy, where the inequality in the above equation is replaced by an equality.
In this case, no intercausal reasoning can occur between causes V1 and V3 of v2.
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3. Exploiting Causality in Constructing BN Graphs from Legal Arguments

In this section, we first present the steps of our structured approach for automatically
constructing BN graphs from argument graphs, and then illustrate and explain the steps
with several examples. Let node : P → V be an operator which maps every proposition
p or ¬p ∈ P to a variable node(p) = node(¬p) ∈ V that describes values p and ¬p. For
a given argument graph AG = (P,A), a BN graph G = (V,E) is constructed as follows:

1. For every p or ¬p ∈ P, the BN graph includes node(p). For every p ∈ Ev ⊆ P, the
set of observed nodes Ev ⊆ V includes node(p).

2. For every support arc s : p1, . . . , pn → p ∈ SC, E includes arcs node(p1) →
node(p), . . . ,node(pn)→ node(p).

3. For every support arc s : p1, . . . , pn → p ∈ SE, E includes arcs node(p) →
node(p1), . . . ,node(p)→ node(pn).

4. For every undercutter arc u∈U directed from a p∈P to support arc s : q1, . . . ,qn →
q ∈ SE, E includes arcs node(p)→ node(q1), . . . ,node(p)→ node(qn).

5. For every undercutter arc u∈U directed from a p∈P to support arc s : q1, . . . ,qn →
q ∈ SC, E includes arc node(p)→ node(q).

6. Verify the properties of the BN graph by performing the initial validation step.

We propose the following constraints on the CPTs of the BN under construction:

7a) For every pair of support arcs s1 : p1, . . . , pn → p,s2 : q1, . . . ,qm → p ∈ SC, the
CPT for node(p) should be constrained such that node(pi) and node(q j) exhibit a
negative product synergy wrt value p of node(p) for 1 ≤ i ≤ n,1 ≤ j ≤ m.

7b) For every pair of support arcs s1 : p → p1,s2 : p → p2 ∈ SE, the CPT for node(p)
should be constrained such that node(p1) and node(p2) exhibit a negative product
synergy wrt value p of node(p).

7c) For every support arc s : p1, . . . , pn → p ∈ SC, the CPT for node(p) should be
constrained such that node(pi) and node(p j) exhibit a zero product synergy wrt
value p of node(p) for 1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j.

7d) For every undercutter arc u∈U directed from a p∈P to support arc s : q1, . . . ,qn →
q∈ SE, the CPT for node(qi) should be constrained such that node(p) and node(q)
exhibit a negative product synergy wrt value qi of node(qi) for 1 ≤ i ≤ n. For
every pair of undercutter arcs u1,u2 ∈ U directed from p1 ∈ P respectively p2 ∈ P

to s, the CPT for node(qi) should be further constrained such that node(p1) and
node(p2) exhibit a negative product synergy wrt value qi of node(qi) for 1 ≤ i ≤ n.

In Section 3.1, we illustrate that steps 1-3 of our approach suffice for constructing BN
graphs from argument graphs without undercutter arcs, where the CPTs of the BN under
construction should be constrained according to steps 7a-7c. We then illustrate in Sec-
tion 3.2 that the BN under construction needs to be further constrained in case undercut-
ter arcs are present in the argument graph; this is accounted for in steps 4, 5 and 7d of
our approach. Finally, we note that, while our approach exploits the domain knowledge
captured in the argument graph, the argument graph may not contain all the informa-
tion needed to resolve conflicts such as cycles and unwarranted (in)dependencies in the
obtained BN graph; hence, step 6 of our approach.
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Figure 1. An argument graph involving two competing causes Mot1 and Mot2 for Bur (a); the corresponding
BN graph constructed by our approach (b); a possible CPT for node Bur (c).

3.1. Argument Graphs without Undercutter Arcs

We first describe the main idea behind our approach. As an argument graph describes the
inferences that can be made between a set of proposition nodes and a BN graph describes
an independence relation over a set of variables, a transformation step from propositions
to variables needs to occur upon constructing a BN graph; this is accounted for in step 1
of our approach. By the same step, two propositions involved in a rebuttal are captured
as two mutually exclusive values of the same node. In steps 2 and 3, arcs in the BN graph
are then directed using the notion of causality, that is, for every causal support arc s∈ SC,
arcs in the BN graph are directed from the nodes corresponding to the tails of s to the
node corresponding to the head of s, and vice versa for an evidential support arc. This
formalises the approach typically taken in the manual construction of BN graphs [5].

In comparing the knowledge captured in a BN graph to the knowledge captured in
the original argument graph, it is important to note that a BN graph necessarily represents
more than an argument graph, as for every proposition p ∈ P a variable is created which
describes both values p and ¬p. Furthermore, without instantiating variables, a BN in
itself is a joint probability distribution which does not model directionality; only when
instantiating variables do reasoning patterns arise in the form of induced active chains.
As the notion of an active chain is a symmetrical concept (an active chain exists between
variables A and B given Ev iff an active chain exists between B and A given Ev), a
BN graph will also capture reasoning patterns in the opposite direction from the support
arcs present in the argument graph. Our current focus will be on verifying whether the
(chains of) support arcs in the argument graph are present in the BN graph in the form of
active chains given the relevant case evidence. As the observed case evidence Ev ⊆ P is
indicated in the argument graph, we instantiate only the corresponding variables Ev ⊆ V.
Here, we note that in determining the influence of a variable Ei ∈ Ev, active chains given
the variables Ev\{Ei} need to be considered.

We illustrate our approach through the example depicted in Figure 1a. Suppose that
a burglary has taken place and that we are interested in whether some suspect is in fact
the burglar (Bur). Forensic analysis (For) shows there is a match between a pair of shoes
owned by the suspect and footprints found near the crime scene, which provides us with
evidence that the suspect left his footprints at the crime scene (Ftpr). According to wit-
ness testimony (Tes1), the suspect had a motive to commit this burglary, namely to com-
mit theft (Mot1); however, according to another testimony (Tes2), the suspect had a dif-
ferent possible motive, namely to harm the owner (Mot2). These motives are expressed
as competing causes for Bur in the argument graph. Finally, the suspect denied in his
testimony (Tes3) that he had intentions to harm the owner (¬Mot2), which rebuts Mot2.

By following steps 1-3 of our approach, the BN graph of Figure 1b is constructed.
For every support chain (s1,s2) in the argument graph, there exists an active chain be-
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tween the nodes corresponding to the tails of s1 and the head of s2 in the BN graph given
Ev. Specifically, given the case evidence Ev = {Tes1, Tes2, Tes3, For}, there exist active
chains between Tes1 and Bur, Tes2 and Bur, Tes3 and Mot2, and For and Bur in the BN
graph. Generally, we note that for any given argument graph, no head-to-head node is
formed in the node corresponding to the head of s1 for any support chain (s1,s2) in the
argument graph by steps 1-3 of our approach. Since propositions in Ev are root nodes
in an argument graph, corresponding instantiated nodes are root nodes in the BN graph;
chains in the BN graph corresponding to support chains in the argument graph are, there-
fore, always active given Ev. Manual verification of whether support chains are captured
in the form of active chains in the BN graph can, therefore, be skipped.

Besides structural constraints, information regarding causality in the argument graph
also allows us to derive constraints on the CPTs of the BN. In the argument graph of Fig-
ure 1a, Mot1 and Mot2 are competing causes for the common effect Bur in that presence
of one of the causes makes the other cause less likely. We propose to link this type of
intercausal interaction in argument graphs to the explaining away effect in BNs. Specifi-
cally, as proposed in step 7a of our approach, the CPT for Bur should be constrained such
that Mot1 and Mot2 exhibit a negative product synergy wrt value Bur = true. For exam-
ple, the CPT for Bur can be chosen as in Figure 1c, as in this case 0.4 · 0.1 ≤ 0.6 · 0.5.
Similarly, the heads of two evidential support arcs with the same tail are in competition
for the effect expressed by the tail. Suppose that the two causal support arcs Mot1 → Bur
and Mot2 → Bur in Figure 1a are replaced by two evidential support arcs Bur → Mot1
and Bur → Mot2. By following steps 1-3 of our approach, again the BN graph of Figure
1b is constructed. Competition between the causes can again be captured by constraining
the CPT for Bur accordingly, as proposed in step 7b of our approach. We note that, in
case two evidential support arcs have multiple (shared) tails, intercausal interactions will
not in general be of some predetermined type that constrains the CPTs.

By following steps 2 and 3 of our approach, two competing causes automatically
form a head-to-head connection in the node corresponding to the common effect for any
given argument graph; interaction between two competing causes in an argument graph
can, therefore, always be directly captured in the CPT for the node corresponding to
the common effect. We note that the intended explaining away effect is only active in
case the node corresponding to the common effect is instantiated or has an instantiated
descendant. This is the case when in the corresponding argument graph the common
effect is an element of Ev or in case there exists a chain of evidential support arcs for the
common effect. For example, in Figure 1b the explaining away effect is active between
Mot1 and Mot2, as Bur has instantiated descendant For; this is the case as there exists a
chain of evidential support arcs from For to Bur in Figure 1a.

Figure 2a depicts an adjustment of the argument graph of Figure 1a, where the single
causal support arc between Mot, Opp and Bur indicates that the presence of motive and
opportunity together caused the suspect to commit the burglary. According to steps 1-3
of our approach, the BN graph of Figure 2b is constructed. Similar to the BN graph of
Figure 1b, an active chain exists between Mot and Opp given Ev; however, as Mot and
Opp are not in competition for Bur in this example, we need to assure that no intercausal
reasoning can occur between Mot and Opp for value Bur = true. This can be achieved
by constraining the CPT for Bur such that Mot and Opp exhibit a zero product synergy
wrt value Bur = true, as proposed in step 7c of our approach. Note that the argument
graph only informs us that there should be a zero product synergy between Mot and Opp
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Figure 2. An argument graph involving two non-competing causes Mot and Opp for Bur (a); the corresponding
BN graph constructed by our approach (b); a possible CPT for node Bur (c).

wrt value Bur = true; it does not inform us whether this should also hold wrt value Bur
= false. Figure 2c depicts a possible CPT for Bur, where Mot and Opp exhibit a zero
product synergy wrt value Bur = true as 0.8 · 0 = 0 · 0. However, as 0.2 · 1 ≤ 1 · 1, Mot
and Opp also exhibit a negative product synergy wrt value Bur = false. Care should be
taken, therefore, in eliciting the involved probabilities.

3.2. Argument Graphs including Undercutter Arcs

Next, undercutting attacks are considered. Bex and Renooij [3] interpret undercutting
attack as explaining away and propose constraints on the BN graph and CPTs accord-
ingly. We demonstrate that their solution only has the desired effect in case the undercut
support arc is evidential. The solution of Bex and Renooij is captured by steps 4 and 7d
of our approach; step 5 then accounts for undercut causal support arcs.

In Figure 3a, an example of an argument graph is depicted in which both an evi-
dential and a causal support arc are undercut. The evidential support arc Tes2 → Mot is
undercut by proposition Lie, which states that person x who testified to Tes2 had reason
to lie when giving his testimony. Since Tes2 is either the result of the true motive or due
to a lie, Mot and Lie can be seen as competing causes of x’s testimony. Generally, under-
cutters of evidential support arcs can be considered competing causes for the common
effects expressed by the tails of the support arc; for undercut evidential support arcs, we
therefore follow the approach of [3]. The authors specify that the nodes corresponding
to the propositions involved in an undercutting attack should form head-to-head nodes
in the tails of the undercut support arc. By step 3 of our approach, the BN graph under
construction includes arc Mot → Tes2. A head-to-head node can, therefore, be formed in
node Tes2 by adding additional arc Lie → Tes2 to the BN graph; this is captured by step
4 of our approach. The explaining away effect can then be achieved by constraining the
CPT for Tes2 such that Lie and Mot exhibit a negative product synergy wrt value Tes2
= true; this is captured by step 7d of our approach. For example, the CPT for Tes2 can
be chosen as in Figure 3c, as in this case 0.2 ·0.01 ≤ 0.8 ·0.3.

We note that, in case there are multiple undercutters of an evidential support arc,
the CPTs for the nodes corresponding to the tails need to be further constrained such
that the explaining away effect occurs between the nodes corresponding to each pair
of undercutters of the undercut support arc, as each undercutter expresses an additional
competing cause; this is also captured by step 7d of our approach.

In the argument graph of Figure 3a, the causal support arc Mot → Bur is undercut
by proposition ¬Opp. In contrast with the undercut evidential support arc, this under-
cutter cannot be considered a competing cause for the tail of the undercut support arc;
the absence of opportunity cannot be considered a cause for motive. Instead, it can be
considered a causal explanation for the fact that the suspect is not the burglar (¬Bur).
For undercut causal support arcs, we therefore propose to form a head-to-head node in
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Figure 3. An argument graph involving both an undercutter of an evidential support arc and a causal support
arc (a); the corresponding BN graph constructed by our approach (b); a possible CPT for node Tes2 (c).

the node corresponding to the head of the support arc as opposed to in the node corre-
sponding to the tail of the support arc as proposed by [3]. By step 2 of our approach,
the BN graph under construction includes arc Mot → Bur. A head-to-head node can,
therefore, be formed in Bur by adding additional arc Opp → Bur to the BN graph; this is
captured by step 5 of our approach. As node(Bur) describes both values Bur and ¬Bur,
possible interactions, if any, between Mot and ¬Opp can be captured in the CPT for this
node. We note that, in this case, intercausal interactions will not in general be of some
predetermined type that constrains the CPT.

4. Case Study: The Sacco and Vanzetti Case

In this section, we apply our approach to part of an actual legal case, namely the well-
known Sacco and Vanzetti case. The case concerns Sacco and Vanzetti, who were con-
victed for shooting and killing a payroll guard during a robbery. Kadane and Schum [1]
performed a probabilistic analysis of this case by first constructing Wigmore charts,
which are a type of (evidential) argument graph. The authors then manually constructed
corresponding BNs by assessing the modelled independence relation and eliciting the
necessary (conditional) probabilities. The authors did not provide a systematic approach
for constructing BN graphs from Wigmore charts. Specifically, they constructed BN
graphs by compiling and aggregating the evidence present in multiple Wigmore charts,
where the choice which evidence to aggregate and compile was decided upon a case-by-
case basis. In this section, we illustrate for one of their Wigmore charts that our approach
provides a more structured way of constructing BN graphs.

In this case study, we only consider the evidence regarding Sacco’s consciousness
of guilt. During their arrest, Sacco and Vanzetti were armed. According to the two arrest-
ing officers, Connolly and Spear, Sacco and Vanzetti made suspicious hand movements,
from which the prosecution concluded that Sacco and Vanzetti intended to draw their
concealed weapons in order to escape their arrest. This suggests that Sacco and Vanzetti
were conscious of having committed a criminal act.

In Figure 4, an argument graph concerning Sacco’s consciousness of guilt corre-
sponding to the Wigmore chart from Kadane and Schum [1, pp. 330–331] is depicted,
along with the corresponding key list which indicates for every number in the argument
graph to which evidence it corresponds. For reasons of space, the original Wigmore chart
from Kadane and Schum is omitted. In formalising the Wigmore chart from Kadane and
Schum, we have followed the approach of Bex and colleagues [7]. As noted by Kadane
and Schum [1][p. 74–76], the natural direction of reasoning in their Wigmore charts is
from the evidence to the ultimate conclusion, as all the evidence is known to them. All
support arcs in the argument graph of Figure 4 are, therefore, evidential.
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Figure 4. An argument graph corresponding to the Wigmore chart that Kadane and Schum constructed con-
cerning Sacco’s consciousness of guilt, along with the corresponding key list, adapted from [1, pp. 330–331].

By applying our construction approach, the BN graph of Figure 5a is obtained. Re-
butting propositions are captured as two values of the same node by step 1 of our ap-
proach; arcs in the BN graph are then directed in the opposite direction of the evidential
support arcs by step 3. Additional arc 467 → 466 is then added to the BN graph accord-
ing to step 4. The obtained graph is largely identical to the BN graph that Kadane and
Schum manually constructed for this part of the case [1, p. 232]. The only difference
is that Kadane and Schum aggregated nodes 466, 467 and 468 into a single node; pos-
sible intercausal effects between 467 and 465 can, therefore, not be explicitly captured
in their BN graph. While aggregation reduces the number of conditional probabilities
to be elicited, we prefer to explicitly capture all elements of the argument graph in the
corresponding BN graph to prevent loss of information. We note that, by step 7d of our
approach, a constraint on the CPTs of the BN under construction is automatically ob-
tained, which partially simplifies the elicitation procedure. By this step, nodes 465 and
467 should exhibit a negative product synergy wrt value 466 = true. For example, the
CPT for 466 can be chosen as in Figure 5b, as in this case 0 ·0.2 ≤ 0.7 ·0.1.

5. Conclusion

In this paper, we have studied how legal arguments, including causality information, can
be used to inform the construction of BN graphs. We have proposed a structured approach
that allows domain experts to automatically construct a BN graph corresponding to their
initial argument-based analysis which captures similar reasoning patterns as present in
the original argument graph. We have illustrated that for undercutting attacks it is nec-
essary to distinguish between causal and evidential attacked inferences. As a result, we
extend on Bex and Renooij’s [3] previously proposed solution to modelling undercutting
attacks in BNs. In addition, we have identified when constraints on the CPTs of the BN
are required to capture the desired effect of (induced) dependencies. In related research,
Grabmair and colleagues [12] claim (without proof) that the Carneades argument model
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Figure 5. The BN graph corresponding to the argument graph of Figure 4, as constructed by our approach (a);
a possible CPT for node 466 (b).

can be given probabilistic semantics using BNs. However, the authors do not discuss
issues related to forensics and causality.

In this paper, we have assumed that all support arcs are labelled with a causal or
evidential label. In our future research, we intend to study the construction of BN graphs
from partially labelled argument graphs. Furthermore, we have made no assumptions re-
garding inference strength; within our proposed constraints, the CPTs, therefore, need
to be elicited manually. As arcs in the BN graph are directed from cause to effect, the
necessary conditional probabilities can be elicited in the form of likelihood ratios, which
are ratios of probabilities of observing the evidence under two mutually exclusive hy-
potheses. These can be directly entered in the CPT for each node, as is also done by e.g.
Kadane and Schum [1]. In our future research, we will focus on deriving more proba-
bilistic constraints, for example, by taking inference strength into account.
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