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Abstract. Quality estimation is an essential step in applying machine translation
systems in practice, however state-of-the-art approaches require manual post-edits
and other expensive resources. We introduce an approach to quality estimation that
uses the attention weights of a neural machine translation system and can be applied
to a translation produced by any machine translation system; a lighter version of
the approach does not even require any post-edits. Our experiments with German-
Estonian and English-Estonian translations show that its performance matches the
state-of-the-art baseline.
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1. Introduction

Over the past few years, the quality of machine translation has grown significantly [1,2].
At the same time, translation quality between different translations by the same system
can vary greatly and thus automatic quality estimation is necessary to detect unreliable
translations. One of the main drawbacks of the current state-of-the-art in quality estima-
tion [3,4] is that it requires lots of manual post-edits to train as well as computing the
input features based on additional resources like language models, n-gram frequencies
or alignment probability files.

In this work we propose a low-resource quality estimation method that does not
depend on post-edits and only uses the internal parameters of neural machine translation
(NMT) systems. We show that the described method works even if the “parameters” did
not come from the system that produced the translation or if the translation was done
by statistical machine translation system. Experimental evaluation is done on English-
Estonian and German-Estonian and the obtained results are comparable in performance
to the baseline method [3] while requiring fewer resources.

The work described in this paper is part of a collaboration project between Grata
OÜ2, a translation company, and the University of Tartu as the technical partner. All in-
domain texts come from the translation agency, and the resulting translation and quality
estimation systems are used by the client in practice.

1Corresponding Author: elizaveta.yankovskaya@ut.ee
2http://grata.ee
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2. Related Work

One of the widespread approaches for quality estimation is to apply the QuEst framework
[3]. It consists of two modules: a feature extractor and a machine learning module. The
extractor allows to get different features like a number of tokens of input and translated
sentences, a language model probability of input and translated segments, a ratio of a
number of tokens of input and translated sentences. The obtained features are used as
input in the machine learning module that trains classification and regression models and
predicts quality estimation scores.

There are two models that showed the best performance on WMT shared task on
quality estimation3 in 2017 [5]. Both models use deep learning methods to estimate the
translation’s quality.

A neural model stacked into a linear sequential model was proposed in [4,6]. The
main features of the linear model are features based on the target word and its aligned
source word and their contexts. The neural model gets as input the source and target
sentences, their word level alignments and corresponding part-of-speech tags and pro-
duces the binary output (OK/BAD) for each word that is used as an additional feature to
the linear sequential model. The result of this stacked architecture is the sequence of bi-
nary labels (OK/BAD). For sequence level quality estimation authors use the fraction of
BAD labels to compute the HTER (the normalized edit distance) [7]. Besides that, they
compute HTER by using a quality estimation model based on an automatic post-editing
model (APE) [8]. To get the final predicted HTER score, they compute the average of
two HTER scores obtained by using their stacked and APE-based models.

The second model [9] uses two-step neural architecture that called a predictor-
estimator architecture [10,11]. During the first step, the neural word prediction model
trained on parallel corpora predicts a word in the target sentence. Also, authors extract
from the first model quality estimation feature vectors that are inner parameters of the
neural model. The obtained vectors are used as inputs of a regression layer of the neural
quality estimation model within the second step of the whole model. Authors improved
the original predictor-estimator architecture [10] adding stack propagation [12] to jointly
learn a two-step model in the predictor-estimator.

Unlike the approaches [3,4,6], our method requires only metrics produced by an
NMT system. In contrast to the model of [9] that is based on the predictor-estimator
architecture our model has a simpler architecture and in case of NMT systems with the
attention mechanism requires only a regression or classification step.

3. Attention Weights for Quality Estimation

3.1. Attention Weights

Based on the encoder-decoder machine translation approach [13,14], a new architecture
with an attention mechanism was proposed that allows to align and translate simultane-
ously [15]. In the new architecture, the decoder uses all hidden states of the encoder in-
stead of the last hidden state and focuses on a particular part of the source sentence when
generating each output token during decoding. So, the output of translation systems de-

3http://www.statmt.org/wmt17/quality-estimation-task.html
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Figure 1. Attention alignment visualization of a good translation [16].

pends on the decoder’s hidden state and the attention output. The latter is a probability
distribution of the dot product of attention scores and the encoder’s hidden state at this
time step. The attention weight αi j between the input token j and the output token i is
computed as

αi j =
exp(ei j)

∑
k

exp(eik)

where ei j is an attention score shows how well hidden states of encoder and decoder
match.

3.2. Attention Weights for Quality Estimation

A visualization of the attention weights of a well translated sentence is shown in Figure
1. It can be seen that the attention weights depict the strength of connection between
input and output tokens. [17] have shown that these attention weights can be used for
confidence estimation, but only apply it to the case where the attention weights were
computed together with the translations. We expand this approach to estimate translation
quality of any translations without access to the system that produced them by perform-
ing force-decoding with an external neural machine translation (NMT) system.

We have taken the attention-based confidence metrics proposed in [17]:

• Coverage Deviation Penalty (CDP) penalizes the sum of attentions per input
token, so tokens with less or too much attention get a lower score.

CDP =−1
I ∑

j
log

(
1+(1−∑

i
α ji)

2
)
,

where I is the length of the input sentence.
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• Absentmindedness Penalty (APin and APout) computes the dispersion via the
entropy of the attention distribution of input and output tokens.

APin =−1
I ∑

j
∑

i
αi j · logαi j

APout =−1
I ∑

i
∑

j
α ji · logα ji

• Total is a sum of all metrics described above.

Total =CDP+APin +APout

In addition to the metrics listed above, we also compute the ratio between input and
output absentmindedness penalties:

APratio =
APin

APout

4. Force-decoded Attention Weights

Rikters and Fishel [17] used the attention weights produced by the the system that pro-
duced the translation.

We expand their approach by replacing decoding with computing the probability of
any translation pair under a separately trained NMT system (force-decoding) and using
the resulting attention weights to estimate the translation quality of that translation pair.
So, one might say that the attention weights produced by the same system that produced
the translation are glass-box features whereas the force-decoded attention weights are
black-box features.

As a result, we can use this method to get the attention weights and estimate the
translation quality of any translations without access to the system that produced them
and regardless of the approach or whether it had an attention mechanism.

5. Experiments and Results

The intended end-application of the quality estimation system in our work is filtering out
the worst translations, which are slow to post-edit and are faster to translate manually
from the start. We thus classify translated sentences as “acceptable” or “unacceptable”4.
By “acceptable” sentences we mean sentences in which we need to make no more than
a certain number of edits to convert them into post-edited output. Possible edits include
deletion, insertion, substitution and shifts of words. To count the number of edits, we use
denormalized HTER.
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Table 1. Example of normalized and denormalized HTER values. Notations: S – source , MT – machine
translation output, PE – post-edited output. Translation: “Kraana” translates as a hoisting machine; “kurg” – a
long-necked bird; “mulle meeldivad” – “ I like”, “konnad” – frogs, “koerad ja kassid” – “dogs and cats”

normalized
HTER

denormalized
HTER

1
S: Crane
MT: Kraana
PE: Kurg

1 1

2
S: I like dogs and cats
MT: Mulle meeldivad konnad
PE: Mulle meeldivad koerad ja kassid

0.6 3

5.1. Denormalized HTER

After the first experiments we discovered that normalized HTER5 [7] does not reflect
the required post-editing effort; as Table 1 shows we need to replace only one word in
the first translation to correct the output, whereas in the second translation we need to
make three edits. However, according to HTER values (the lower the value, the better
the sentence), the second translated sentence takes less effort to convert it to a correct
post-edited output compared to the first sentence.

To strengthen this point of view, we have computed the Pearson correlation coeffi-
cient between the time needed for post-editing and normalized/denormalized HTER. We
have taken data provided by organizers of WMT186 for German-English and English-
German language pairs. For German-English language pair we have got the correlation
0.254 for normalized HTER and 0.4 for denormalized HTER; for English-German lan-
guage pair the correlation coefficient is 0.284 for normalized HTER and 0.390 for de-
normalized HTER. All obtained coefficients show a weak correlation but the correlation
between time and denormalized HTER is stronger than between time and normalized
HTER.

To avoid the ambiguity described above, we used the denormalized HTER values,
obtained by computing HTER but not normalizing them with the sentence length.

5.2. Experimental Details

The aim of the experiments was to compare the usage of force-decoded weights to
the internal parameters of the system that produced the translation, as well as compare
attention-based quality estimation to the baseline of QuEst.

After several initial tests, we have chosen Random Forest as the classification algo-
rithm. We ran experiments with different sets of metrics as classifier’s features:

• features based on the internal/force-decoded attention weights: CDP, APin, APout ,
total, APratio;

• QuEst features: a standard set of 17 black-box features [3];
• the combination of features based on the attention weights and features based on

QuEst.

4The more usual approach of doing regression of the output score was not possible due to the lack of data
5Number of edits divided by number of tokens of post-edited output.
6http://www.statmt.org/wmt18/quality-estimation-task.html
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To evaluate the performance of the classification algorithm we use recall, precision,
F1 score and the Matthews correlation coefficient. The Matthews correlation coefficient
(MCC) takes into account true and false positives and negatives and can be used for
unbalanced data. It is computed as:

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

5.3. Data

We used technical texts written in German and English, their translation into Estonian
and their manual post-edits.

Translations were done with an NMT system based on Nematus [18]. The system
was trained on general corpora and tuned on an in-domain corpus. In all our experiments,
we used two RNN (recurrent neural network) layers of size 1024, a word vector of size
512, and adam [19] as optimizer with a learning rate of 0.0001, and a batch sizes of 32.
Post-edits were done by our industrial partner. As a result, we had 5444 sentences for
German-Estonian and 4541 sentences for English-Estonian.

For German-Estonian we used 4835 sentences for training and 609 sentences as the
test set. We set a threshold for seven edits since it results in 75% of the training set
containing “acceptable” sentences. For English-Estonian pair we had a training and test
sets 4168 and 373 sentences respectively with the acceptable threshold of six edits.

5.4. Results and Discussion

Tables 2 and 3 show the results of the experiments for German-Estonian and English-
Estonian language pairs. It can be seen that results for metrics based on the internal and
force-decoded attention weights are quite similar, which shows that in our case access to
internal parameters of the NMT system that produced the translations is not required. We
got the best results by using the combination of features. Still, values obtained by using
the attention weights’ features are only slightly worse than results obtained by using
QuEst features. It means that we can use the proposed low-resource quality estimation
method instead of the high-resource QuEst.

Table 2. Results of experiments for German-Estonian language pair: recall, precision, F1 score and the
Matthews correlation coefficient (MCC). In this table we show the results for features based on internal weights
(“Int”) and for features based on force-decoded weights (“FD”).

Recall Precision F1 MCC

Int FD Int FD Int FD Int FD

weights 0.906 0.874 0.874 0.892 0.89 0.883 0.593 0.598

QuEst 0.927 0.862 0.893 0.589

weights+
QuEst

0.908 0.888 0.880 0.894 0.894 0.891 0.611 0.617

In addition to the classification, we computed the correlation between the total con-
fidence metric and the denormalized HTER for the internal and force-decoded attention
weights. The aim is to see if the attention metrics can be used without training a classi-
fier/regression model and without post-edits for training.
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Table 3. Results of experiments for English-Estonian language pair: recall, precision, F1 score and the
Matthews correlation coefficient (MCC). In this table we show the results for features based on internal weights
(“Int”) and for features based on force-decoded weights (“FD”).

Recall Precision F1 MCC

Int FD Int FD Int FD Int FD

weights 0.760 0.858 0.901 0.767 0.824 0.810 0.659 0.556

QuEst 0.872 0.864 0.868 0.708

weights+
QuEst

0.912 0.799 0.873 0.953 0.892 0.869 0.756 0.751

For German-Estonian language pair the resulting Pearson correlation coefficient
is -0.668 for the internal weights and -0.467 for force-decoded weights; for English-
Estonian the correlation coefficient is -0.689 for the internal weights and -0.412 for force-
decoded weights. While the correlation coefficient for the internal and force-decoded
weights show a moderate correlation, internal weights produce a better result; still, an
approximate output can be obtained by using the attention weights only.

6. Conclusions

We described a method that estimates a quality of translated sentences based on the
attention weights of an NMT system. The proposed method can be used not only to
estimate the quality of sentences produced by attention NMT system but also to evaluate
the quality of translations produced by any MT systems.

We demonstrated that our method works well for classification tasks, it remains to
be tested how well it works as a feature of a regression model.

Our experimental results showed that the proposed method gives comparable results
with the baseline method without additional effort. Using our method directly without a
classifier is possible, though, in this case, force-decoded weights have decreased perfor-
mance.

Acknowledgments

This work was supported by the Estonian Research Council grant no. 1226. The collab-
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