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Abstract. Multiple ontologies for units of measure have been proposed within the
Applied Ontology community, and all of these ontologies introduce an array of new
classes based on supposed distinctions between quantities, quantity kinds, and mea-
sures. Units are combined using notions of dimensional analysis that often conflate
the combination of units with algebraic operations on real numbers. In this paper
we present an alternative approach that shifts the focus to the connection between
the units of measure and the physical objects and processes that are being mea-
sured. One of the key features of this approach is that it makes minimal ontologi-
cal commitments with respect to the TUpperWare upper ontology – the only new
classes that are introduced are the classes for the units of measure. We propose cor-
rect and complete axiomatizations for combining units of measure, and the correct
axiomatization of the relationship between the units of measure and the existing
upper ontology.
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1. Introduction

Given the widespread use units of measure in scientific and engineering applications, it is
perhaps not surprising that numerous ontologies for units of measure already exist. The
first, EngMath, dates back to the dawn of applied ontology, and since then several more
ontologies have been proposed for use on the Semantic Web. Why do we need yet another
ontology for units of measure? Consider the purpose of any such ontology – measuring
physical objects and the processes that act upon such objects. This connection to physical
objects indicates that any proper treatment of units of measures requires ontologies not
only for the units of measure themselves, but also for the relationship to the physical
objects that they are measuring.

All current ontologies for units of measure that are being used in the Semantic Web
are specified in OWL, which lacks the expressiveness to axiomatize the intended seman-
tics of both the units of measure as well as the things being measured. There has been an
over-emphasis on producing some kind of taxonomy of quantities, rather than on axiom-
atizing the intended semantics of the quantities themselves. As an artefact of the repre-
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sentation in OWL, additional classes of entities are posited that are not necessary for the
specification of the intended semantics of the units of measure.

Current ontologies for units of measure are cluttered with superfluous classes of en-
tities that do not have sufficient ontological motivation, but rather seem to be artifacts
of the style of ontology design in a particular representation language. In contrast, the
ontologies introduced in this paper contain only two categories of entities – units of mea-
sure and the things being measured. All other concepts in the ontologies are represented
as relations between entities in these two categories.

FOUnt (Foundational Ontologies for Units) includes a modular ontology for each
unit of measure that includes an axiomatization addressing the following questions:

• How are the units of measure manipulated / combined?
• What is the nature of the entity being measured?
• What is the physical interpretation of the unit of measure, that is, what is the

relationship between units of measure and the entity being measured?

For the first question, we introduce new ontologies that explicitly axiomatize how units
can be added, subtracted, and multiplied. With the exception of EngMath [3], ontolo-
gies for units of measure that extend upper ontologies do not contain explicit axioms for
specifying how units may be combined and manipulated. For the second, we utilize ex-
isting generic ontologies for time, mereotopology (space), location, and constitution to
axiomatize concepts related to abstract and physical objects. All generic ontologies used
in this paper are modules with the TUpperWare upper ontology [6]. One can view this
work as being similar to the alignment of units of measure ontologies with an upper on-
tology [15]; however, it is more accurate that we begin with an upper ontology and then
create an ontology for units of measure that is explicitly based upon the upper ontology.

We do not give an account of all units of measure in this paper, but rather we focus
on the basic units of measure for duration (second), mass (kilogram), and spatial entities
(length, area, volume), together with the derived units for density and volume.

2. Duration

Our approach to an ontology for units of duration has been motivated by considering
the treatment of duration ontologies in earlier work within the knowledge representation
community. In this section, we review this work, and see how it actually gives rise to a
set of ontologies that can ultimately be used to serve as the axiomatization of the SI unit
s of seconds.

The notion of duration presumes an underlying ontology of time. Ontologies of time
have been thoroughly studied in the literature, both from a model-theoretic [21] and
axiomatic [9] perspective. [5] uses the ontology whose models are a linear ordering over
timepoints1. It is important to note that his axiomatization does not impose any additional
assumptions about density or discreteness, since any axiomatization of duration should
be independent of such conditions.

Following [9], we use the class timeduration for the class of entities that are the val-
ues for duration. The fundamental insight of [5] is that timedurations do not form a field,

1The axioms for Tlinear time in the Common Logic Interchange Format (CLIF) can be found at http://
colore.oor.net/timepoints/linear_time.clif
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such as the reals or rationals, as many approaches ([10,17]) have assumed. Although we
do want to be able to add durations together, the product of two timedurations is not a
timeduration; thus, multiplication is not a function on the set of timedurations, and the
underlying structure for timedurations cannot be a field. Nevertheless, we do want to be
able to specify scalar multiples of timedurations (e.g. one task takes twice as long as
another). If such scalars are elements of a field, then the intended models for timedura-
tions must be vector spaces. We also want to define an ordering over timedurations (e.g.
a week is longer than a day but shorter than a month). This leads to the claim that class
of intended structures for timedurations is that of ordered vector spaces.

Timedurations alone are not sufficient for a duration ontology; we also need a func-
tion that assigns timedurations to time intervals or pairs of timepoints. Since earlier ap-
proaches have mistakenly assumed that timedurations formed a field, they have treated
this function as metric [17]. Given that timedurations actually form a vector space, the
duration function is no longer a metric, and we must find a suitable class of vector-valued
functions to adequately capture the intended models. In particular, the mapping δ from
T×T (i.e. pairs of timepoints) to the vector space D, generalizes the notion of vector
field from differential topology to the notion of a product order vector field, in which we
associate a unique vector to each pair of elements in a linear ordering.

The axioms of Tduration can be divided into two subtheories – those that axiomatize
timedurations as elements of ordered vector spaces, and those that capture the formaliza-
tion of the duration function as a product order vector field.

Tduration does not mention specific constants that denote particular timedurations
such as second, hour, day, or year. The axioms for such constants are not contained in
the Duration Ontology, but rather are specified in a domain theory that extends Tduration,
just as linear equations are domain theories for general vector spaces. Thus, equations
such as hour = mult(60,second), day = mult(24,hour) define specific timedurations
as the linear combinations of other timedurations. This allows for different time-keeping
systems to share the same Duration Ontology.

Finally, there is the question of which entities have duration. Following the PSL On-
tology [16], every object and every activity occurrence is associated with two timepoints,
namely, the begino f and endo f the object or occurrence. Thus, we can associate a time-
duration with each object and each activity occurrence, and it is only the entities in these
two classes that have a duration.

We can see from this discussion that six ontologies are required to fully axiomatize
the notion of duration in the context of the “second” as an SI unit of measure. Ttimeduration
serves as a quantity ontology that axiomatizes how timedurations can be combined. The
time ontology Tlinear time is a generic object ontology that axiomatizes the underlying
structure of timepoints, while Tduration plays of role of a measure ontology that formalizes
the relationship between timepoints and timedurations. Tpslcore axiomatizes the classes
of entities that have duration, and thus is the physical object ontology for duration, while
Tpsl duration contains the explicit definition of the relation between an object or activity
occurrence and its duration.

3. Methodology

Following the approach taken with the axiomatization of duration, FOUnt is a set of on-
tologies, in which each unit of measure has its own modular ontology that includes ax-
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ioms for specifying how the unit is manipulated and combined, as well as an axiomati-
zation of the unit’s physical interpretation (the nature of the thing being measured). For
each unit of measure, we therefore introduce a set of six ontologies:

1. The quantity ontologies axiomatize how units of measure can be combined and
how they are related to other units of measure.

2. The unit of measure ontologies axiomatize specific units of measure.
3. The generic object ontologies axiomatize the generic ontologies that underly the

quantity ontologies.
4. The measure ontologies introduce functions that map generic objects to their

corresponding units of measure.
5. The physical object ontologies axiomatize the different kinds of physical objects

that are measured.
6. The physical measure ontologies axiomatize the relationship between the mea-

sure ontologies and the physical object ontologies, so that one can speak about
the units of measure for a class of physical objects.

Thus, notions such as quantity kinds, units, and dimensions are classified at the
metalevel (as sets of axioms) rather than within a taxonomy in the ontology. The focus
is on physical objects and the units that are used to measure them, rather than a focus on
the units of measure themselves.

The next two sections apply this approach to units of mass and spatial measure-
ment units. For mass, we detail the six ontologies, whereas for spatial units we primarily
discuss suitable object ontologies that spatial measurements can be based upon.

4. Mass

In this section, we present the six ontologies that axiomatize this unit and the intended
semantics the SI unit for mass is the kilogram (kg). We introduce the class amount for
the quantity related to mass and for which the kilogram is an instance. As we saw with
timedurations, amounts can be added or multiplied by an element of a field to get another
amount, but multiplying amounts together does not give us an amount of matter; the the-
ory Tamount

2 is therefore synonymous with the theory ordered vector spaces3. Finally, we
present the two ontologies that axiomatize the physical interpretation – material objects
are constituted by matter, and the mass of of a material object is equal to the mass of the
matter that constitutes the object.

4.1. The Mass of Chunks of Matter

The underlying generic object ontology to represent the entities that have mass is Tmatter
4,

which axiomatizes a mereology for chunks of matter [19]. Approaches based on classical
mereology [20] use a single parthood relation to specify parthood relationships, an ap-
proach known as mereological monism. This is not a viable approach if we are to support
ontologies for units of measure related to notions as diverse as mass, length, area, and

2http://colore.oor.net/mass/amount.clif
3http://colore.oor.net/ordered_algebra/ordered_vectorspace.clif
4http://colore.oor.net/matter/matter.clif
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volume (each of which will have a distinct mereology). We therefore adopt mereological
pluralism [19], which is based on the idea that there are indeed multiple distinct parthood
relations for different classes of entities.

The axioms in Tmatter are tightly constrained by the requirements on the measure
ontology Tmass

5. We might at first think that the sum of two chunks of matter corresponds
to adding the amounts that are the masses of the two chunks. However, if the two chunks
overlap, then the mass of their sum should intuitively be less than adding the masses of
the chunks. On the other hand, if the chunks are disjoint, then we should have equality of
the sum of the masses, which is equivalent to saying that removing a chunk from some
matter decreases the mass of the matter by the amount of the mass of the chunk that is
removed. This requires that any chunkOf matter has a unique complement (correspond-
ing to the chunkOf matter that can be removed), and hence the difference of two chunks
can be defined (via the chunk di f f function). As a result, the mereology for chunks of
matter must correspond to a boolean lattice.

4.1.1. Axiomatization of Mass

The measure ontology Tmass for amounts of matter introduces the function mass (see
Figure 1) that maps chunks of matter to amounts. All chunks of matter have nonzero
mass. The mass of some matter is the sum of the mass of a chunk of the matter and the
mass of its difference. The last axiom of Tmass states that any chunk of matter contains
two smaller chunks of equal mass. A consequence of this axiom is that all atoms in the
mereology have equal mass:

(∀x,y,z) proper chunk(y,x)∧ proper chunk(z,x)∧
atomic chunk(y)∧atomic chunk(z)⊃ mass(y) = mass(z)

and in finite mereologies these sentences are logically equivalent.

(∀x)mat(x)≡ amount(mass(x)) (1)

(∀x)mat(x)⊃ lesser(zero,mass(x)) (2)

(∀x,y,z) chunk di f f (x,y,z)⊃ (mass(x) = add mass(mass(y),mass(z))) (3)

(∀x,y) proper chunk(y,x)⊃ (∃z) proper chunk(z,x)∧ (y �= z)∧ (mass(y) = mass(z)) (4)

Figure 1. Tmass: Axioms for the assignment of mass to chunks of matter.

The physical object ontology for units of mass requires an ontology Tconstitution
6 for

constitution that axiomatizes the relationship between matter and physical objects. The
physical mass for an object is therefore equal to the mass of the matter that constitutes
the object:

(∀x,m) physical mass(x,mass(m))≡ constitutes(m,x)

5http://colore.oor.net/mass/mass.clif
6http://colore.oor.net/constitution/constitution.clif
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4.2. Characterization of Mod(Tmass)

The mass function is a vector-valued function that maps chunks of matter to a unique
amount; to understand the models of Tmass, we therefore need to introduce a new class of
mathematical structures.

Definition 1 〈P,I,V〉 is a lattice vector field iff 7

1. P= 〈P,≤〉 such that P ∈Mboolean lattice ordering;
2. V= 〈V,0V,1V,+, ·,≺〉 such that V ∈Mordered vectorspace;
3. I= 〈P,V,I〉 such that I ∈Mmapping bipartite;
4. NI(x)+NI(y) = NI(in f (x,y))+NI(sup(x,y)), such that NI( /0) = 0;
5. LP(x)⊆ NI(NI(LP(x))), for each x ∈ P.

Mlattice vector f ield denotes the class of lattice vector fields.

In a lattice vector field, we associate a unique vector in an ordered vector space
(corresponding to a model of Tamount ) to each element of a lattice (corresponding to the
mereology of matter); the incidence structure represents this mapping. Conditions (4)
and (5) constrain additional properties of this mapping, and correspond to Axioms (3)
and (4) of Tmass, respectively. In what sense does Mlattice vector f ield capture the essential
intuitions about the mass of chunks of matter?

Theorem 1 If L= 〈P,I,V〉 is a lattice vector field, then Aut(L)∼= Aut(P).

Automorphisms of the mereology induce automorphisms of the lattice vector field
(that is, mappings that preserve chunkOf preserve mass, so that symmetries of the struc-
ture for generic objects are equivalent to symmetries of the structure that maps generic
objects to the unit of measure). If we remove any conditions in the definition of lattice
vector fields (and hence any axioms in Tmass, this relationship fails.

The next theorem shows that Tmass axiomatizes the class of lattice vector fields.

Theorem 2 There exists a bijection ϕ : Mlattice vector f ield → Mod(Tmass) such that
ϕ(P) ∈Mboolean lattice ordering, ϕ(V) ∈Mordered vectorspace, and for any x ∈ P,
mass(x) = y iff y ∈ NI(x)∩V .

7Mordered vectorspace is the class of ordered vector spaces and Mmapping bipartite is the class of bipartite inci-
dence structures that axiomatize functions between two disjoint sets 8. We also need the following notation:
Suppose P ∈Mpartial ordering such that P= 〈V,≤〉.

The lower set for x in P, denoted by LP(x), is

LP(x) = {y : y ≤ x} LP(X) =
⋃

x∈X

L(x)

Suppose I ∈Mmapping bipartite, such that I= 〈P,L,I〉.
The neighbourhood of x in I, denoted by NI(x), is

NI(x) = {y : (x,y) ∈ I} NI(X) =
⋃

x∈X

NI(x)
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5. Spatial Units of Measure

This section extends the general approach to spatial units of measure. Unlike duration or
mass, multiple units for spatial measures exist: length, area, and volume, whose applica-
tion depend on the spatial dimensionality of an object. The use of the term “dimension”
is ambiguous. While many ontologies for units of measure emphasize dimensional anal-
ysis, wherein the term “dimension” is used to indirectly characterize which quantities
are of the same kind (and hence are comparable). On the other hand, spatial ontologies
represent entities of different dimension in a topological sense.

Although units for spatial measures are derived from the base SI unit metre (m) for
length, length is assigned to 1D regions (i.e., linear features), while the units squareme-
tre (m2) and cubicmetre (m3) are used for area and volume of 2D and 3D regions, re-
spectively. Thus, spatial units of measurement are dimension-dependent in the topolog-
ical sense. We next discuss the spatial ontologies that accommodate entities of multiple
dimensions and thus can be used in our approach to units of measure. We also outline
how to extend with ontologies for spatial units of measures. Again, we apply a pluralist
approach that distinguishes the mereotopology of spatial entities (e.g., points, curves,
2D regions and voluminal regions) described in Sec. 5.1 with associated spatial units of
measure (Sec. 5.2) and the mereotopology of physical shapes (e.g., edges, surfaces, and
boxes) described in Sec. 5.3. They are linked via the multidimensional occupy ontology
in Sec. 5.4.

5.1. Multidimensional Mereotopology

The underlying generic object ontology for space and spatial regions is mereotopology,
which captures the topological (i.e., contact) and mereological (i.e., parthood) relations
between spatial regions. Only select few mereotopologies accommodate entities of multi-
ple dimensions, we extend here the theory CODI�9 from the CODI family [8]. It is based
on two primitive notions: relative dimension and spatial containment. By restricting the
relative dimension to a linear discrete bounded order, definitions for discrete classes of
objects of specific dimensions can be added: points, curves, areal regions, and voluminal
regions [7]10. Spatial containment is the only primitive spatial relation. In its point-set
interpretation, we say x is contained in y, i.e. Cont(x,y), if the set of points that x covers
are a subset of the points that y covers. A region can contain not only (smaller) regions
of the same dimension (equidimensional parthood), but also lower-dimensional entities.
E.g., a 2D areal region can contain another 2D region, a linear region (e.g., a line or
curve), or a point. A single axioms governs the relationship between containment and
relative dimension: if y contains x, x must be of equal or lower dimension than y.

In CODI�, lower-dimensional spatial entities can exist not only as boundaries of
higher-dimensional entities but also independently thereof. Moreover, while a higher-
dimensional entity can contain infinitely many lower-dimensional entities (e.g., a line
can contain infinitely many points), it is never defined as the sum of its contained lower-
dimensional entities. With intersection, difference, and sum operations, the ontology de-
fines a mereology (with a zero region of no particular dimension) over all entities of each
dimension. The ontology does not require that atoms exist, but can be easily extended in

9http://colore.oor.net/multidim_mereotopology_codi/codi_updown.clif
10http://colore.oor.net/multidim_mereotopology_codi/codi_updown_3d.clif
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that respect to the atomistic version CODIat
� wherein the predicate Min(x) picks out all

atoms.

5.2. Length, Area, and Volume

The quantity ontologies for spatial units – m (spatial length11), m2 (spatial area12), and
m3 (spatial volume13) – have axiomatizations that are synonymous with ordered vector
spaces, just like the quantity ontologies for time durations and mass. It is important to
note that FOUnt does not treat m2 and m3 as derived units – in FOUnt they are treated as
basic with respect to their dimension. We do not derive area and volume from length –
the mereologies for entities of different dimension are all distinct, and hence their units
of measure are all distinct. In particular, it is not the case that multiplying metre units is
ontologically justified, since m2 is not a spatial length.

The measure ontologies for spatial units axiomatize the mapping from regions of dif-
ferent dimensions in the mereotopology to spatial length14, area15, and volume16. These
measure ontologies are synonymous with Tmass, which we introduced earlier in the paper.

5.3. The Multidimensional Object Mereotopology

The Multidimensional Object Mereotopology is a qualitative representation of physi-
cal shapes and the spatial relationships between them. It extends the Shape Ontology
[4], which is based on the sub-theory about incidence and betweenness relations from
Hilbert’s axiomatic theory of geometry. In the Shape Ontology, the incident predicate
captures the incidence relation between four disjoint categories of entities: phy points,
edges, surfaces, and boxes, which correspond to zero-, one-, two-, and three-dimensional
objects, respectively. In the Multidimensional Object Mereotopology, each of these cat-
egories has its own mereotopological theory, with the spatial relationships between enti-
ties within a category forming a Ground Mereotopology (MT) [2]. The four mereotopo-
logical theories are independent of one another.

5.4. Multidimensional Occupy Ontology

The Multidimensional Occupy Ontology17 relates the shape entities (i.e., phy points,
edges, surfaces, and boxes) from the Multidimensional Object Mereotopology to the
spatial regions from CODI� they occupy. This results in the four modules Tpoint occupy,
Tedge occupy, Tsurface occupy, Tbox occupy, where each module axiomatizes a mapping of the
mereotopology of all shape entities with a specific dimension to the mereotopology of
regions in abstract space. This is exemplified in Figure 2 for the axioms of Tbox occupy.
The other three theories are synonymous with Tbox occupy.

Multidimensional Occupy contains axioms that prescribes that incidence between
an element x and an upper-dimensional element y requires the region occupied by x to

11http://colore.oor.net/size/spatial_length.clif
12http://colore.oor.net/size/spatial_area.clif
13http://colore.oor.net/size/spatial_volume.clif
14http://colore.oor.net/size/length.clif
15http://colore.oor.net/size/area.clif
16http://colore.oor.net/size/volume.clif
17http://colore.oor.net/multidim_occupy/multidim_occupy_root.clif
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be contained in the region occupied by y. For example, edges and the surfaces they are
incident with must satisfy the axiom:

(∀x,y) incident(x,y)∧ edge occupies(x,r1)∧ sur f ace occupies(y,r2)⊃ Cont(r1,r2).

(∀x,y)box occupies(x,y)⊃ box(x)∧VoluminousRegion(y)

(∀x,y,z)box occupies(x,y)∧box occupies(x,z)⊃ (y = z)

(∀x)box(x)⊃ (∃y)box occupies(x,y)

(∀x,y,r1,r2)box part(x,y)∧box occupies(x,r1)∧box occupies(y,r2)⊃ P(r1,r2)

(∀x,y,r1,r2)box C(x,y)∧box occupies(x,r1)∧box occupies(y,r2)⊃C(r1,r2)

Figure 2. Tbox occupy: Axioms for mappings from three-dimensional physical objects (i.e., boxes) into spatial
regions.

The physical object ontology for spatial units further requires an ontology Tbounds
18

that axiomatizes the relationship between shapes and the physical objects that are
bounded by their shapes; this theory is synonymous with the axiomatization of the rela-
tionship between matter and objects in Tconstitution.

6. Derived Units

For derived units, we need to provide two different sets of axioms. The first axioma-
tizes the combinations of the derived units, while the second axiomatizes the relation-
ship between the derived unit and the associated basic units. Once again, the illusion
of multiplying real numbers obscures the true nature of the operation being performed.
The dimensional analysis that is so prominent in existing ontologies for units of measure
ignores the ontological distinctions that underly both the quantities and the objects being
measured. Dimensional analysis as a technique for using the rules of algebra to convert
among different units also ignores the physical interpretations of the relevant basic units.
In this section, we consider two derived units – density (which is based on the relation-
ship between the volume and mass of a physical object) and velocity (which is derived
from the relationship between location and duration). We specify new ontologies for cap-
turing the relationship between the different units, and show how new axiomatizations
are needed to adequately represent how these units are combined.

6.1. Density

The SI unit for density is kg ·m−3, indicating that density captures the relationship be-
tween mass and volume. Density is typically thought of as dividing the amount of mass
(kg) by the volume quantity (m3); however, we have already seen that amounts of mass
and volume quantities are both represented by theories that are synonymous with ordered
vector spaces, so the notion of division is not appropriate. Furthermore, density quantities

18http://colore.oor.net/shape/bounds.clif

M. Grüninger et al. / Foundational Ontologies for Units of Measure 219

http://colore.oor.net/shape/bounds.clif


themselves also need to be represented by a theory synonymous with an ordered vector
space – we can add densities, multiply them by a scalar (one material is twice as dense
as another), but multiplying densities does not give another density value. We therefore
need to represent density as a relationship between three different ordered vector spaces
– the vector space V of volumes, the vector space M of masses and a vector space of
densities.

A key insight is to reconsider the understanding of density as a mapping rather than
as some kind of quotient of other quantities. Each value of a density quantity associates
a unique volume with a given amount; that is, each value of density maps the set of
amounts to the set of volumes. For example, given a density of 2 · kgm−3, an amount of
4 · kg corresponds to a volume of 2 ·m3. Furthermore, this mapping is a bijection, since
each value of density also maps the set of volumes to the set of amounts (e.g. given a
density of 2 ·kgm−3, a mass amount of 4 ·kg corresponds to a volume of 2 ·m3). Since we
are dealing with vector spaces, each mapping μ : V→M is actually a linear mapping, in
particular, a vector space isomorphism. It is well known that the set Iso(V,M) of vector
space isomorphisms between V and M is itself a vector space. On the other hand, we
have seen that each density value corresponds to a unique mapping, so the vector space
D for densities must itself be isomorphic to Iso(V,M).

Definition 2 〈V,M, Iso(V,M)〉 is a linear bijection space iff V,M, and Iso(V,M) are
ordered vector spaces. The class of linear bijection spaces is denoted by Mlinear bi jection

To axiomatize this class of structures, the quantity ontology Tdensity
19 introduces a

new class density for density values and a function dmv that associates a unique vol-
ume with a given amount (i.e. instead of computing density as the ratio of amount and
volume). The two vector spaces in a linear bijection space correspond to the models of
Tspatial volume and Tamount , while the function dmu(v,m) represents density as the linear
bijective mapping between spatial volumes and amounts.

Theorem 3 There exists a bijection ϕ : Mlinear bi jection → Mod(Tdensity) such that
ϕ(V) ∈ Mod(Tspatial volume), ϕ(M) ∈ Mod(Tamount); and for each μ ∈ Iso(V,M),
ϕ(μ) = dmu(v,m) iff μ(v) = m.

The physical object ontology Tphysical density
20 for density combines the measure on-

tologies for matter and spatial volumes21:

(∀x,m,r) physical density(dmv(mass(m),volume(r)))≡
(constitutes(m,x)∧occupies(m,r)∧VoluminousRegion(r)) (5)

In other words, the physical density of an object is the density that corresponds to
the mass of the matter that constitutes the object and the volume of the region occupied
by that matter.

19http://colore.oor.net/density/density.clif
20http://colore.oor.net/density/definitions/physical_density.clif
21 [13] claims that when density is ascribed the dimension ML−3, the context makes it clear that M and

L−3 are properties of one and the same thing. However, it is essential that any adequate ontology explicitly
axiomatize this relationship
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6.2. Velocity

The SI unit for velocity is m · s−1, indicating that velocity captures the relationship be-
tween length and duration. As we saw with density and its relationship to volume and
mass, velocity should be represented as a mapping rather than as some kind of quotient
of the quantities for length and duration. Each value of a velocity quantity associates a
unique length with a given timeduration, that is, each value of velocity maps the set of
spatial lengths to the set of timedurations. Since the combination of both spatial lengths
and timedurations are synonymous with ordered vector spaces, the set of linear map-
pings between these two vector spaces also forms a vector space. The theory Tvelocity

22

therefore also axiomatizes the class of linear bijection spaces Mlinear bi jection. The func-
tion vld is the operation that correctly specifies the relationship between spatial length
and duration – using the ratio between real numbers for length and duration is ontologi-
cally flawed because the relationship holds among entities in three disjoint classes of the
foundational ontology.

6.3. Velocity as a Vector Quantity

Unlike other units that have been considered so far in this paper, velocity is a vector
quantity, since the physical interpretation of velocity includes both magnitude and direc-
tion. We therefore need additional axioms for the combination of velocities that are quite
different than the ones we have used for the other units presented earlier in the paper.
When we initially considered how to combine amounts of matter, we noticed amounts
can be added together and multiplied by an element of a field. The axiomatization of
the addition operation is synonymous with that of abelian groups. However, if velocity
is considered to have both a magnitude and a direction, then such an approach is insuf-
ficient; instead, the addition operation must itself be that of a vector space rather than
an abelian group. The combination of velocity units is therefore not axiomatized by a
vector space, but must be some other class of mathematical structures. Since we want
the units themselves to be vectors, the structures we need can be considered as a map-
ping that relates the vector space of the vector quantities and the vector space of velocity
units [14].

Definition 3 A bilinear map is a pair W,V of vector spaces, together with a mapping
β : W×V→ V such that

1. β (x+y,v) = β (x,v)+β (y,v);
2. β (x,u+v) = β (x,u)+β (x,v);
3. β (a ·x,v) = a ·β (x,v);
4. βx,(a ·v) = a ·β (x,v).

Mbilinear denotes the class of bilinear maps.

The quantity ontology Tvelocity vector
23 introduces the function dmv to represent the

bilinear mapping and the combination of velocities as vector quantities. The next theorem
shows that Tvelocity vector axiomatizes the class of bilinear maps.

22http://colore.oor.net/velocity/velocity.clif
23http://colore.oor.net/velocity/velocity_vector.clif
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Theorem 4 There exists a bijection ϕ : Mbilinear → Mod(Tvelocity vector) such that
ϕ(W) ∈ Mod(Tvectorspace), ϕ(V) ∈ Mod(Tvelocity), and for any x ∈ P,
velq(x,y) = z iff z ∈ β (x,y).

Since the combination of both spatial lengths and timedurations are synonymous
with ordered vector spaces, the set of linear mappings between these two vector spaces
(which represents the relationship between velocity, duration, and length) also forms a
vector space. However, we have just seen above that as a vector quantity, velocity units
form a bilinear map rather than a vector space – how can we reconcile these two view-
points? Velocity is considered to be a vector quantity because it has both magnitude and
direction, and this is reflected in Tvelocity vector. What makes an entity a vector quantity is
nothing intrinsic to the entity itself, but rather the operations that act upon it and the ax-
ioms that constrain these operations 24. The axioms that capture the relationship between
velocity, length, and duration treat velocity as a scalar quantity, since with these axioms
velocity must form a vector space. In this sense, Tvelocity is an axiomatization of velocity
as speed, which does not involve a notion of direction.

6.4. Velocity and Motion Ontologies

Although m · s−1 is commonly considered as a unit for measuring speed and velocity,
it has other physical interpretations. For example, m · s−1 can be used in measuring the
rate of change in the length of an object. In fact the rate of any one-dimensional spatial
change can be measured by m · s−1. From the TUpperWare perspective, this is equivalent
to say that m · s−1 is a unit for the rate of any change in the region that is occupied by an
edge (see Section 5.4). Axiomatizing the physical interpretations of m ·s−1, therefore, re-
quires a motion ontology in which the relation edge occupies becomes a fluent, and that
includes a complete classification of all possible ways that this fluent can change. Part
of the future work is to develop such an ontology based on the methodology presented
in [1].

7. Existing Units of Measure Ontologies

QUDT [11] and OM [18] are two ontologies for units of measure that are widely used on
the Semantic Web. These existing ontologies suffer from several drawbacks. Since they
are specified in OWL, their axiomatization is too weak to capture their intended models,
and there has been no effort to specify the relationships to existing upper ontologies. In
fact, no semantic requirements are ever presented and hence no rigorous evaluation of the
correctness and completeness of these ontologies is possible. Overall, there is a focus on
conversion between systems of units rather than on what is being measured. This leads
to an over-reliance on real numbers and algebraic manipulation related to dimensionality
that masks the ontological distinctions that are required for the intended semantics of the
units.

The original ontology for units of measure (with full first-order axiomatization) is
EngMath [3], and is the closest in approach to FOUnt. EngMath reifies dimensions,
which are defined to be properties (such as mass, length, and velocity) associated with

24 [12] recognizes this distinction, but does not provide any axiomatization.
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physical quantities. FOUnt does not reify dimensions; instead, dimensions are associated
with sets of ontologies related to the particular unit of measure. Thus, length is consid-
ered to be a dimension, but this corresponds to the set of ontologies in FOUnt rather than
a new class of thing. Similarly, FOUnt does not reify physical quantities, although spe-
cific units such as metre and inch are instances of the class corresponding to the physical
quantities (e.g. spatial length). There are also a few problems with the axiomatization of
EngMath. First, units of measure do not form abelian groups with respect to multiplica-
tion. Physical dimensions are not composed from other dimensions using multiplication
– each unit is axiomatized by its own set of ontologies, and these have nothing to do with
the operation of multiplication. Second, although EngMath recognizes the distinction
between scalar and vector quantities, this distinction is not reflected in the axioms.

All existing approaches lack axiomatizations for what we refer to as the Measure
Ontologies that provide the physical interpretation of the units, although they often refer
to the need for such axioms in their examples. In approaches that do axiomatize what we
refer to as the Quantity Ontologies, their axiomatizations are incorrect – the combination
of units is not preserved under multiplication.

Existing ontologies for units of measure are therefore not only incomplete (lacking
axioms for physical interpretations of the units), but their axiomatizations contain funda-
mental ontological errors. The primary source of these errors is the treatment of so-called
dimensional analysis. Units such as seconds, metres, and kilograms cannot be multiplied
together, and algebraic operations cannot be used to represent the relationships between
derived and basic units.

8. FOUnt: The Programme

FOUnt is the primary deliverable of a programme for designing ontologies for units of
measure based on the TUpperWare foundational ontology. For each unit of measure,
we introduce a set of ontologies that not only axiomatize how units of measure can be
combined and how they are related to other units of measure, but that also axiomatize the
relationship between the measure ontologies and the physical object ontologies, so that
one can speak about the units of measure for a class of physical objects.

FOUnt imposes minimal ontological commitments with respect to TUpperWare –
the only new classes that are introduced are the classes for the units of measure them-
selves. The ontologies provide a correct and complete axiomatization for combining units
of measure, as well as a correct axiomatization of the relationship between the units of
measure and the TUpperWare upper ontology.

This paper has presented the ontologies for units for duration, mass, spatial units,
density, and velocity. Future work will explore the remaining SI units, beginning with
the base units for temperature, electric current, and luminosity, and continuing through
the SI derived units for acceleration, force, work, and power. The ultimate objective is a
complete set of ontologies for all SI units. Future work will also design additional on-
tologies to formalize the physical interpretations of the units of measure. An example
is a treatment of distances that relate points, but lead to a much more complex interac-
tion between lengths and distances of endpoints. Other extensions will focus on specific
application domains for units; for example, what is meant by “5 mm of rain”?
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[19] Ru, Y., Grüninger, M.: Parts Unknown: Mereologies for Solid Physical Objects. In: Proceedings of the

Joint Ontology Workshops 2017 Episode 3: The Tyrolean Autumn of Ontology, Bozen-Bolzano, Italy,
September 21-23, 2017. (2017)

[20] Simons, P.: Parts: A Study in Ontology. Oxford University Press (1987)
[21] van Benthem, J.: The Logic of Time: A Model-Theoretic Investigation into the Varieties of Temporal

Ontology and Temporal Discourse. Springer (1991)

M. Grüninger et al. / Foundational Ontologies for Units of Measure224

http://www.qudt.org/

