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Abstract. This paper describes the current TTÜ speech transcription system for
Estonian speech. The system is designed to handle semi-spontaneous speech, such
as broadcast conversations, lecture recordings and interviews recorded in diverse
acoustic conditions. The system is based on the Kaldi toolkit. Multi-condition train-
ing using background noise profiles extracted automatically from untranscribed
data is used to improve the robustness of the system. Out-of-vocabulary words
are recovered using a phoneme n-gram based decoding subgraph and a FST-based
phoneme-to-grapheme model. The system achieves a word error rate of 8.1% on
a test set of broadcast conversations. The system also performs punctuation recov-
ery and speaker identification. Speaker identification models are trained using a
recently proposed weakly supervised training method.
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1. Introduction

An automatic speech recognition (ASR) system converts a speech recording to a stream
of orthographic words. Various technologies can be applied to enrich such word streams,
such as attributing speech segments to different speakers, identifying the speakers by
name, dividing the word stream into sentences and adding punctuation symbols. Rich
transcription makes ASR results more readable and valuable for human users. It also en-
hances the content for various down-stream natural language processing (NLP) applica-
tions, such as spoken document retrieval, summarization, machine translation, semantic
navigation, speech data mining, and others.

This paper describes the recent improvements to Tallinn University of Technology
(TTÜ) Estonian speech transcription system. The system is designed to handle mainly
semi-spontaneous speech from various domains, such a broadcast conversations, lecture
recordings and interviews. Previous versions of the system have been described in [1]
and [2]. One current focus of the system is better handling of data recorded “in the wild”,
such as interviews and meetings recorded in adverse real world acoustic conditions. In
addition to speech-to-text, the system also performs automatic punctuation restoration
and speaker identification. The speaker identification system can identify a wide range
of public figures by voice and is trained in a weakly supervised manner.
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Table 1. Training data for speech recognition.

(a) Acoustic model training data.

Source Amount (h)

Broadcast conversations 114.0
Broadcast news 37.2
Conference speeches, lectures 37.9
Spontaneous speech [3] 39.6
Parliament speeches 31.0
BABEL speech database [4] 7.0
Other 1.8

Total 268.5

(b) Language model training data.

Source Tokens (M)

Web 434
Newspapers 196
Magazines and journals 28
Parliament transcripts 15
Social media (blogs, comments) 9.4
Broadcast conversation transcripts 0.98
Broadcast news transcripts 0.33
Lecture and conference transcripts 0.28

Total 690

The described system is free and open source 2. It is used as the backend for our pub-
lic web-based speech transcription service 3 and by several Estonian media-monitoring
companies for transcribing radio and TV broadcasts.

2. Training data

2.1. Speech data

Speech data that is used for training the acoustic models is summarized in Table 1a.
Only the duration of the segments containing transcribed speech is shown, i.e., segments
containing music, long periods of silence or are left untranscribed is excluded.

Most of the speech data (broadcast speech, conference and lecture speeches, parlia-
ment speeches) used for training are collected in Tallinn University of Technology during
the past 10 years [5].

In addition to transcribed speech data, we make use of large amounts of untran-
scribed speech data. The data originates from real usage of our public web-based speech
transcription service. The service is used mostly for transcribing lectures, interviews,
meetings and other types of mostly semi-spontaneous speech. The user-made audio
recordings are often recorded in noisy environments, using a microphone positioned rel-
atively far from the user (e.g., a smart phone lying on the table). Therefore, this kind of
data has often significant reverberation and background noise. The data was randomly
selected from the 2017 service usage data. To eliminate very random usage data, the
recordings were picked from the recordings uploaded by about 50 most active service
users. The total number of recordings is 2122 and the total duration is 908 hours. We use
this data for automatically extracting background noise segments, which in turn are used
as in-domain training data for noise augmentation (see Section 3.1).

2.2. Text data

Text data sources used for training the language models (LMs) are listed in Table 1b, with
the number of tokens in each source after normalization and compound word splitting.

2http://github.com/alumae/kaldi-offline-transcriber
3http://bark.phon.ioc.ee/webtrans
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Most of the written language corpora are compiled at the University of Tartu [6]. In
order to have up-to-date language data, we scrape additional web data from news portals
and blogs. Finally, transcriptions of conversational broadcast data (talk shows, telephone
interviews) and conference speeches are used as a sample of spoken language.

Before using the text data for LM training, text normalization is performed. Texts are
tokenized, split into sentences and recapitalized, i.e., converted to a form where names
and abbreviations are correctly capitalized while normal words at the beginning of sen-
tences are written in lower case. Recapitalization is performed using a simple count-
based model that converts a capitalized word at the beginning of the sentence to its most
common intra-sentence form. For expanding numbers into words, a non-trivial approach
is needed as the exact textual representation of each number depends on the inflection.
However, the inflection of a number is usually not visible in orthography and is inferred
from the context by human readers. To determine the inflection of a written number, we
employ a semi-supervised machine learning approach similar to [8]: a support vector
machine classifier is first built using the numbers that are already written as words in
training texts, and the classifier is then used to determine the inflection for the rest of the
numbers. Neighboring words and their suffixes are used as features for the classifier.

As Estonian is a heavily compounding and inflective language, the lexical variety
of the language is very high. To reduce the out-of-vocabulary (OOV) rate of the LM,
compound words are decomposed into compound segments, using the word structure in-
formation assigned by a morphological analyzer [7]. Compound words are later recon-
structed from the output of the speech recognition system using a hidden-event n-gram
model [8].

3. Speech recognition system

Our speech recognition system is based on the Kaldi toolkit [9]. It incorporates many
novel techniques recently implemented in Kaldi, such as factored time-delay neural net-
work (TDNN-F) acoustic models and a neural network language model that uses words
and character-based features. In the following, we focus on the details that are different
from the standard Kaldi recipes.

The system also includes a speaker diarization module based on the LIUM SpkDi-
arization toolkit [10] and a rule-based pronunciation dictionary. They haven’t signifi-
cantly changed since 2014 and are described in detail in [1].

3.1. Acoustic modeling

Our neural network acoustic model uses the recently introduced TDNN-F architecture
[11] and is trained with lattice-free MMI criterion [12]. The hyper-parameters of the
training setup are mostly borrowed from the best-performing Kaldi Switchboard recipe,
as it uses similar amount of training data. I-vector based speaker adaptation is used.

To make the system more robust towards adverse acoustic conditions, we use heavy
data augmentation for training the neural network acoustic model. We use nine-fold data
augmentation: the original training data is three-fold speed-perturbed (using speedup
factors 0.9, 1.0 and 1.1) and volume-perturbed. A second copy of the training data is
artificially reverberated with various small and medium room impulse responses and

T. Alumäe et al. / Advanced Rich Transcription System for Estonian Speech 3



mixed with various environmental background noises from the MUSAN corpus [13].
Similarly to the clean data, this noise-augmented copy is further three-fold replicated
using noise and volume perturbation. This is based on the approach implemented in the
Kaldi recipes for multi-condition training [14].

To further adapt the acoustic models for real-world acoustic conditions, we create a
second reverberated and noisy copy of the clean training data. Instead of using various
background noises from an external corpus, we extract the non-speech sections from our
untranscribed real usage data, using a speed activity detection (SAD) system. We first
train a deep-neural network based SAD model on noise-augmented transcribed clean
speech data, and then use it to extract non-speech segments from the untranscribed noisy
speech data. Non-speech segments extracted from individual recordings are concatenated
and used as background noises for the second noise augmentation round. Details of this
method can be found in [15]. As a result, the acoustic model is trained on nine copies of
the original training data (clean, noise-augmented with external noises, noise-augmented
with in-domain noises, each with three-fold speed and volume perturbation).

3.2. Language modeling

Language model (LM) vocabulary is created by selecting the 200 000 most likely case-
sensitive compound-split units from the unigram mixture of the individual training cor-
pora, optimized on the development data. For each corpus, a 4-gram LM is built, using
interpolated modified Kneser-Ney discounting. The individual LMs are interpolated into
one by using interpolation weights optimized on development data. Finally, the LM is
heavily pruned to less than one tenth in size using entropy pruning. Even more aggres-
sively pruned LM is created for the first pass of decoding.

We also use a recurrent neural network LM (RNNLM), trained with the recent Kaldi
implementation [16]. Since there is no proper way to statically interpolate neural network
LMs, we employ the following method to create optimally balanced training data for the
neural network LM, in order to avoid biasing it towards written data when all data would
be pooled: we define a maximum number of sentences for training a RNNLM, Nrnnlm
(with Nrnnlm = 3000000 in the reported experiments) and then subsample or oversample
sentences from the individual LM training corpora so that the number of the retained
sentences from each of the corpora would be proportional to the optimal LM interpo-
lation weights that were computed earlier when creating N-gram language models. We
also define an upper limit fmax = 10 for oversampling and a smoothing factor β = 0.5 to
make the sampling factors less peaky. The final sampling factor for each LM subcorpus
is calculated as:

fi = min

(
fmax,

(
wi ∗Nrnnlm

Ni

)β
)

where wi is the optimal LM interpolation weight for subcorpus i and Ni the number of
total sentences in subcorpus i.

3.3. Recovering out-of-vocabulary words

Although we perform compound splitting and use a large vocabulary, speech still con-
tains words that are not covered by our language model vocabulary. This includes both
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Table 2. Word error rates for different types of test data, using the full system and with one of the proposed
improvements deactivated.

System Broadcast
conversations

Conference
speeches

User
recordings

Average
relative

WER incr.
Dev Test Dev Test Dev Test

Full system 11.0 8.1 14.5 12.9 29.4 22.7

6-fold data augmentation (not 9) 11.0 8.2 14.9 13.4 30.1 23.0 +1.9%
No OOV model 11.3 8.3 15.2 14.0 29.2 23.1 +3.3%
No RNNLM rescoring 11.8 9.0 15.9 14.0 31.2 24.6 +8.5%

2014 system [1] 18.0 17.9 23.7 26.3 N/A N/A +88%

proper names not seen in language model training data, as well as common nouns, verbs
and adjectives in rare inflections. In order to improve the recognition of such OOV words,
we use a special decoding graph modification recently implemented in Kaldi: the OOV
words are represented in the decoding graph using an n-gram phoneme language model,
estimated on the pronunciations of all in-vocabulary words. After decoding, the most
likely phoneme sequence corresponding to recognized OOV words can be reconstructed.
To turn the phoneme sequence into a word, we use an approach based on finite state
transducers (FSTs). We manually constructed an FST that represents Estonian letter-to-
phoneme rules, using the Pynini toolkit [17]. Most of the rules handle context-sensitive
rewrite rules for plosive phonemes, but there are also rules for deriving the Estonian
pronunciation for common foreign consonant clusters, so that a name Chris is trans-
formed to a pronunciation /kris/ and so on. The FST framework allows to easily invert
a transducer, which can be used to convert the grapheme-to-phoneme converter into a
phoneme-to-grapheme converter. However, converting phonemes to graphemes is much
more ambigious: for example, the phoneme sequence /kris/ can correspond (according
to the inverted FST) to words kris, krys, Grys, Chriz, criz and many others, without any
ranking. To disambiguate between such variants, we compose the result of the phoneme-
to-grapheme translation with another FST that represents a grapheme 5-gram model, es-
timated over all in-vocabulary words. This assigns a higher probability to those words
that contain letter sequences which occur more often in in-vocabulary words. The final
recovered word is simply the one with the highest probability.

The described implementation is available at https://github.com/alumae/et-g2p-fst.

3.4. Experimental results

We measure speech recognition word error rate (WER) in three domains: broadcast con-
versations, consisting mostly of radio talkshows, speeches of a linguistics conference
and a set of user recordings recorded “in the wild”. The first two of them are described
in detail in [1]. The third set consists about five hours of randomly selected user data
uploaded to our public web-based transcription service. The development set is about
two hours and a test set of about three hours in length.

Table 2 lists WER results of the ablation study, showing the performance of the
full system and with either of the three system components removed. It also shows the
reported WER results in [1] for the first two domains. Average relative deterioration of
the WER, compared to the full system, is given in the last column.
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Table 3. Examples of words that were recognized using the proposed OOV-recovery system. The recon-
structed words are written in bold.

Reference Without OOV recovery With OOV recovery

valdkondlikult valdkond likult valdkondlikult
sugu märkivatest sugumärki vetes sugu märkivatest
liibukad retuusid liibutav viiret uusi liibuked retoosid
hingamiseta pausid hingamispausid hingamisetabausid
tülis ja nääkluses tülis ja nõrkuses tälise nääkluses

As expected, the nine-fold data augmentation with in-domain noise (as opposed to
six-fold data augmentation) has the biggest effect in the more difficult domains (confer-
ence speeches and user recordings). It doesn’t deteriorate the results in broadcast speech
where the acoustic conditions are mostly clean.

The proposed OOV recovery approach reduces WER in most cases. Analyzing the
actual recognition hypotheses shows that this method can greatly improve the readability
of transcripts containing OOV words. Although the phoneme-based OOV word recon-
struction is not always accurate (e.g., OOV foreign names are transcribed using Estonian
pronunciation rules), it is cognitively easier to understand than the text produced by the
earlier system where OOV words are replaced by acoustically and lexically similar in-
vocabulary words. Some examples of successful and failed OOV recoveries are given in
Table 3.

4. Punctuation recovery system

To improve readability of ASR output we restore commas, periods and question marks
using a bidirectional RNN punctuation recovery model [18], with improvements de-
scribed below.

Firstly, due to inflection and compounding, the used 100000 word vocabulary pro-
vides poor coverage. As a result, many words are mapped to a shared UNK token. To pro-
duce more informative embeddings for the out-of-vocabulary words, we train a character
based RNN on the existing 100000 word embeddings to generate new embeddings on
the fly. The approach is inspired from [19], but our model is unidirectional as our exper-
iments did not show improvements with a bidirectional model, and uses gated recurrent
units [20] instead of LSTM.

Second problem is that the original version of the punctuation restoration model [18]
segments text into fixed length sequences and punctuation restoration is performed on
full sequences. The problem with this approach is that close to the end of the sequence
the number of forward context words diminishes (zero at the last word) reducing the
utility of the backwards recurrence. Sufficient forward context is important for accurate
predictions, as is evident from the significantly inferior performance of unidirectional
models [21]. We propose a simple fix — use the full sequence as input to the model, but
treat the last n words as padding and do not attempt to generate punctuation for them.

4.1. Experimental results

The experiments use the pre-trained Estonian models from [18]. The embedding genera-
tor has 256 hidden units and an input vocabulary of 73 characters plus one UNK symbol.
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Word embeddings are grouped by word length into minibatches of up to 64 items and
10% of minibatches are used for validation. The rest of the training settings are identical
to the punctuation recovery model [18]. For sequence padding we set n = 10.

On the manually transcribed reference transcripts, the proposed methods improve
the F1-score by 0.5-1.1% and slot error rate (SER) by 1.3-2.2% relative. On the ASR
output the relative improvements are 0.5-0.6% in F1-score and 0.1-0.2% in SER. Smaller
improvements on the ASR output can partially be explained by the fact that the ASR
system produces a smaller amount of unknown words (4.7% in ASR output vs. 6.3% in
manually transcribed text), making the generated embeddings less useful. Both proposed
approaches can be applied to already existing models without retraining.

5. Speaker identification system

The transcription system performs speaker identification, covering a a wide set of Esto-
nian public figures, such as politicians, state officials, scientists and artists.

Conventional speaker identification models are usually trained on data where the
speech segments corresponding to the target speakers are hand-annotated. However, the
process of hand-labelling speech data is expensive and doesn’t scale well, especially if
a large set of speakers needs to be covered. Instead, we use a method to train speaker
identification models using only the information about speakers appearing in each of
the recordings in training data, without any segment level annotation [22]. Obtaining or
creating such training data is much easier than segment-annotated data. We use 6000
recordings (originating from between 2004 to 2016) of the main evening news pro-
gramme Päevakaja of Estonian Public Broadcasting as training data. Most recordings in
the archive are accompanied with metadata that lists all speakers (both news reporters
and interviewees) speaking in that programme. We use the weakly-supervised training
method to construct models for almost 5000 unique speakers. Evaluation is performed
on 16 manually annotated recordings of the same news programme from a period not
covered by the training set.

Evaluation reveals that the method results in a 45% recall rate of speakers appear-
ing in new news programmes, using a 95% precision threshold, given reference speaker
segmentations. Table 4 lists time-weighted identification error rate (IER), precision and
recall values after oracle and automatic diarization. A detailed description of the method
and the results are given in [22].

Table 4. Time-weighted speaker identification results on manually segmented and automatically segmented
Päevakaja evaluation set.

Speakers IER Precision Recall IER Precision Recall

Oracle diarization Automatic diarization

All 28% 96% 75% 35% 93% 66%

Anchors 4% 98% 98% 14% 94% 89%

Non-anchors 78% 89% 24% 80% 90% 22%
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6. Conclusion

This paper described the current state of the TTÜ Estonian speech transcription system.
The system achieves 8.1% WER on a test set of broadcast conversations, 12.9% WER
on conference speeches and 22.7% WER on various user-made recordings “from the
wild”. The system also performs punctuation recovery and speaker identification. The
speaker identification models are created using weakly supervised training and achieve
66% time-weighted speaker recognition recall at 93% precision on a broadcast news test
set.
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