
NLP-PIPE: Latvian NLP Tool Pipeline
Artūrs ZNOTIŅŠ a,1, Elita CĪRULE b

a Institute of Mathematics and Computer Science, University of Latvia
b

 Latvian Information Agency LETA

Abstract. The paper introduces a modular pipeline that allows to combine multiple
Natural Language Processing tools into a unified framework. It aims to make NLP
technology more accessible for researchers, non-experts and software developers.
The paper describes the architecture of NLP-PIPE and presents publicly available
NLP components for Latvian.

Keywords. Natural language processing, language resources and tools, Latvian

1.�Introduction

Many Natural Language Processing (NLP) applications usually require multiple
linguistic processing steps, like tokenization, part of speech tagging (POS), named entity
recognition (NER), etc. Generally, NLP tools are focused on specific tasks using
different data formats and programming languages. This usually leads to complex
installations, configurations, data format transformations and ad-hoc gluing of multiple
components. Multiple NLP toolkits try to solve this problem using monolithic
architectures that are hard to extend and usually are limited to a single programming
language.

NLP-PIPE 2 is a modular NLP component pipeline that makes integration and
replacement of separate components easy. This enables specialists to focus on
development of specific NLP components and newly created and published components
can be used by other researchers or integrated in other applications.

Objectives of NLP-PIPE are:
•� Ease of use: Command-line and web-based interface.
•� Portable: All components are containerized with Docker 3 meaning they

will run on any platform with Docker installed.
•� Modular: Necessary NLP components can be easily picked and changed.
•� Scalable: It can utilize multiple CPU cores and can be distributed among

multiple machines (additional workers can be added or removed on the go
as required).

•� Open sourced: NLP-PIPE and trained models are freely available under
GNU General Public License v3.0 4.

1 Corresponding Author: Artūrs Znotiņš, Artificial Intelligence Laboratory, Institute of Mathematics and

Computer Science, University of Latvia, Raina blvd. 29, Riga, LV-1459, Latvia; E-mail:
arturs.znotins@lumii.lv

2 https://github.com/LUMII-AILab/nlp-pipe, web-based demo available at: http://nlp.ailab.lv
3 https://www.docker.com/
4 https://www.gnu.org/licenses/gpl-3.0.en.html

Human Language Technologies – The Baltic Perspective
K. Muischnek and K. Müürisep (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-912-6-183

183

2.�Architecture

NLP-PIPE is a distributed tool pipeline for fast automatic linguistic annotation with
minimal configuration and without any installation or compilation.
The architecture is designed to use minimal amount of gluing code to combine NLP tools
implemented in different programming languages and different library version
requirements.

NLP-PIPE is based on four layers (see Figure 1):
•� Pipeline API: Software that is aware of all available services and allows user

to submit text documents for processing and retrieve results. API provides a
base for multiple user clients: command-line tool and web-based API that can
further be utilized in a user-friendly web interface with result visualizations.

•� Service: Software that abstracts processing of a single NLP task. It consists of
input and output task queues. Service distributes workload among workers that
are attached to this service. Additional workers can be added to the service on
the fly without interruption.

•� Worker: Wrapper that bundles one or more NLP core technologies. Workers
process documents from the service input job queue and put results in the
corresponding service output queue.

•� Core: Software that performs a single NLP task like part-of-speech tagging.
Cores are created by NLP specialists using programming languages and
libraries of their own choice.

Communication between components is supported by ZeroMQ 5 distributed
messaging library based on TCP sockets. NLP processing inputs, intermediary and final
results are represented with a JSON document that is passed through pipeline
components and augmented with new task results. JSON document scheme is inspired
by KAF [1]. Processing starts with a minimal document containing text and general
metadata like job identifier and submission time. Generally, each NLP task further adds
a single subdocument describing results of this task and updates metadata describing
processing of this particular tool: version, start time and errors. Next pipeline steps can
refer to annotations from previous steps, e.g., part-of-speech tagging refers to token
identifier from tokenization step. Used JSON document format is more human readable
and easier to construct and parse compared to KAF making integration easier and allows
to add custom tools not specified in KAF.

NLP-PIPE supports synchronous and asynchronous (batch) processing where large
amount of jobs are submitted for further processing and results are saved on a filesystem
or in a database. Web-based API allows easy integration of NLP technologies in other
client programming languages.

All NLP-PIPE components are containerized using Docker that allows to setup the
pipeline on every machine (or cluster using Docker Swarm) with Docker installed by
defining a single configuration file containing needed services and their versions. Docker
Hub 6 provides means of packaged module integration and distribution.

To add a new step to the pipeline it is necessary to create a program that connects to
ZeroMQ socket to get documents for processing and write results back. Alternately, core
software can be left intact by creating a custom worker wrapper (using any programming
language) that handles ZeroMQ connection and data format transformations using

5 http://zeromq.org/
6 https://hub.docker.com/

A. Znotiņš and E. Cı̄rule / NLP-PIPE: Latvian NLP Tool Pipeline184

standard input and output for communication with the core software. Then it is necessary
to build a Docker image containing all the necessary software dependencies and publish
it to Docker Hub. Additional benefit of NLP component containerization with Docker is
that these images can also be used for other purposes (not just in NLP-PIPE) like training
of new NLP models on prepared data using just Docker.

Figure 1. NLP-PIPE architecture.

3.�Latvian NLP Components

NLP-PIPE currently provides following automatic annotations for Latvian: tokenization,
morphological analysis, dependency parsing, named entity recognition and coreference
resolution. Components are based on already available tools, some with improved
models and trained on new larger datasets.

Figure 2. Latvian NLP tool pipeline.

�������	
��� ���
�������	��
	�	�����

��
��������

	����� ��� ������������

������
���

A. Znotiņš and E. Cı̄rule / NLP-PIPE: Latvian NLP Tool Pipeline 185

3.1.�Tokenizer

This component provides tokenization and sentence segmentation using a fast and simple
deterministic finite automaton that is a part of Latvian morphological tagger [2]
implemented in Java.

3.2.�Morphological Analysis

This component provides a statistical morphological tagger which achieves 97.9%
accuracy for part of speech recognition and 93.6% for the full morphological feature tag
set that includes case, gender, number, person, etc. It is implemented in Java based on
CoreNLP.

3.3.�Dependency Parsing

This component provides a continuous transition-based dependency parser based on
LSTM using pre-trained word embeddings, learned character and morphological tag
embeddings as features. Parser achieves 76.84% LAS (Labelled Attachment Score),
81.24% UAS (Unlabeled Attachment Score) on Latvian Universal Dependencies test set.
It is implemented in Python and C++ using DyNet library [4], [5].

Table 1. Dependency parsing model results.

Model Validation Set Test Set

LAS, % UAS, % LAS, % UAS, %

MORPH_EMB+WORD_EMB 77.6 82.0 76.8 81.2

MORPH_EMB 76.6 81.0 75.3 80.2

WORD_EMB 67.5 74.2 65.2 72.5

3.4.�Named Entity Recognition

This component provides automatic tagging of following set of named entity categories:
person, organization geopolitical entity, location, product, time and event. NER tagger
is based on bidirectional LSTM neural network with additional CRF layer and utilizes
pre-trained word embeddings, learned character and word shape embeddings as features.
Model is trained on [3] achieving 74.01% F1-score. Tagger is implemented in Python
using Keras framework based on [5], [6].

Table . NER model results evaluated using 5-fold cross-validation.

Model F1, %

LSTM+CHAR_EMB+CRF+DROPOUT 74.0 ± 0.6

LSTM+CHAR_EMB +CRF 73.2 ± 0.5

LSTM+CHAR_EMB 70.4 ± 0.8

LSTM+CRF 72.6 ± 1.4

2

A. Znotiņš and E. Cı̄rule / NLP-PIPE: Latvian NLP Tool Pipeline186

Table 3. NER results by category.

Category F1, % Precision, % Recall, % Count

GPE 79.0 79.2 78.7 449

event 20.0 37.5 13.6 47

location 45.1 40.5 50.9 134

organization 78.5 73.7 84.0 615

person 85.2 82.2 88.4 808

product 40.0 37.5 42.9 50

time 71.7 71.0 72.5 241

3.5.�Coreference Resolution

Component contains a rule based coreference resolution system that achieves 58% F1-
score [7]. It is implemented in Java.

Figure 3. Screenshot of web-based user interface where user can input text and get results in CONLL format

or text with marked named entities.

A. Znotiņš and E. Cı̄rule / NLP-PIPE: Latvian NLP Tool Pipeline 187

4.�Related Work

Multiple NLP frameworks and toolkits have been created and each of them uses a
different approach to achieve interoperability among all their components. Among the
most notable ones are: GATE [8] (could be used to manage distributed NLP components,
but it is a large and complex system) UIMA [9], Freeling [10] and CoreNLP7 and spaCy8
(all are monolithic architectures that are generally limited to a single programming
language).
Taenga (code not available) [11] and OpeNER9 [12] are the closest ones to what NLP-
PIPE is trying to achieve. OpeNER makes it quite hard to wrap of new NLP components,
it uses quite complex KAF (XML based) data format and scalability is achieved through
paid Amazon Web Services10.

5.�Conclusion and Future Work

NLP-PIPE provides a simple and scalable NLP pipeline publicly available under
GNU General Public License v3.0 license. Modularity and containerization with Docker
makes it easy to setup and offers a lot of flexibility to pick and change different pipeline
components and their versions as necessary and to add new linguistic annotators.
Currently NLP-PIPE is focused on linguistic annotation for Latvian but it can be used in
a multilingual setting for other languages with already available NLP components.

NLP-PIPE includes state-of-the-art NLP components for Latvian including new
Universal Dependency parser and Named Entity Recognizer that are trained on the
Latvian Multilayer Corpus for NLU (in progress) dataset [3].

It has been proven useful for ad-hoc text analysis and larger batch tasks, e.g., person
mention extraction from archive of photo descriptions and automatic text annotation for
further manual selection and post-edition for new corpus creation.

Acknowledgements

This work has received financial support from the European Regional Development
Fund under the grant agreement No. 1.1.1.1/16/A/219 ("Full Stack of Language
Resources for Natural Language Understanding and Generation in Latvian"). The initial
research leading to these results has received funding from the research project
"Competence Centre of Information and Communication Technologies" of the EU
Structural Funds, Contract No. 1.2.1.1/16/A/007 signed between IT Competence Centre
and Central Finance and Contracting Agency, Research No. 2.5 "Automated visual
material recognition and annotation system for LETA archive".

7 http://nlp.stanford.edu/software/corenlp.shtml
8 https://spacy.io/
9 http://www.opener-project.eu/
10 https://aws.amazon.com/

A. Znotiņš and E. Cı̄rule / NLP-PIPE: Latvian NLP Tool Pipeline188

References

[1]�Wauter Bosma, Piek Vossen, Aitor Soroa, German Rigau, Maurizio Tesconi, Andrea Marchetti, Monica
Monachini, and Carlo Aliprandi, Kaf: A Feneric Semantic Annotation Format, Proceedings of the
GL2009 Workshop on Semantic Annotation, 2009.

[2]�Pēteris Paikens, Laura Rituma and Lauma Pretkalniņa, Morphological analysis with limited resources:
Latvian example, Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA
2013), 2013.

[3]�Normunds Gruzitis, Lauma Pretkalnina, Baiba Saulite, Laura Rituma, Gunta Nespore-Berzkalne, Arturs
Znotins and Peteris Paikens, Creation of a Balanced State-of-the-Art Multilayer Corpus for NLU,
Proceedings of the 11th International Conference on Language Resources and Evaluation, 2018.

[4]�Miguel Ballesteros, Chris Dyer and Noah A. Smith, Improved Transition-Based Parsing by Modeling
Characters instead of Words with LSTMs, Proceedings of EMNLP 2015, 2015.

[5]�Arturs Znotins, Word embeddings for Latvian natural language processing tools, Human Language
Technologies -- The Baltic Perspective, 2016.

[6]�Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami and Chris Dyer, Neural
Architectures for Named Entity Recognition, Proceedings of NAACL 2016, 2016.

[7]�Arturs Znotins, Coreference resolution in Latvian, Human Language Technologies -- The Baltic
Perspective, 2014.

[8]�Hamish Cunningham, Diana Maynard, Kalina Bontcheva and Valentin Tablan, Gate: An Architecture for
Development of Robust HLT Applications, Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, 2002.

[9]�David Ferrucci and Adam Lally, UIMA: An Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment, Nat. Lang. Eng., 2004.

[10]� Lluís Padró and Evgeny Stanilovsky, Freeling 3.0: Towards Wider Multilinguality, Proceedings of the
Language Resources and Evaluation Conference (LREC 2012), 2012.

[11]� Housam Ziad, John Philip McCrae and Paul Buitelaar, Teanga: A Linked Data based platform for Natural
Language Processing, Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), 2018.

[12]� Rodrigo Agerri, Josu Bermudez, German Rigau, IXA pipeline: Efficient and Ready to Use Multilingual
NLP tools, Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC 2014), 2014.

A. Znotiņš and E. Cı̄rule / NLP-PIPE: Latvian NLP Tool Pipeline 189

