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Abstract. The paper introduces a modular pipeline that allows to combine multiple 
Natural Language Processing tools into a unified framework. It aims to make NLP 
technology more accessible for researchers, non-experts and software developers. 
The paper describes the architecture of NLP-PIPE and presents publicly available 
NLP components for Latvian. 
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1.�Introduction 

Many Natural Language Processing (NLP) applications usually require multiple 
linguistic processing steps, like tokenization, part of speech tagging (POS), named entity 
recognition (NER), etc. Generally, NLP tools are focused on specific tasks using 
different data formats and programming languages. This usually leads to complex 
installations, configurations, data format transformations and ad-hoc gluing of multiple 
components. Multiple NLP toolkits try to solve this problem using monolithic 
architectures that are hard to extend and usually are limited to a single programming 
language. 

NLP-PIPE 2  is a modular NLP component pipeline that makes integration and 
replacement of separate components easy. This enables specialists to focus on 
development of specific NLP components and newly created and published components 
can be used by other researchers or integrated in other applications. 

Objectives of NLP-PIPE are: 
•� Ease of use: Command-line and web-based interface. 
•� Portable: All components are containerized with Docker 3 meaning they 

will run on any platform with Docker installed.  
•� Modular: Necessary NLP components can be easily picked and changed. 
•� Scalable: It can utilize multiple CPU cores and can be distributed among 

multiple machines (additional workers can be added or removed on the go 
as required). 

•� Open sourced: NLP-PIPE and trained models are freely available under 
GNU General Public License v3.0 4. 

                                                             
1 Corresponding Author: Artūrs Znotiņš, Artificial Intelligence Laboratory, Institute of Mathematics and 

Computer Science, University of Latvia, Raina blvd. 29, Riga, LV-1459, Latvia; E-mail: 
arturs.znotins@lumii.lv 

2 https://github.com/LUMII-AILab/nlp-pipe, web-based demo available at: http://nlp.ailab.lv 
3 https://www.docker.com/ 
4 https://www.gnu.org/licenses/gpl-3.0.en.html 
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2.�Architecture 

NLP-PIPE is a distributed tool pipeline for fast automatic linguistic annotation with 
minimal configuration and without any installation or compilation. 
The architecture is designed to use minimal amount of gluing code to combine NLP tools 
implemented in different programming languages and different library version 
requirements. 

NLP-PIPE is based on four layers (see Figure 1): 
•� Pipeline API: Software that is aware of all available services and allows user 

to submit text documents for processing and retrieve results. API provides a 
base for multiple user clients: command-line tool and web-based API that can 
further be utilized in a user-friendly web interface with result visualizations. 

•� Service: Software that abstracts processing of a single NLP task. It consists of 
input and output task queues. Service distributes workload among workers that 
are attached to this service. Additional workers can be added to the service on 
the fly without interruption. 

•� Worker: Wrapper that bundles one or more NLP core technologies. Workers 
process documents from the service input job queue and put results in the 
corresponding service output queue. 

•� Core: Software that performs a single NLP task like part-of-speech tagging. 
Cores are created by NLP specialists using programming languages and 
libraries of their own choice. 

Communication between components is supported by ZeroMQ 5 distributed 
messaging library based on TCP sockets. NLP processing inputs, intermediary and final 
results are represented with a JSON document that is passed through pipeline 
components and augmented with new task results. JSON document scheme is inspired 
by KAF [1]. Processing starts with a minimal document containing text and general 
metadata like job identifier and submission time. Generally, each NLP task further adds 
a single subdocument describing results of this task and updates metadata describing 
processing of this particular tool: version, start time and errors. Next pipeline steps can 
refer to annotations from previous steps, e.g., part-of-speech tagging refers to token 
identifier from tokenization step. Used JSON document format is more human readable 
and easier to construct and parse compared to KAF making integration easier and allows 
to add custom tools not specified in KAF. 

NLP-PIPE supports synchronous and asynchronous (batch) processing where large 
amount of jobs are submitted for further processing and results are saved on a filesystem 
or in a database. Web-based API allows easy integration of NLP technologies in other 
client programming languages. 

All NLP-PIPE components are containerized using Docker that allows to setup the 
pipeline on every machine (or cluster using Docker Swarm) with Docker installed by 
defining a single configuration file containing needed services and their versions. Docker 
Hub 6 provides means of packaged module integration and distribution. 

To add a new step to the pipeline it is necessary to create a program that connects to 
ZeroMQ socket to get documents for processing and write results back. Alternately, core 
software can be left intact by creating a custom worker wrapper (using any programming 
language) that handles ZeroMQ connection and data format transformations using 

                                                             
5 http://zeromq.org/ 
6 https://hub.docker.com/ 

A. Znotiņš and E. Cı̄rule / NLP-PIPE: Latvian NLP Tool Pipeline184



standard input and output for communication with the core software. Then it is necessary 
to build a Docker image containing all the necessary software dependencies and publish 
it to Docker Hub. Additional benefit of NLP component containerization with Docker is 
that these images can also be used for other purposes (not just in NLP-PIPE) like training 
of new NLP models on prepared data using just Docker. 

 

 
Figure 1. NLP-PIPE architecture. 

3.�Latvian NLP Components 

NLP-PIPE currently provides following automatic annotations for Latvian: tokenization, 
morphological analysis, dependency parsing, named entity recognition and coreference 
resolution. Components are based on already available tools, some with improved 
models and trained on new larger datasets. 

 

 
Figure 2. Latvian NLP tool pipeline. 
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3.1.�Tokenizer 

This component provides tokenization and sentence segmentation using a fast and simple 
deterministic finite automaton that is a part of Latvian morphological tagger [2] 
implemented in Java. 

3.2.�Morphological Analysis 

This component provides a statistical morphological tagger which achieves 97.9% 
accuracy for part of speech recognition and 93.6% for the full morphological feature tag 
set that includes case, gender, number, person, etc. It is implemented in Java based on 
CoreNLP. 

3.3.�Dependency Parsing 

This component provides a continuous transition-based dependency parser based on 
LSTM using pre-trained word embeddings, learned character and morphological tag 
embeddings as features. Parser achieves 76.84% LAS (Labelled Attachment Score), 
81.24% UAS (Unlabeled Attachment Score) on Latvian Universal Dependencies test set. 
It is implemented in Python and C++ using DyNet library [4], [5]. 

 
Table 1. Dependency parsing model results. 

Model Validation Set Test Set 

LAS, % UAS, % LAS, % UAS, % 

MORPH_EMB+WORD_EMB 77.6 82.0 76.8 81.2 

MORPH_EMB 76.6 81.0 75.3 80.2 

WORD_EMB 67.5 74.2 65.2 72.5 

3.4.�Named Entity Recognition 

This component provides automatic tagging of following set of named entity categories: 
person, organization geopolitical entity, location, product, time and event. NER tagger 
is based on bidirectional LSTM neural network with additional CRF layer and utilizes 
pre-trained word embeddings, learned character and word shape embeddings as features. 
Model is trained on [3] achieving 74.01% F1-score. Tagger is implemented in Python 
using Keras framework based on [5], [6]. 

 
Table . NER model results evaluated using 5-fold cross-validation. 

Model F1, % 

LSTM+CHAR_EMB+CRF+DROPOUT 74.0 ± 0.6 

LSTM+CHAR_EMB +CRF 73.2 ± 0.5 

LSTM+CHAR_EMB 70.4 ± 0.8 

LSTM+CRF 72.6 ± 1.4 
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Table 3. NER results by category. 

Category F1, % Precision, % Recall, % Count 

GPE 79.0 79.2 78.7 449 

event 20.0 37.5 13.6 47 

location 45.1 40.5 50.9 134 

organization 78.5 73.7 84.0 615 

person 85.2 82.2 88.4 808 

product 40.0 37.5 42.9 50 

time 71.7 71.0 72.5 241 

3.5.�Coreference Resolution 

Component contains a rule based coreference resolution system that achieves 58% F1-
score [7]. It is implemented in Java. 

 

 
Figure 3. Screenshot of web-based user interface where user can input text and get results in CONLL format 

or text with marked named entities. 
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4.�Related Work 

Multiple NLP frameworks and toolkits have been created and each of them uses a 
different approach to achieve interoperability among all their components. Among the 
most notable ones are: GATE [8] (could be used to manage distributed NLP components, 
but it is a large and complex system) UIMA [9], Freeling [10] and CoreNLP7 and spaCy8 
(all are monolithic architectures that are generally limited to a single programming 
language). 
Taenga (code not available) [11] and OpeNER9 [12] are the closest ones to what NLP-
PIPE is trying to achieve. OpeNER makes it quite hard to wrap of new NLP components, 
it uses quite complex KAF (XML based) data format and scalability is achieved through 
paid Amazon Web Services10. 

5.�Conclusion and Future Work 

NLP-PIPE provides a simple and scalable NLP pipeline publicly available under 
GNU General Public License v3.0 license. Modularity and containerization with Docker 
makes it easy to setup and offers a lot of flexibility to pick and change different pipeline 
components and their versions as necessary and to add new linguistic annotators. 
Currently NLP-PIPE is focused on linguistic annotation for Latvian but it can be used in 
a multilingual setting for other languages with already available NLP components.   

NLP-PIPE includes state-of-the-art NLP components for Latvian including new 
Universal Dependency parser and Named Entity Recognizer that are trained on the 
Latvian Multilayer Corpus for NLU (in progress) dataset [3]. 

It has been proven useful for ad-hoc text analysis and larger batch tasks, e.g., person 
mention extraction from archive of photo descriptions and automatic text annotation for 
further manual selection and post-edition for new corpus creation. 
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