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Abstract. A wide range of Clinical Decision Support Systems (CDSS) have been 

developed. These CDSS are based on decision models, which normally have a 

knowledge- or data-driven approach. In this work a structured development of 
potential hybrid approaches was realized by the assessment of decision models and 

identification of their advantages and disadvantages. For the assessment of 

different decision models, eight criteria were identified and three of them were 
chosen as main criteria for CDSS: transparency, learning aptitude and handling of 

uncertain and vague knowledge. The comparison of decision models in regard to 

the developed main criteria resulted in an identification of three groups of models 
with similar characteristics. Based on these groups hybrid approaches had been 

developed, so that different decision models could be combined in a beneficial 

way. Thereby this work provides an instrument for a structured development of 
hybrid decision models. 
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1. Introduction 

Many and different kinds of Clinical Decision Support Systems (CDSS) have been 

developed recently. The approach of these decision models is in general knowledge- or 

data-driven. A knowledge-driven approach describes an approach based on knowledge 

and strategies of problem-solving, e. g. rules. A data-driven approach operates on 

automatic data-analysis, based on methods of machine learning. Especially in clinical 

routine, the use of CDSS is still not common. Reasons therefore are insecurity and the 

possibility, that CDSS can be faulty [1]. Hybrid approaches would give a possibility to 

combine knowledge- and data-driven approaches concerning their advantages to 

improve existing decision models. 
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2. Methods 

2.1 Assignment of decision models 

The most decision models can be assigned to knowledge- or data-driven decision 

models (see Table 1). The decision models in this work, which cannot be assigned 

clearly, were termed as intermediate models: (1) Case-based Reasoning (CBR), 

because the search for similar cases is just one step in the model [2], (2) Markov- and 

Bayesian networks, because the rules are not valid for each case [3], and (3) Fuzzy 

logic, because it cannot be seen as an independent decision model [3, 4]. 

Table 1. Knowledge-, data-driven and intermediate decision models, which were assessed in this work. 

Knowledge-driven decision 
models [3, 4] 

Data-driven decision models   
[5, 6] 

Intermediate decision models 
[3, 4] 

Rule-based models Decision trees Cased-based Reasoning 
 Statistical models Markov-/Bayesian networks 

 Instance-based models Fuzzy logic 

 Artificial neural networks  
 Clustering  

2.2 Development of criteria for an assessment 

We reviewed general work on decision models, such as published by Puppe and van 

Rijsbergen [7, 8,] and amplified these by current work on clinical decision support by 

Wojtusiak, Kilsdonk, A. Miller and K. Miller [10, 11, 12, 13]. Following criteria for 

decision models were developed:  

� Accuracy [10, 11, 12] 

� Transparency [7, 10] 

� Acceptability [7, 8, 9, 12, 13] 

� Efficiency [10, 11, 12, 13, 14] 

� Flexibility concerning the learning aptitude [10, 14] 

� Flexibility concerning the flexibility of coverage of knowledge [7, 8, 9, 12] 

� Security of knowledge concerning uncertain and vague knowledge [3, 4] 

� Security of knowledge concerning noisy and faulty data [14] 

Out of these criteria, three main criteria for the assessment of decision models in 

health care were identified: Transparency, which is important for the users 

understanding of decision models. Learning aptitude, which is one of the main reasons 

for the development of hybrid decision models. Uncertain and vague knowledge, 
because a lot of medical knowledge is based on experiences and derived knowledge. 

2.3 Assessment of decision models 

The assessment of decision models was done by literature research and complemented 

by interviews with two colleagues experienced in the field of CDSS. For literature 

research the platforms of PubMed Medline and IEEExplore were mainly used. The 

literature research based on following keywords: clinical decision support, decision 

support system, knowledge-based / data-based / hybrid decision support / decision 

model / decision support model. 
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3. Results 

3.1 Assessment and grouping of decision models concerning the identified main 
criteria 

The assessment of decision models concerning the main criteria had shown different 

advantages and disadvantages of the decision models (see Table 2). 

Table 2. Assessment of decision models concerning the criteria transparency, learning aptitude and 
uncertain/vague knowledge with the values positive (+), uncertain (~) and negative (-) and with the essential 

references in brackets. 

Decision models Transparency Learning 
aptitude 

Uncertain/vague 
knowledge 

Rule-based models + [7, 14, 15] - [7, 14, 15] - [12, 15] 
Decision trees +  ~           -  

Statistical models ~ [6] ~  + [6] 

Instance-based models ~ [6] +  ~  
Artificial neural networks -  [14, 15] +  ~ [14, 15] 

Clustering ~ [6] +  ~ [16] 

Case-based Reasoning + [3, 17] + [3] + [3, 17] 
Markov-/Bayesian networks ~ [3] ~ [3] + [3] 

Fuzzy logic   + [18]  - [3, 4] + [3, 16] 

Based on the assessment of decision models, three groups of decision models 

could be identified (see Table 2, Fig. 1):  

� Group 1: Transparency (Rule-based models and Decision trees) 

� Group 2: Learning aptitude (Instance-based models, Artificial neural networks 

(ANNs) and Clustering) 

� Group 3: Uncertain/vague knowledge (Statistical models, Markov-/Bayesian 

networks, Case-based Reasoning (CBR)) 

3.2 Hybrid approaches of decision models 

Based on the three groups of decision models, a hybrid approach was realized by 

combining two of them. The idea behind was to compensate the advantages and 

disadvantages of the different groups. We developed successfully three hybrid 

approaches (see Fig. 1): 

� Hybrid approach A: Transparency and Learning aptitude 

(ANNs, Instance-based models or Clustering with Decision trees or Rule-

based models) 

� Hybrid approach B: Transparency and Uncertain/vague knowledge 

(CBR, Statistical models or Markov-/Bayesian networks with Decision trees 

or Rule-based models) 

� Hybrid approach C: Learning aptitude and Uncertain/vague knowledge 

(ANNs, Instance-based models or Clustering with CBR, Statistical models or 

Markov-/Bayesian networks) 

As a special case, we considered a hybrid approach of Fuzzy logic. A combination 

of ANNs, Instance-based models or Clustering with Fuzzy logic was possible. 
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Figure 1. Triangle diagram for hybrid approaches based on the assessment of decision models concerning the 

criteria Transparency, Learning aptitude and Uncertain/vague knowledge. Assessment of criteria: positive (+) 

= 1.0, uncertain (~) = 0.5, negative (-) = 0 in triangle diagram with angles = 1.0 and center point = 0. 
Decision models: ♦ = Rule-based models, ♠ = Decision trees, ▲ = Statistical models, ● = Instance-based 

models, ■ = Artificial neural networks, Δ = Clustering,  = Case-based Reasoning, □ = Markov-/Bayesian 

networks, ♣ = Fuzzy logic. Grouping concerning similar assessments: Group 1 (orange) = Transparency (+), 
Group 2 (red) = Learning aptitude (+), Group 3 (blue) = Uncertain/vague knowledge (+). Hybrid approaches: 

A = Group 1 (Transparency) and Group 2 (Learning aptitude), B = Group 1 (Transparency) and Group 3 

(Uncertain/vague knowledge), C = Group 2 (Learning aptitude) and Group 3 (Uncertain/vague knowledge). 

4. Discussion 

With this work a fundamental analysis for decision models in general, knowledge- or 

data-driven, has been made available. The developed criteria might be very helpful for 

assessing existing hybrid approaches of decision models as well. In addition, further 

hybrid decision models can be developed considering explicit questions and problems. 

However, the developed criteria and chosen main criteria are not made a claim to 

be complete. It is to discuss what kind of subdivision of the criteria is reasonable for 

the aim of an exact assessment on the one, and the aim to get an instrument for a 

general assessment of decision models on the other hand. Also, this work is based on 

literature research, so some criteria, like the criterion accuracy, cannot be proved 

correct. Therefore, real data and test scenarios are needed.  

For an improved assessment of decision models, we aim for analyzing the criteria 

with standardized test values. Nevertheless this work gives not just the opportunity to 

assess different hybrid approaches of decision models, this work provides also an 

instrument for a structured development of hybrid decision models concerning concrete 

questions and the field of application. 
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