
Informative Armstrong RDF Datasets for
n-Ary Relations

Henriette HARMSE a, Katarina BRITZ b and Aurona GERBER a

a CSIR CAIR, Department of Informatics, University of Pretoria, Pretoria, South Africa
b CSIR CAIR, Department of Information Science, Stellenbosch University, South

Africa

Abstract. The W3C standardized Semantic Web languages enable users to capture
data without a schema in a manner which is intuitive to them. The challenge is that,
for the data to be useful, it should be possible to query the data and to query it
efficiently, which necessitates a schema. Understanding the structure of data is thus
important to both users and storage implementers: The structure of the data gives
insight to users in how to query the data while storage implementers can use the
structure to optimize queries. In this paper we propose that data mining routines
be used to infer candidate n-ary relations with related uniqueness- and null-free
constraints, which can be used to construct an informative Armstrong RDF dataset.
The benefit of an informative Armstrong RDF dataset is that it provides example
data based on the original data which is a fraction of the size of the original data,
while capturing the constraints of the original data faithfully. A case study on a
DBPedia person dataset showed that the associated informative Armstrong RDF
dataset contained 0.00003% of the statements of the original DBPedia dataset.

Keywords. informative Armstrong RDF dataset, informative Armstrong ABox,
Semantic Web, data mining, example data, uniqueness constraint, n-ary relation,
DBPedia

1. Introduction

In the context of the Semantic Web, applications often enable capturing of data in the
absence of a schema or with limited schema information available. This is referred to as
the data-first approach as opposed to the schema-first approach found in relational data
theory. The benefit of this approach is that it allows users the freedom to capture infor-
mation in a way that is intuitive to them. The challenge is however that, for data to be
usable, it should be possible to query the data and to query it efficiently. Inferring struc-
ture is therefore useful to users since it provides guidance on how to construct queries.
Moreover, understanding the structure of data is helpful to storage implementers because
it gives insight into how to efficiently query the data [10].

The chosen data model of the Semantic Web is RDF, which expresses facts regard-
ing a world in triples of the form ⟨s, p, o⟩, where s is the subject, p the predicate and o
the object [5]. OWL 2 gives meaning to RDF data through a model-theoretic semantics,
which is based on Description Logics (DLs). Description logics are syntactic variants of
fragments of first-order logic that are specifically designed for the conceptual representa-

Formal Ontology in Information Systems
S. Borgo et al. (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-910-2-187

187



tion of an application domain in terms of concepts and relationships between concepts. A
key design goal for DLs is to ensure that the core reasoning procedures are decidable. A
DL ontology O consists of a TBox T and an ABox A, written as O = (T ,A). The TBox
uses axioms to define concepts and relationships between concepts and the ABox uses
assertions to assert knowledge regarding the domain of interest [6]. To enable querying
of RDF data, the SPARQL Protocol and RDF Query Language (SPARQL) is defined as
part of the W3C Semantic Web standards [5].

Our objective in this paper is to present algorithms for extracting an example RDF
dataset from an original RDF dataset that is a small subset of the original RDF dataset.
This subset of the original RDF dataset is such that for a particular n-ary relation it satis-
fies all uniqueness- and null-free constraints of the original RDF dataset, while violating
all uniqueness- and null-free constraints that do not hold for the particular n-ary relation
in the original RDF dataset. To illustrate the potential usefulness of our method we apply
it to the person RDF dataset of DBPedia [1].

Intuitively, a uniqueness constraint on an n-ary relation is a subset of the n compo-
nents of the relation stating that no two different elements of the relation agree on their
participation in the components of the uniqueness constraint. A null-free constraint on
an n-ary relation states which components of the relation will always have values (i.e.
will never be null).

Our motivation for focusing on n-ary relations over which uniqueness- and null-free
constraints are expressed are three-fold: Firstly, querying relational databases tends to be
more efficient than querying RDF datasets, with research suggesting that storing RDF
data internally as relational data can speed-up queries over RDF data [10]. Secondly, in
relational databases uniqueness constraints are important for query optimization, index-
ing and data integration [7]. This is expected to also hold true for RDF datasets, partic-
ularly if a relational database is used internally [10]. Thirdly, a common problem expe-
rienced by users posing SPARQL queries is that the query results are empty when their
assumptions w.r.t. the latent structure of RDF data are incorrect. We aim to alleviate this
problem by making the n-ary relations and the null-free constraints present in RDF data
explicit.

In this paper we use the notion of informative Armstrong RDF datasets to extract
an example dataset to make the structure of data captured using a data-first approach
explicit. Due to the verbose syntax of RDF, OWL 2 and SPARQL we will use the mathe-
matical formalizations underlying these standards. Therefore we base informative Arm-
strong RDF datasets on informative Armstrong ABoxes. We assume that we start with
an ABox and an empty or under-specified TBox (rather than an RDF dataset). We use
conjunctive instance queries (rather than SPARQL) to determine an n-ary relation and
its related uniqueness- and null-free constraints that apply to the ABox. Axioms can be
added to the TBox, which makes the candidate schema underlying the ABox explicit in
terms of the n-ary relation, uniqueness- and null-free constraints found. Based on the
n-ary relation, uniqueness- and null-free constraints, assertions can be generated for the
informative Armstrong ABox. The axioms and assertions are expressed in a combination
of SROIQ(D) and DL safe rules (rather than OWL 2).

An ABox A (pronounced A-shield) is an Armstrong ABox for a given n-ary rela-
tion C, with given sets of uniqueness constraints Σ and null-free constraints X , if and
only if [4]:

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations188



1. all assertions of A satisfy each uniqueness constraint in Σ, as well as each null-
free constraint in X , and

2. every uniqueness constraint not in Σ, or that cannot be derived from Σ, is violated

by some assertion in A , and every null-free constraint not in X is violated by
some assertion in A .

An informative Armstrong ABox is an Armstrong ABox for which the data is derived
from existing data rather than being synthetically generated.

This paper is structured as follows. In Section 2 we review key definitions and results
that are of importance in the development of informative Armstrong ABoxes w.r.t. De-
scription Logics (Section 2.1) and conjunctive instance queries (Section 2.2). Section 3
presents the main contribution of this paper: (1) We give an example of an Armstrong
ABox and introduce key terminology based on Harmse et al. [4] (Section 3.1). (2) We de-
fine the data mining routines for discovering n-ary relations with associated uniqueness-
and null-free constraints for ABoxes (Section 3.2). (3) We define the algorithms for gen-
erating an informative Armstrong ABox (Section 3.3). (4) We validate our contribution
via a case study in which we generate an informative Armstrong RDF dataset for a DB-
Pedia dataset (Section 3.4). (5) We list the potential benefits of informative Armstrong
ABoxes (Section 3.5). Section 4 concludes this paper.

2. Preliminaries

2.1. Description Logics and DL Safe Rules

The logical formalization underlying OWL 2 is based on the DL SROIQ(D) [6] and
DL safe rules, which is used to implement uniqueness constraints in OWL 2 [8].

The syntactic building blocks of SROIQ(D) are based on the disjoint sets NC , NR

and NI , where NC is a set of concept names, NR is a set of role names and NI is a set of
individual names. SROIQ is a very expressive DL of which we only use a small subset
of concept constructors in this paper. The constructors we use in this paper are given by:

C ∶∶= ⊺ ∣ � ∣A ∣ ¬C ∣ C1 ⊓C2 ∣ ∀r.C ∣ ∃r.C ∣ ≥ nr.C ∣ ≤ nr.C ∣ ∀t.d ∣ ∃t.d ∣ ≥ nt.d ∣ ≤ nt.d

where A is an atomic concept, C, C1, C2 are concepts, d is a data type, r is a (simple)
abstract role, t is a concrete role and n is an integer.

The semantics of concept descriptions is given in terms of an interpretation I =

(△I ,△D, ⋅I), where △I and △D are non-empty disjoint sets such that △I is the domain
of interest and △D is the domain of all data types. The function ⋅D associates for each
d ∈ D, a set dD ⊆ △D. The function ⋅I assigns to each concept A ∈ NC , each abstract role
r ∈ RA, each individual a ∈ NI , and each concrete role t ∈ RD interpretations AI ⊆ △I ,
rI ⊆ △I × △I , aI ∈ △I , and tI ⊆ △I × △D respectively. We assume NR = RA ∪RD,
⊺I = △I ∪△D and 
I = ∅.

Given an interpretation I = (△I ,△D, ⋅I), the function ⋅I is extended to interpret
complex concepts in the following way:

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations 189



(¬C)I = △I/CI , (C1 ⊓C2)
I = CI1 ∩CI2

(∀r.C)I = {x ∈ △I ∣For all y ∈ △I , if (x, y) ∈ rI , then y ∈ CI}

(∃r.C)I = {x ∈ △I ∣There is some y ∈ △I such that (x, y) ∈ rI and y ∈ CI}

(≤ nr.C)I = {x ∈ △I ∣ ♯{y ∈ △
I ∣(x, y) ∈ rI and y ∈ CI} ≤ n}

(∀t.d)I = {x ∈ △I ∣For all v ∈ △D, if (x, v) ∈ tI , then v ∈ dD}

(∃t.d)I = {x ∈ △I ∣There is some v ∈ △D exists such that (x, v) ∈ rI and v ∈ dD}

(≤ nt.C)I = {x ∈ △I ∣ ♯{v ∈ △
D ∣(x, v) ∈ tI and v ∈ dD} ≤ n}

TBox general concept inclusion (GCI) axioms are of the form C1 ⊑ C2 where C1

and C2 are concepts. ABox assertions are of the form C(x), r(x, y), t(x, v) or x /≈ y
where C is a concept, r an abstract role, t a concrete role, x and y are individuals, and v
is an element of a data type.

When an interpretation I satisfies a GCI or assertion α it is denoted by I ⊩ α. Sat-
isfaction of α is defined as follows: I ⊩ C1 ⊑ C2 iff CI1 ⊆ CI2 , I ⊩ C(x) iff xI ∈ CI ,
I ⊩ r(x, y) iff (xI , yI) ∈ rI , and I ⊩ t(x, v) iff
(xI , vD) ∈ tI . I is a model of a TBox T or an ABox A if it satisfies all its GCIs or
assertions. In case I is a model of both T and A, it is also called a model of the ontology
(T ,A) and (T ,A) is said to be consistent if such a model exists. An axiom or assertion
α is said to be entailed by an ontology O, written as O ⊧ α, if every model of O is also
a model of α.

The implementation of uniqueness constraints in OWL 2 is based on DL safe
rules [8]:

C hasKey(r1, . . . , rn, t1, . . . , tm)

which states that for any two named individuals x and y of type C it follows that x = y,
if and only if, they agree on their participation of

1. abstract roles ri with named individuals zi, for 1 ≤ i ≤ n, and
2. concrete roles ti with data values vi, for 1 ≤ i ≤ m, respectively.

2.2. Conjunctive Instance Queries

The mathematical formalization underlying SPARQL is based on conjunctive instance
queries, for which we provide key definitions here. Let S = (NC ,NR,NI) be a signature
and O an ontology over S . Let V = VC ∪ VR ∪ VI be a set that is disjoint with NC ,NR

and NI where VC is a set of concept variables, VR is a set of role variables and VI is a
set of instance variables. A concept atom is an expression A(x) and a role atom is an
expression r(x,y) where A ∈ NC , r ∈ NR and x,y ∈ VI . A conjunctive instance query

Q is of the form q1 ∧ . . . ∧ qn where q1, . . . , qn are concept- and/or role atoms [3].
Let Q = {q1, . . . , qn} be a conjunctive instance query. Var(Q) is used to represent

the set of variables in Q. A total function μ ∶ Var(Q) → NC ∪NR ∪NI is a mapping for
Q over O if μ(v) ∈ NC for v ∈ VC , μ(v) ∈ NR for v ∈ VR and μ(v) ∈ NI for v ∈ VI . A
mapping μ is an answer for Q over O if O ⊧ μ(q) for each q ∈ Q, written O ⊧ μ(Q),
where μ(q) (μ(Q)) is the result of replacing each v ∈ Var(q) (v ∈ Var(Q)) with μ(v).
The set of all answers for Q over O is denoted by ans(O,Q).

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations190



3. Generating Informative Armstrong ABoxes

Informative Armstrong ABoxes are inspired by informative Armstrong relations in re-
lational database theory [2]. In relational database theory the benefit of an informative
Armstrong relation is that it provides a representative example that is a fraction of the
size of the original relation, with some informative Armstrong relations containing 0.6%
of the tuples of the original relation [7]. We expect similar reductions in size for RDF
datasets.

A challenge in generating an informative Armstrong ABox is that an Armstrong
ABox A exhibits a form of completeness in the sense that for an n-ary relation C with
uniqueness constraints Σ and null-free constraints X[4]:

1. every assertion of A satisfies each uniqueness constraint in Σ and each null-free
constraint in X , and

2. every uniqueness constraint not in Σ, or that cannot be derived from Σ, is violated
by some assertion in A , and every null-free constraint not in X , is violated by
some assertion in A .

Hence, to construct an informative Armstrong ABox for uniqueness- and null-free con-
straints for an n-ary relation C, we need to know about all uniqueness- and null-free
constraints that apply to C. For this reason we propose using data mining routines to de-
termine the uniqueness- and null-free constraints realized by the actual data for an n-ary
relation C, which can then be used to generate a related informative Armstrong ABox.

Determining constraints from an ABox is problematic due to the open world as-
sumption of DLs – the absence of information does not imply non-existence of informa-
tion as is the case with the closed world assumption. We deal with this challenge in a
similar fashion as Patel-Schneider [9]. We assume that an ABox completely describes a
world and therefore make the following assumptions: (1) we assume an assertion is false
if it does not follow from an ontology, which is referred to as the close world assumption,
and (2) individuals with different names represent different individuals, which is called
the unique name assumption.

This section is structured as follows: In Section 3.1 we define Armstrong ABoxes for
uniqueness- and null-free constraints of n-ary relations with the goal to be usable in the
context of the Semantic Web. Section 3.2 illustrates how data mining routines can be used
to determine n-ary relations, uniqueness- and null-free constraints for a given ABox.
Section 3.3 explains the algorithm for generating an informative Armstrong ABox. In
Section 3.4 we apply the notion of an informative Armstrong ABox to a DBPedia person
dataset to derive an informative Armstrong RDF dataset. Section 3.5 summarizes the
potential benefits of Armstrong RDF datasets.

3.1. Armstrong ABoxes for n-ary Relations

Armstrong ABoxes have been introduced as a DL counterpart to the Armstrong relations
of relational database theory, in order to support ontology engineers in designing on-
tologies [4]. The Armstrong ABox formalization of Harmse et al. adheres strictly to the
relational database counterpart. In order to introduce the notion of an Armstrong RDF
dataset we need to relax the definition slightly, which we illustrate via an example.

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations 191



Table 1. ABoxASchedule specifying facts regarding Schedule

Concept assertions

Schedule(c1) Schedule(c2) Schedule(c3) Schedule(c4)

Role assertions

course(c1,Math11) time(c1,“Mon,2pm”) lecturer(c1,Russel) room(c1,Red)

course(c2,Math11) time(c2,“Tue,2pm”) lecturer(c2,Hardy) room(c2,Red)

course(c3,Math11) time(c3,“Wed,1pm”) room(c3,Red)

course(c6,Math12) time(c6,“Wed,4pm”) lecturer(c6,Hardy) room(c6,Black)

course(c9,Math21) time(c9,“Fri, 1pm”) lecturer(c9, P eter)

Assume we need to model the schedule at a university where a course is presented
by a lecturer at a given time in a specific room. This can be modelled in OWL 2 using
reification as follows:

TSchedule = {

Schedule ⊑ ∃course.⊺ ⊔ ∃time.⊺ ⊔ ∃lecturer.⊺ ⊔ ∃room.⊺, (1)

⊺ ⊑ ∀course.Course,⊺ ⊑ ∀time.Time,⊺ ⊑ ∀lecturer.Lecturer,⊺ ⊑ ∀room.Room, (2)

Schedule hasKey (time),Schedule hasKey (course, lecturer), (3)

Schedule hasKey (lecturer, room), (4)

Schedule ⊑ ∃course.⊺,Schedule ⊑ ∃time.⊺}. (5)

(1) states that individuals of Schedule represents an n-ary relation that can have up to
4 components, namely course, time, lecturer, room ∈ NR, such that each individual of
Schedule can be associated zero or multiple times with each component. Note that due
to the disjunction this includes individuals of Schedule having 0, 1, 2 or 3 components
from {course, time, lecturer, room}. Moreover, for our initial research into Armstrong
RDF datasets we decided to define an n-ary relation, as for example for Schedule, as
the maximal set S such that each r ∈ S has Schedule as a domain. In future research it
may make sense to discover minimal set covers of S which can be used to decompose an
n-ary relation like Schedule.

(2) enforces the typing of the components of Schedule. I.e. the course component
must be of type Course where Course ∈ △I ∪ △D. Hence, (1) and (2) state that the
domain and range of course is respectively Schedule and Course. (3) and (4) enforces
the set of uniqueness constraints Σ = {u(time), u(course, lecturer), u(lecturer, room)}
on Schedule. For example, based on the uniqueness constraint u(time), no two different
individuals of Schedule agree on their participation to the component time. (5) states that
{course, time} is null-free on Schedule: every individual c of Schedule is associated
with individuals via roles course and time.

Now assume we have an ABox ASchedule as defined in Table 1. Note that we ex-
pect explicit assertions stating that, for example, individuals c1, c2, c3 and c4 are of type
Schedule. Then we say c2 is {course, time, lecturer, room}-total, since values are spec-
ified for these components for individual c2. We say ASchedule is {course, time}-total
since all named individuals of Schedule have values for components course and time, in
which case we also say ASchedule is null-free for {course, time}. The strong agreement

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations192



set of individuals c2 and c3, denoted by ags(c2, c3), is {course, room} since individuals
c2 and c3 agree on their participation for the components course, and room. The strong

agreement set of ASchedule is given by

ags(ASchedule) = {ag
s(ci, cj)∣Schedule(ci) ∧ Schedule(cj) ∧ ci /≈ cj}

= {{course, room},{course},{lecturer},{room}} (6)

The ABox ASchedule of Table 1 is an Armstrong ABox for TSchedule since it satisfies
all uniqueness- and null-free constraints defined by TSchedule and it also violates all other
uniqueness- and null-free constraints that cannot be derived from TSchedule. We say that
ASchedule satisfies Σ = {u(time), u(course, lecturer), u(lecturer, room)}. However, for
Σ = {u(course),u(room)} we say that ASchedule violates Σ. Note that even though the
ABox of Table 1 is indeed an Armstrong ABox for the applicable uniqueness- and null-
free constraints, it is not necessarily a minimal Armstrong ABox. For example, if we
remove the assertions of the first row from table Table 1 from ASchedule, what is left will
still be an Armstrong ABox for TSchedule.

3.2. Data Mining Routines for ABoxes

In this section we present the data mining algorithm for determining whether a candidate
n-ary relation C represents an n-ary relation, and if it does, the algorithm will determine
the uniqueness constraints and null-free constraints applicable to the n-ary relation C.
For this purpose we introduce DETERMINESTRUCTURE(T , A, C) (see Algorithm 1)
which has as input parameters, a TBox T , an ABox A and a concept C, which is a
candidate n-ary relation. On termination

• DETERMINESTRUCTURE returns the empty set or a singleton set if C does not
represent an n-ary relation, or

• if C does represent an n-ary relation, it returns a set S of roles that serve as the
components of C, a set X which is a subset of S representing the roles that are
null-free for C, and a set Σ consisting of uniqueness constraints applicable to C.

The key steps of the algorithm are:
Step 1 - Determine S: In line 2 we determine the set of roles S for which C is the

domain, which represents the components of the n-ary relation represented by C. If the
set S is a singleton set or the empty set, we assume that C does not represent an n-ary
relation and the algorithm terminates.

Step 2 - Determine X: Line 4 determines the set of individuals that are elements
of C. For each individual c ∈ T we check via which roles in S is c related to another
individual. When c is not related to an individual for some role r ∈ S, we know that r is a
component of the n-ary relation represented by C that is nullable. Therefore we add r to
H in line 8. The roles that are null-free for C can be determined from H and S (line 9).

Step 3 - Determine Σ: For calculating the uniqueness constraints satisfied by an
ABox A, we use ideas inspired by Le et al. [7]. Line 10 computes the complements
of strong agreement sets called weak agreement sets, which is denoted by disagw(A)
for an ABox A. Line 11 computes the necessary disagreement sets that is the weak
agreement sets that are minimal, which is denoted by nec_disagw(A) for an ABox A.
Line 12 constructs a hypergraph H with S as vertices and nec_disagw(A) as edges.
Lemma 3.1 confirms that calculating the minimal transversal of H, denoted by Tr(H),
will deliver the set of minimal uniqueness constraints satisfied by the ABox A.

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations 193



Lemma 3.1. Let A be an ABox and C a concept representing an n-ary relation over the
set of roles S = {r1, . . . , rn}. Then for all X ⊆ S, X ∈ Tr(S,nec_disagw(A)) if and only
if A ⊩ u(X) and for all H ∈ X , A ⊮ u(X/H). ◊

Algorithm 1 DETERMINESTRUCTURE(T , A, C)
1: Σ ∶= ∅, H ∶= ∅, O ∶= (T ,A)

▷ Determine S
2: S ∶= {r∣There exists some c,h s.t. r(c,h) ∈ P} where P ∶= ans(O,{C(c), r(c,h)})
3: if ♯S ≤ 1 then return S

▷ Determine X
4: T ∶= ans(O,{C(c)})
5: for all c ∈ T do

6: for all r ∈ S do

7: if ans(O,{r(c,h)}) = ∅ then

8: H ∶=H ∪ {r}

9: X ∶= S/H
▷ Determine Σ

10: disagw(A) ∶= {S/ags(c1, c2)∣C(c1) ∧C(c2) ∧ c1 /≈ c2}
11: nec_disagw(A) ∶= {W ∈ disagw(A)∣¬∃Y ∈ disagw(A)(Y ⊂W )}
12: H ∶= (S,nec_disagw(A))
13: Σ ∶= {u(Y )∣Y ∈ Tr(H)}
14: return S, X , Σ

3.3. Steps for Generating an Informative Armstrong ABox

INFORMATIVEARMSTRONGABOX(T , A, C, S, Σ, X) (Algorithm 2) generates an in-
formative Armstrong ABox A , where T is a TBox, A is the actual ABox containing as-
sertions about the real-world, C is a concept representing an n-ary relation, S represents
the components of the relation C, Σ is the set of uniqueness constraints and X is the set
of roles that are null-free. We assume O ∶= (T ,A) and O ∶= (T ,A ).

The algorithm consists of three main steps. For steps 2 and 3 it first does a query
against O to determine whether the required assertions are already present in A . If the
answer already follows from O , there is no need to add assertions to A . However, if the
answer does not follow from O , a query is done against O and the answer can be used
to add the required assertions to A . Since the n-ary relation and uniqueness- and null-
free constraints were determined using data mining routines against O ∶= (T ,A), we
know that all queries against O (based on this n-ary relation, uniqueness- and null-free
constraints) will succeed.

We first describe the main steps of the INFORMATIVEARMSTRONGABOX algo-
rithm and then we describe the auxiliary algorithms CONDITIONALADD1, CONDITION-
ALADD2 and ADDROLEFILLER.

Step 1 - First tuple: For our first tuple we ensure that the individual c of C is such
that for each ri ∈ S we have that c has an associated value for ri (line 2-7).

Step 2 - Deal with Σ−1: The set of anti-keys, Σ−1, is calculated using hypergraph
methods. Line 8 constructs the hypergraph H ∶= (S,Z) where Z consists of sets of
components that are unique for C. In line 9 Σ−1 is calculated based on the minimal
transversal of H, denoted by Tr(H) (see Lemma 1 of Harmse et al [4]). For each anti-key

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations194



Algorithm 2 INFORMATIVEARMSTRONGABOX(T , A, C, S, Σ, X)
1: A ∶= ∅

▷ Determine first tuple
2: i ∶= 0
3: Q ∶= {C(c)}
4: for all ri ∈ S do

5: Q ∶= Q ∪ {ri(c,hi)}
6: i ∶= i + 1
7: CONDITIONALADD1(A, A , Q, S)

▷ Deal with Σ−1

8: H ∶= (S,Z) where {Z ∣u(Z) ∈ Σ}
9: Σ−1 ∶= {a(S/W )∣W ∈ Tr(H)}

10: for all Y such that a(Y ) ∈ Σ−1 do

11: Q ∶= {C(c1),C(c2)}
12: i ∶= 0
13: for all ri ∈ S do

14: Q ∶= Q ∪
⎧⎪⎪
⎨
⎪⎪⎩

{ri(c1,hi), ri(c2,hi)}, if ri ∈ Y
{ri(c1,hi1), ri(c2,hi2)}, else

;

15: i ∶= i + 1
16: CONDITIONALADD2(T , A, A , Q, S)

▷ Deal with S/X
17: Let Z ⊆ S be such that A is Z-total
18: if Z/X ≠ ∅ then

19: for all r ∈ Z/X do

20: Q ∶= {C(c), (¬∃r.⊺)(c)}
21: CONDITIONALADD1(A, A , Q, S)
22: return A
23: else

24: return A

a(Y ) in Σ−1, a query Q is constructed to find two instances c1 and c2 of C such that they
agree on their participation to the roles in Y (lines 10-16).

Step 3 - Deal with S/X: Algorithm 2, lines 17-24 ensure that for each r ∉ X there
is at least one individual c of C such that c that does not have a role filler for r (line 20).
To determine whether there are any r ∈ S/X for which we need to add assertions, it gets
the difference between Z and X (line 18), where Z consists of the roles for which A is
null-free this far. This completes the algorithm for generating an informative Armstrong
ABox A .

Both the CONDITIONALADD1(T , A, A , Q, S) and CONDITIONALADD2(T , A,
A , Q, S) algorithms are used to add assertions to A conditionally. The main difference
between these two algorithms is that CONDITIONALADD1 adds assertions representing
one individual and CONDITIONALADD2 adds assertions representing two individuals of
the n-ary relation C to A . Since these two algorithms are very similar, we will only
discuss CONDITIONALADD2.

CONDITIONALADD2(A, A , Q, S) (Algorithm 4) adds, if needed, assertions cor-
responding to the answer μ(Q) to A . We say “if needed” because it is possible that
Q can already be answered from O , in which case it is not necessary to add assertions
corresponding to μ(Q) to A and Algorithm 4 can return (line 2).

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations 195



Algorithm 3 CONDITIONALADD1(T , A, A , Q, S)
Ensure: Q is of the form {C(c), r1(c,h1), . . . , rk(c,hk)} where {r1, . . . , rk} ⊆ S

1: O ∶= (T ,A), O ∶= (T ,A )
2: if ans(O ,Q) ≠ ∅ then return A

3: μ(Q) such that O ⊧ μ(Q)
4: A ∶= A ∪ {C(μ(c)), r1(μ(c), μ(h1)), . . . , rk(μ(c), μ(hk))}
5: Y ∶= S − {r1, . . . , rk}
6: if Y = ∅ then return A

7: for all r ∈ Y do

8: ADDROLEFILLER(T , A, A , {C(c), r(c,h)})
9: return A

Algorithm 4 CONDITIONALADD2(T , A, A , Q, S)
Ensure: Q is of the form {C(c1),C(c2), r1(c1,h11), . . . , rk(c1,hk1), r1(c2,h12), . . . ,

rk(c2,hk2)} where {r1, . . . , rk} ⊆ S
1: O ∶= (T ,A), O ∶= (T ,A )
2: if ans(O ,Q) ≠ ∅ then return A

3: μ(Q) such that O ⊧ μ(Q)
4: A ∶= A ∪ {C(μ(c1)),C(μ(c2)), r1(μ(c1), μ(h11)), . . . , rk(μ(c1), μ(hk1)),

r1(μ(c2), μ(h12)), . . . , rk(μ(c2), μ(hk2))}
5: Y ∶= S/{r1, . . . , rk}
6: if Y = ∅ then return A

7: for all r ∈ Y do

8: ADDROLEFILLER(T , A, A , {C(c1), r(c1,h)})
9: ADDROLEFILLER(T , A, A , {C(c2), r(c2,h)})

10: return A

CONDITIONALADD2 enforces that query Q is of a specific form (see Ensure state-
ment): it consists of two individuals c1 and c2 of concept C that agrees on their partici-
pation to roles {r1, . . . , rk} ⊆ S. Since {r1, . . . , rk} is potentially a subset of S, it is pos-
sible that an answer does not have all components of C represented. This is the reason
for lines 5-9. We determine the difference Y between S and {r1, . . . , rk} and if Y is not
the empty set, for each r in Y an attempt is made to fill r for individuals c1 and c2 by
calling the ADDROLEFILLER(Algorithm 5).

ADDROLEFILLER enforces that Q is of the form {C(c), r(c,h)}. If an answer
μ(Q) exists such that O ⊧ μ(Q), corresponding assertions are added to A , otherwise
the procedure returns.

Algorithm 5 ADDROLEFILLER(T , A, A , Q)
Ensure: Q is of the form {C(c), r(c,h)}

1: O ∶= (T ,A)
2: if ans(O,{C(c), r(c,h)}) = ∅ then return A

3: A ∶= A ∪ {r(μ(c), μ(h))}
4: return A

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations196



3.4. A Case Study

In this case study we applied the proposed approach in this paper on the English person
data set of 2016-10 from DBPedia [1]. The code implementing the algorithms in this
paper along with the resulting informative Armstrong RDF dataset is available publicly
from a git repository 1. Here we highlight some key results from our case study.

We imported the DBPedia dataset into a local Ontotext GraphDB Free Edition RDF
store. We implemented our data mining algorithm and informative Armstrong generation
algorithms in Java 8. Test runs were done with GraphDB and the data mining and Arm-
strong routines co-located on a laptop with an i7-2760QM CPU at 2.40GH and 8GB of
RAM running on a Ubuntu 17.10 desktop operating system.

For the case study we assumed C = http://dbpedia.org/ontology/Person.
Using Algorithm 1 we found that X = ∅ and S =

{http://xmlns.com/foaf/0.1/name,

http://xmlns.com/foaf/0.1/surname,

http://xmlns.com/foaf/0.1/givenName,

http://xmlns.com/foaf/0.1/gender,

http://purl.org/dc/terms/description,

http://dbpedia.org/ontology/birthDate,

http://dbpedia.org/ontology/birthPlace,

http://dbpedia.org/ontology/deathDate,

http://dbpedia.org/ontology/deathPlace}.

Σ, the set of uniqueness constraints for C and S is given in Table 2. Recall that Σ is a set
of subsets of S. Each row of Table 2 represents a subset of S, where a cross (×) indicates
that an element is part of the subset, and absence of a cross indicates that the element
is not included in the subset. As an example, the first row of the left-hand side column
of Table 2 states that u(name,surname,givenName,gender,deathPlace) is a
uniqueness constraint of C = http://dbpedia.org/ontology/Person.

Based on S, X and Σ we determined an informative Armstrong RDF dataset for C
using Algorithm 2. In Table 3 we compare some statistics for the DBPedia dataset and the
related informative Armstrong RDF dataset. From the number of person instances and
statements regarding persons, it is evident that the size of the informative Armstrong RDF
dataset is about 0.00003% of the DBPedia dataset. This reduction in size of the dataset
can be of benefit to applications. In our situation some of the queries for determining the
strong agreement set for C and S ran just over 30 minutes. The same query took less
than 1 second to run on the Armstrong dataset. Running the data mining routines and
generating the Armstrong dataset based on the DBPedia dataset took about 5.7 hours.
To validate our implementation of the data mining and Armstrong dataset generation
routines, we applied the data mining and Armstrong generation routines to the generated
Armstrong dataset. As expected the newly calculated sets S, X and Σ matched our earlier
calculations, but it only took 8 seconds to run both data mining and Armstrong generation
routines.

1https://github.com/henrietteharmse/ArmstrongDBPediaCaseStudy

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations 197

https://github.com/henrietteharmse/ArmstrongDBPediaCaseStudy


Table 2. Uniqueness constraints for the person data of DBPedia
n
a
m
e

s
u
r
n
a
m
e

g
i
v
e
n
N
a
m
e

g
e
n
d
e
r

d
e
s
c
r
i
p
t
i
o
n

b
i
r
t
h
D
a
t
e

b
i
r
t
h
P
l
a
c
e

d
e
a
t
h
D
a
t
e

d
e
a
t
h
P
l
a
c
e

n
a
m
e

s
u
r
n
a
m
e

g
i
v
e
n
N
a
m
e

g
e
n
d
e
r

d
e
s
c
r
i
p
t
i
o
n

b
i
r
t
h
D
a
t
e

b
i
r
t
h
P
l
a
c
e

d
e
a
t
h
D
a
t
e

d
e
a
t
h
P
l
a
c
e

× × × × × × × × × × ×

× × × × × × × × × × × ×

× × × × × × × × × × ×

× × × × × × × × × × × × ×

× × × × × × × × × × ×

× × × × × × × × × × ×

× × × × × × × × × ×

× × × × × × × × × × × ×

× × × × × × × × × × ×

Table 3. Informative Armstrong RDF dataset characteristics

Characteristic DBPedia dataset Armstrong dataset

Person instances 1 414 214 44

Explicit person statements 10 252 799 373

Worst query running time 30 minutes < 1 second
Total running time 5.7 hours 8 seconds

3.5. The Potential Benefits of an Informative Armstrong RDF Dataset

Generating an informative Armstrong RDF dataset has a number of potential benefits:

1. the set S of components identified for a candidate n-ary relation C, along with
uniqueness- and null-free constraints can be used to construct an ontology for the
data similar to axioms (1)-(5),

2. users can use the uniqueness constraints to determine how to identify individuals
uniquely,

3. based on the null-free constraints users can determine which components of C are
nullable, which would guide them on when to specify the SPARQL OPTIONAL
keyword when constructing queries,

4. based on the uniqueness constraints RDF storage implementers can fine-tune in-
dexing accordingly, and

5. an informative Armstrong RDF dataset give users and Semantic Web application
developers the opportunity to verify queries and algorithms against a small repre-
sentative example dataset, which is likely to give comparatively quick feedback,
before running their queries and/or applications against the actual dataset.

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations198



4. Conclusion

In this paper we proposed an approach of how data mining routines can be used to con-
struct an informative Armstrong RDF dataset based on an informative Armstrong ABox
for n-ary relations with uniqueness- and null-free constraints, which can assist users in
understanding the structure of data captured through a data-first approach. The benefit of
an informative Armstrong ABox is that it provides example data based on the original
data which is a fraction of the size of the original data, while capturing the constraints of
the original data faithfully. Working on a fraction of the data has the potential to increase
developer productivity substantially and understanding the structure of RDF data gives
insight into how to query the data and how to query the data efficiently.

To validate our algorithms we have generated an informative Armstrong RDF
dataset for the DBPedia person dataset. The results from the case study indicate that an
informative Armstrong RDF dataset can result in a dataset that contains 0.00003% of
the statements in the original dataset. Further research is required to determine whether
this result can be extended to RDF datasets in general. Nonetheless, this result seems
promising and merits further investigation.

References

[1] DBPedia Person Data 2016 - English, http://downloads.dbpedia.org/2016-10/core-
i18n/en/persondata_en.ttl.bz2.

[2] Ronald Fagin and Moshe Y. Vardi, Armstrong Databases for Functional and Inclusion Dependencies.,
Inf. Process. Lett. 16 (1983), no. 1, 13–19.

[3] B. Glimm, Y. Kazakov, I. Kollia, and G. B. Stamou, Using the TBox to Optimise SPARQL Queries., De-
scription Logics (T. Eiter, B. Glimm, Y. Kazakov, and M. Krötzsch, eds.), CEUR Workshop Proceedings,
vol. 1014, CEUR-WS.org, 2013, pp. 181–196.

[4] H. F. Harmse, A. Britz, and A. Gerber, Armstrong Relations for Ontology Design and Evaluation, Pro-
ceedings of the 29th International Workshop on Description Logics (M. Lenzerini and R. Peñaloza,
eds.), vol. 1577, CEUR-WS.org, 2016.

[5] A. Hogan, Linked Data & the Semantic Web Standards., Linked Data Management (A. Harth, K. Hose,
and R. Schenkel, eds.), Chapman and Hall/CRC, 2014, pp. 3–48.

[6] I. Horrocks, O. Kutz, and U. Sattler, The even more irresistible SROIQ, Proceedings of the 10th In-
ternational Conference on Principles of Knowledge Representation and Reasoning (P. Doherty, J. My-
lopoulos, and C. A. Welty, eds.), AAAI Press, 2006, pp. 57–67.

[7] V. B. T. Le, S. Link, and M. Memari, Schema- and Data-driven Discovery of SQL Keys., Journal of
Computing Science and Engineering 6 (2012), no. 3, 193–206.

[8] B. Parsia, U. Sattler, and T. Schneider, Easy Keys for OWL, Proceedings of the 5th Workshop on OWL:
Experiences and Directions (C. Dolbear, A. Ruttenberg, and U. Sattler, eds.), CEUR Workshop Proceed-
ings, vol. 432, CEUR Workshop Proceedings, 2008.

[9] P. F. Patel-Schneider, Using Description Logics for RDF Constraint Checking and Closed-World Recog-
nition., Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI Press, 2015.

[10] M. Pham, L. Passing, O. Erling, and P. A. Boncz, Deriving an Emergent Relational Schema from RDF
Data., 24th International World Wide Web Conference (A. Gangemi, S. Leonardi, and A. Panconesi,
eds.), ACM, May 2015, pp. 864–874.

H. Harmse et al. / Informative Armstrong RDF Datasets for n-Ary Relations 199


