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Abstract. Mereotopological relations, such as contact, parthood and overlap, are
central for representing spatial information qualitatively. While most existing
mereotopological theories restrict models to entities of equal dimension (e.g., all
are 2D regions), multidimensional mereotopologies are more flexible by allowing
entities of different dimensions to co-exist. In many respects, they generalize tra-
ditional spatial data models based on geometric entities (points, simple lines, poly-
lines, cells, polygon, and polyhedra) and algebraic topology that power much of
the existing spatial information systems (e.g., GIS, CAD, and CAM). Geometric
representations can typically be decomposed into atomic entities using set intersec-
tion and complementation operations, with non-atomic entities represented as sets
of atomic ones. This paper accomplishes this for CODI, a first-order logic ontol-
ogy of multidimensional mereotopology, by extending its axiomatization with the
mereological closure operations intersection and difference that apply to pairs of
regions regardless of their dimensions. We further prove that the extended theory
satisfies important mereological principles and preserves many of the mathematical
properties of set intersection and set difference.

This decomposition addresses implementation concerns about the ontology
CODI by offering a simple mechanism for determining the mereotopological rela-
tions between complex spatial entities, similar to the operations used in algebraic
topological structures. It further underlines that CODI accommodates both quanti-
tative/geometric and qualitative spatial knowledge.
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1. Introduction

Spatial information often plays a central in modeling the world, with virtually all up-
per ontologies including some spatial concepts and qualitative spatial relations between
them. But these qualitative representations differ from how most information systems
store spatial information using geometric representations, which encode the location of
entities in an underlying metric space – typically Euclidean space. The entities are rep-
resented by geometric features, such as points, polylines, polygons, polyhedra, or col-
lections thereof. Often this requires geometrically approximating entities, which may
lead to artefacts such as accidental overlap (e.g., a road overlapping a lake because it
is represented using a polygon and overlap is defined purely geometrically). Geometric
representations (including algebraic topologic structures such as simplicial or other cell
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complexes, e.g. [3,12]) introduce metric precision that is often unwarranted when qual-
itative relations and broader types of features suffice to characterize a spatial scene. For
example, for many queries it suffices to describe the relation between a linear entity (e.g.,
representing a road) and some 2D entity (e.g., representing a township) without the need
to represent the entities’ location and extent precisely using, for example, polygons and
polylines. While geometric representations yield extra metric information, such as the
length or size of an intersection, this precision can be misleading as it it derived from
an approximation (with an implicit resolution) of the involved entities. More important
might be the nature of the spatial relationship between the entities (e.g., does the road
border the town or does it go into it?, is it entirely within the town or are parts out-
side?) that qualitative relations, especially mereotopological ones, can capture without
the detour via geometric approximation of the entities.

Mereological and topological relations are deemed more intuitive to people—as ev-
ident by their predominance in natural language [24,22]— compared to geometric op-
erations. Mereologically, spatial entities can be subdivided into smaller parts (i.e., sub-
regions), and topologically they can be described by how they are connected to other
entities. Mereotopological relations [20,31] arise from the combination of both kinds of
relations, enabling the definition of relations such as overlap (i.e., connected via a shared
part). Formalizations of spatial entities and the mereotopological relations between them
can help bridge the conceptualization gap between geometry-based spatial information
common in information systems and higher-level, intrinsically qualitative ways of ex-
pressing spatial information.

In the spirit of Whitehead’s and Clarke’s work [5,33], mereotopological theories
are often tied to region-based representations of space that rely on extended regions of
space, instead of points (as in geometry), as the most fundamental spatial entities. As
such, interest in mereotopological relations has focused on unidimensional mereotopo-
logical theories, wherein all spatial entities, also called “regions” (we use the terms in-
terchangably), must be of the same dimension, that is, all regions are two-dimensional or
all are three-dimensional. However, this poses a significant barrier to integration with the
wealth of existing geometric information stored in geographic information systems (GIS)
and computer-aided design or manufacturing (CAD/CAM) systems. These systems use
and relate geometric entities of varying dimensions: point features, linear features (e.g.,
polylines), areal features (e.g., polygons), and possibly voluminal features (e.g., polyhe-
dra). In order to qualitatively describe the spatial relations between such objects and to
fully interact with such systems, a suitable mereotopological theory must accommodate
spatial entities of varying dimensions [15]. Towards this goal, we have developed a fam-
ily of multidimensional spatial ontologies [18,19] based on insights from Galton’s and
Gott’s earlier work [14,16]. A central role plays the ontology CODI, which formalizes
the primitive notions of spatial containment and relative spatial dimension (the ontol-
ogy’s name stands for COntainment and DImension) in first-order logic and defines a
set of six intuitive mereotopological relations: containment and its refinement parthood
together with contact and its refinements partial overlap, incidence, and superficial con-
tact, which apply to entities of all dimensions but which operate largely independently
of the precise dimensions of the involved spatial entities.

What is missing from [19] are suitable axiomatizations of the standard mereolog-
ical operations product/intersection, difference/complement, and sum. The theories in
[14,16] include such operations but limit them to entities of equal dimension. As result,
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some meaningful intersection and differences, for example between a linear feature (e.g.,
a road or river) and a 2D region, as shown in Fig. 1(c), are not captured, thereby limiting
the use of the operations more than necessary. However, if we insist that these operations
are closed for all spatial regions, that is, applying them to any pair of regions yields again
a region, one can easily end up with mixed-dimensional entities, such as an entity con-
sisting of a line segment and an isolated point (e.g., the intersection in Fig. 1(a)) or of a
2D region with a line segment removed (e.g., the difference x− y in Fig. 1(c)). We de-
velop an extension of CODI with intersection and difference operations that avoids these
problems. We study the resulting axiomatization with respect to the following properties:

• Are the operations well-defined, i.e., do the intersection and difference of two arbitrary
spatial entities always result in a unique spatial entity in every model?

• Do the operations exhibit the expected result when applied to entities of equal dimen-
sion (e.g., when compared to unidimensional mereotopologies)?

• Which mereological principles from unidimensional mereotopologies are preserved?
• Which mathematical properties (e.g., associativity, commutativity, idempotence) typ-

ically associated with set theoretic and unidimensional mereotopological notions of
intersection and difference are preserved?

We show that the proposed intersection and difference operations are well-defined
and that the resulting theory CODI↓ exhibits the expected unidimensional behavior
and that it satisfies the most important mereological principles from unidimensional
mereotopology. The operations satisfy most desired mathematical properties, though
some require weakening (e.g., left- and right-alternative laws in place of associativity),
while only few must be forfeited. Moreover, atomic models of CODI↓ can always be
decomposed (i.e., partitioned) into a set of minimal (i.e., indivisible) parts, which sim-
plifies the implementation of the theory on top of qualitative or geometric spatial repre-
sentations wherein entities are represented as collections of minimal entities (e.g., line
segments or atomic cells).

2. Related Work

Mereotopological theories originally emerged from interest in region-based theories—
so-called pointless topologies—as alternative to point set topology and geometry. For
information systems, three approaches for defining mereotopological relations between
spatial entities are pursued: (1) as qualitative calculi of lattices of relations and associated
composition operations, e.g., [9,27]; (2) as 9-intersection relations based on matrices of
the point-set intersections of the interior, boundary, and exterior of two entities, e.g., in [7,
8,11,13,25]; or (3) as axiomatic, i.e., logic-based theories/ontologies with mereological
and/or topological primitives, e.g., in [2,4,10,26,27,29]. The present work belongs to the
last category, but we briefly review the most relevant related work in all three.
Qualitative Calculi of mereotopology, such as the Region Connection Calculus (RCC)
[9,27], assume all regions in a single model to be of the same dimension, typically either
all 2D areas or all 3D chunks of space. The presence of entities of lower dimensions
would collapse important RCC relations (e.g. O and C) [6,15] and violate complemen-
tation principles, though lower-dimensional entities may exist implicitly (e.g., entities in
external connection EC share points or curve segments), or be definable as higher-order
constructs (e.g., a set of infinitely nested proper parts—a prime ideals—can approxi-
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mate a point). The associated axiomatic theories permit straightforward mereological
closure operations under which the entities form Boolean algebras with the null element
removed, or generalizations thereof. To our knowledge, only [6] presents a multidimen-
sional mereotopological calculus, but it does not permit explicit conclusions about the
dimensionality of related entities nor are closure operations incorporated.
Matrices of Point-Set Intersections, such as used by the 9-intersection approach [11,
13,23], define mereotopological relations in terms of the point set intersections of the
interior, boundary, and exterior of two regions. Extensions that take the dimensions of
the participating entities into account, lead to a combinatorial increase in the number of
distinct topological relations, ranging from 52 or 81 (for the dimension-extended and
calculus-based methods, respectively [7]) to 300 relations [25] without even considered
3D entities. These approaches are restricted to 0D, 1D, and 2D entities and do not provide
an axiomatization of mereological closure operations for decomposing entities.
Axiomatic Theories of mereotopology are surveyed more fully in [20]. Most use part-
hood and/or connection relations (with some varation, see [10]) as primitive terms.
Most are directly tied to a uni-dimensional region-based conceptualization of space in
the sense that all first-class entities therein must have the same dimension and, thus,
mereotopological relations are only defined for entities of the same dimension. The
theories that allow entities of different spatial dimensions to co-exist permit lower-
dimensional entities only as they arise as boundaries of higher-dimensional entities
[14,15,29,30], with other theories relying on higher-order constructs not definable in
their first-order theories.

But the application of mereotopological and other qualitative relations is not lim-
ited to unidimensional spatial theories as evidenced by the dimensional extension of the
9-intersection approach [7]; the relations equally apply to spatial entities of different
dimensions. Thus, the definition of mereotopological relations can be decoupled from
a unidimensional conceptualization of space. Only Galton [14], Gott’s INCH Calculus
[16], and our own prior work [19] have developed full axiomatic theories that incorporate
dimensionality into mereotopological relations and that permit spatial entities of differ-
ent dimensions to co-exist1. But Galton and Gotts restrict intersections, differences, and
sums to entities of equal dimension. The restriction of the sum operation is sensible to
avoid entities of mixed dimensionality, but the same cannot be said about intersections
or differences. For example, the intersection of the areal and linear features in Fig. 1(c) is
itself a linear feature, but its existence is not entailed in either theory. This paper explores
how to fill this gap by presenting and investigating an extension to our own multidimen-
sional mereotopology CODI [19] with axioms that define intersections and differences
for all pairs of entities regardless of their dimension.

3. A Modular Version of the Multidimensional Mereotopology CODI

This section reviews the multidimensional mereotopology CODI from [17,19] that forms
the basis of the present work. CODI’s universe of discourse consists of spatial (and pos-
sibly spatio-temporal) regions of various dimensions located in a space Rn. A spatial re-

1The RCC*-9 [6] provides logical definitions of mereotopological relations but no further axioms.
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Figure 1. Models of CODI that illustrate intersections and differences involving regions of varying dimen-
sions. Other mereotopologies only entail the existence of an entity for the intersection and difference in (b).
In (a), r and s share two regions: the linear feature l and the point p. But both together cannot be the intersec-
tion, because such an entity would not be a dimensionally uniform region. Instead, r · s = l. Then the intersec-
tion · is not associative because r · (s · p) = r · p = p �= /0 = l · p = (r · s) · p.
In (b) intersection and the differences x− y and y− x are defined as expected between two regions of the same
dimension. In (c) the intersection x · y is a proper part of y but not a proper part of x, though a lower-dimen-
sional region contained in x. Hence, only the difference y− x results in a new region, while x− y loses the
lower-dimensional artifact and results in x. In (d) x−y = x and y−x = y since the intersection x ·y is of a lower
dimension than both x and y.

gion can be simple or complex. Simple regions represent regular closed sets2 of some di-
mension m≤ n that can be embedded in Rm. Complex regions are unions of finitely many
regular closed sets—each set being called a component. Components of a single complex
region can overlap only in their boundaries, that is, x∩y⊆ (cl(x)\ int(x))∩(cl(y)\ int(y))
holds for any two components x and y of a complex region. Each complex region also
has an associated dimension m such that every component thereof is homeomorphically
embeddable3 in some space Rm and no component can be embedded in a space Rm−1.
Thus, each component is a bounded manifold in Rm.

Examples of permissible regions are points and sets of points; 1D entities such as
curve and line segments, infinite curves and lines, as well as complex linear features
(e.g., finite sets of segments connected, if at all, only in their endpoints); 2D areal regions
including polygons, cell complexes, and other bounded regions (e.g., a part of the surface
of a sphere) as well as unbounded regions (e.g., planes, semi-planes, or the entire surface
of a sphere); or 3D voluminal regions. Regions with lower-dimensional artefacts, for
example, an areal region with a protruding or missing line segment or a missing boundary
is not permitted as entity in the domain, but could be described as a “scene” (i.e., a model
of CODI) consisting of two or more entities that happen to intersect. The theory can be
limited to a specific number of dimensions if so desired as shown in [17,18].

CODI’s formalization is based on two primitive relations: (1) a mereological predi-
cate of spatial containment, denoted as Cont(x,y) and interpreted point-set topologically
as “x is a subset of y” (i.e., x is entirely contained within y), and (2) a predicate ≤dim—
typically written in infix notation as x≤dim y— that compares the dimension of two spa-
tial regions and is interpreted as “if all of y’s components can be embedded (as regular
closed sets) in spaces of dimension m, then all of x’s component can be embedded in
spaces of dimension m or lower”4. Compact axiomatizations of both primitives and their
interaction are presented next as basis for the subsequent axiomatization of the closure
operations.

2A regular closed region x satisfies x = cl(x) = cl(int(x))), that is, the closure is equivalent to the closure
of its own interior. All regions being regular closed or regular open is a common requirement throughout
mereotopologies [9,20] to avoid regions of mixed dimensions or with lower-dimensional artifacts.

3An arc, for example, is homeomorphic to a straight line segment and thus can be embedded in R1. Likewise,
an entity consisting of three arcs radiating from a single point is treated as 1D feature because each arc is
individually homeomorphically embeddable in R1, even though the entire entity cannot be embedded in R1.

4The original axiomatization in [19,17] uses x <dim y as primitive, but is otherwise logically equivalent.

T. Hahmann / On Decomposition Operations in a Theory of Multidimensional Qualitative Space 177



The Module of Relative Dimensionality The predicate ≤dim is a reflexive and transi-
tive relation (D’-A1,3), with <dim and =dim as definitions (D’-D1,2). For mathematical
simplicity, the theory introduces a unique zero (or null) region, indicated by the unary
predicate ZEX and treated as having a lower dimension than all other regions. Additional
notions of maximal and minimal dimension (apart from the zero region) MaxDim and
MinDim and of covering dimension (i.e, next greater dimension) ≺dim (D-D5–7) are de-
fined. The module DI′linear ={D’-D1–D4, D-D6–D7, D’-A1–A6}5 assumes that a low-
est dimension exists (D-A6) but axioms that require a highest dimension to exist or the
dimensions to be a discrete set are optional in the mereotopological theory [17].

(D’-D1) x <dim y↔ x≤dim y∧ y �dim x
(D’-D2) x =dim y↔ x≤dim y∧ y≤dim x
(D-D5) MaxDim(x)↔∀y [y≤dim x] (maximal-dimensional entities)
(D-D6) MinDim(x)↔¬ZEX(x)∧∀y [¬ZEX(y)→ y≥dim x] (minimal nonzero dimensional ent.)
(D-D7) x≺dim y↔ x <dim y∧∀z [z≤dim x∨ y≤dim z] (next highest dimension)
(D’-A1) x≤dim x (≤dim reflexive)
(D’-A3) x≤dim y∧ y≤dim z→ x≤dim z (≤dim transitive)
(D’-A4) ZEX(x)∧ZEX(y)→ x = y (unique zero region)
(D’-A5) ZEX(x)→ x≤dim y (zero region has lowest dimension)
(D’-A6) ∃x [MinDim(x)] (a region of lowest dimension exists)

The Module of Spatial Containment The primitive relation of spatial containment,
Cont(x,y), is a reflexive, antisymmetric, and transitive relation (C-A1–A3) with the zero
region being defined as the only region not containing itself (C-A4). Contact C(x,y) be-
comes definable without any dimensional constraints (C-D) as expected (i.e., regions
are in contact if they “share a common region”) as long as the theory is mereologically
closed, that is, for any two regions in contact there is a shared region in the domain. This
further motivates the need for the intersection operation. In CObasic ={C-A1–A4, C-D,
D’-A4}6, containment is provably extensional (C-T1), that is, any region is identifiable
by its unique set of contained regions. It is also provable that contact is reflexive (except
for the zero region, which is not is contact with anything), symmetric, and containment
is monotone with respect to contact (C-T2–T5; omitted here).

(C-A1) ¬ZEX(x)↔ Cont(x,x) (Cont reflexive and definition of ZEX)
(C-A2) Cont(x,y)∧Cont(y,x)→ x = y (Cont antisymmetric)
(C-A3) Cont(x,y)∧Cont(y,z)→ Cont(x,z) (Cont transitive)
(C-A4) ZEX(x)→∀y [¬Cont(x,y)∧¬Cont(y,x)] (zero region never in Cont relation)
(C-D) C(x,y)↔∃z [Cont(z,x)∧Cont(z,y)] (contact)
(C-T1) ∀z [Cont(z,x)↔ Cont(z,y)]→ x = y (Cont extensional)

The Combined Theory CODI A single axiom relates the primitive notions: if x is con-
tained in y, then y must have at least the dimension of x (CD-A1). Parthood and proper
parthood are defined as unidimensional variants of containment (EP-D,EPP-D) with part-
hood being extensional (EP-T9)7. Min and Max denote minimal (i.e., indivisible) and

5All modules presented here are provided in Common Logic format in COLORE: http://colore.
oor.net in the folders multidim_mereotopology_XXX. DI′linear, for example, is axiomatized in
http://colore.oor.net/multidim_mereotopology_dim/dim_prime_linear.clif.

6http://colore.oor.net/multidim_mereotopology_cont/cont_basic.clif
7http://colore.oor.net/multidim_mereotopology_codi/theorems/ep_

theorems.clif
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maximal (i.e., not a proper part of another region) entities within a dimension (ME-
D1,D2). To prove decomposibility later on, we need to restrict the theory to models that
are atomic, wherein each region must contain some minimal part (ME-E1).
(CD-A1) Cont(x,y)→ x≤dim y (a contained entity is of the same or a lesser dimension)
(EP-D) P(x,y)↔ Cont(x,y)∧ x =dim y (equidimensional parthood)
(EP-T9) ∀z [P(z,x)↔ P(z,y)]→ x = y (P extensional)
(EPP-D) PP(x,y)↔ P(x,y)∧ x �= y (equidimensional proper parthood)
(ME-D1) Max(x)↔¬ZEX(x)∧∀y [¬PP(x,y)] (maximal in a dimension)
(ME-D2) Min(x)↔¬ZEX(x)∧∀y [¬PP(y,x)] (minimal in a dimension)
(ME-E1) ¬ZEX(x)→∃y[P(y,x)∧Min(y)] (nonzero regions have a minimal part)

Three specialized symmetric contact relations become definable: partial overlap PO
when two regions of equal dimension share a region of the same dimension (e.g., the
2D regions in Fig. 1(b) share a 2D part; PO-D)8; incidence SC when a region shares
a part with a higher-dimensional region (e.g., in Fig. 1(c) the curve shares a segment
with the 2D region, and in Fig. 1(a) the 1D region l is contained in the 2D region r;
Inc-D); and superficial contact SC when two regions share a lower-dimensional region
(e.g., the 2D regions r and s share 1D region l and point p in Fig. 1(a); SC-D). Together,
the three relations are an exhaustive and mutually exclusive set of subrelations of contact
[19]. Refer to [17, Ch. 6] for a detailed discussion of the contact relations. We define
CODI = DI′linear∪CObasic∪ {CD-A1, EP-D, EPP-D, PO-D, Inc-D, SC-D, ME-D1,D2}9

and CODIat = CODI ∪ {ME-E1} as its atomic version10.
(PO-D) PO(x,y)↔∃z [P(z,x)∧P(z,y)] (partial overlap)
(Inc-D) Inc(x,y)↔∃z[(Cont(z,x)∧P(z,y)∧ z <dim x)∨ (P(z,x)∧Cont(z,y)∧ z <dim y)]

(incidence)
(SC-D) SC(x,y)↔∃z[Cont(z,x)∧Cont(z,y)]∧∀z[Cont(z,x)∧Cont(z,y)→ z <dim x∧ z <dim y]

(superficial contact)

4. Extending CODI with Downwards Closure Operations

This section presents our technical contributions. We first propose axioms for the closure
operations of intersection and relative complement (difference) as extension to CODI and
CODIat. We then verify that the operations are well-defined functions, i.e. for each pair
of elements x,y, only one element qualifies as potential intersection and only one as po-
tential difference, and show that the axioms suffice to guarantee that CODIat

↓ , the exten-
sion of CODIat, satisfies the decomposability property. The proposed axioms for the op-
erations are guided by Gott’s previous work [16] and Casati and Varzi’s detailed study of
mereological and topological closure operations in unidimensional mereotopologies [4].

If we want to ensure that the entities resulting from the operations are again of uni-
form dimension (i.e., each component of such a region is of the same dimension), the
closure operations must be necessarily lossy in that they lose pieces of the intersection or
difference that are of lower dimensions than other pieces. As the result, the operations vi-
olate a number of properties typically associated with product and difference operations
in set theory, such as associativity of intersections: a · (b · c) = (a ·b) · c.

8Our use of PO differs from the use in most unidimensional mereotopologies, e.g., the RCC [9] or [4], where
PO dissallows full containment, a notion expressable here as PO(x,y)∧¬Cont(x,y)∧¬Cont(y,x).

9http://colore.oor.net/multidim_mereotopology_codi/codi.clif
10http://colore.oor.net/multidim_mereotopology_codi/codi_atomic.clif
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4.1. Intersections

We already have distinguished contact relations depending on the relative dimensionality
of the shared region. But this only considers the shared region of greatest dimension.
Consider for example Figure 1(a): the two 2D regions r and s share l as a common
piece of boundary (a 1D region) but also the point p (a 0D region), which is unrelated
from l. Likewise, a 1D curve could properly intersect a 2D region in a curve segment,
while also meeting the 2D region at a separate point. The problem with these cases
is that the full intersection could consist of scattered pieces of varying dimensions. To
yield a valid region we must ensure that the pieces are of uniform dimension. This is
achieved by dropping extra lower-dimensional pieces from the intersection, thus defining
the intersection x · y as the maximal intersection of highest dimension among all entities
shared by the regions x and y (Int-A1 – Int-A4). This intersection could still consist of
scattered parts (e.g, the intersection between x and y in Fig. 1(c)) as long as they are of
equal dimension. All other, lower-dimensional entities are lost unless they are contained
in the intersection of highest dimension, in which case they are still contained in the
intersection by transitivity of containment.

(Int-A1) ¬C(x,y)→ ZEX(x · y) (empty intersection)
(Int-A2) ¬ZEX(x · y)→ Cont(x · y,x) (x · y is contained in the intersecting entities)
(Int-A3) Cont(z,x)∧Cont(z,y)→ z≤dim x · y

(x · y has a dimension greater or equal to all entities contained in both x and y)
(Int-A4) Cont(z,x)∧Cont(z,y)∧ z =dim x · y↔ P(z,x · y) (every entity of the

dimension of x · y that is contained in both x and y is a part of x · y and vice versa)

We can now verify that the intersection operation · is fully defined in CODI ∪
{Int-A1 – Int-A4}, that is, for every pair of elements x,y, one and only one element meets
all requirements from Int-A1 – Int-A4 to serve as x · y. We only sketch the proofs for
Thms. 1 and 2 and refer to the full proofs in [17].

Theorem 1. The operation · is fully defined in CODI ∪ {Int-A1 – Int-A4}.

Proof Sketch. Let M be a model with x,y being arbitrary elements from the domain
Dom(M ). We need to prove that some z exists such that it can serve as x ·y and that this z
is unique. Three exhaustive cases are considered: (1) 〈x,y〉 /∈CM

11 where x ·y∈ZEXM ;
(2) 〈x,y〉 ∈ CM and 〈z,x · y〉 ∈ (<<<dim)M ; and (3) 〈x,y〉 ∈ CM and 〈z,x · y〉 ∈ (===dim)M .
These are exhaustive because 〈x,y〉 ∈ CM and 〈z,x · y〉 ∈ (>>>dim)M is impossible.

Typical properties of intersection/product operations are: commutativity (x ·y= y ·x),
associativity ((x · y) · z = x · (y · z)), idempotence (x · x = x), existence of an identity 1
(1 ·x = x ·1 = x), and existence of a zero element 0 (0 ·x = x ·0 = 0). Commutativity and
idempotence are easily proved (Int-T5,T10), but associativity fails in cases where one of
the intersections x · y and y · z is nonuniform as in Fig. 1(a). However, the intersection
operation satisfies a weaker form of associativity known as the left- and right-alternative
laws (Int-T11,T12). The zero region serves as null element (Int-T13), while an identity
element would require postulating that a universal region that contains every nonzero
region exists: ∃x∀y[¬ZEX(y)→ Cont(y,x)]. Int-T6–T9 verify the correct dimensionality

11The bold symbols, such as CM , ZEXM , or (<<<dim)M , denote the symbols’ extensions in the model M .
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of the intersection for the four exhaustive cases of ¬C, PO, Inc, and SC. All of Int-T5–
T13 are provable from CODI ∪ {Int-A1 – Int-A4}12.

(Int-T5) x · y = y · x (intersection commutative)13

(Int-T6) ZEX(x · y)↔¬C(x,y) (zero intersection only for disconnected entities)
(Int-T7) PO(x,y)→ x =dim x · y =dim y

(PO: x · y is of the same dimension as both intersecting entities)
(Int-T8) [Inc(x,y)∧ x <dim y]→ [x · y =dim x∧ x · y <dim y] (Inc: x · y has the same dimension as

one of the intersecting entities and a lower dimension than the other)
(Int-T9) SC(x,y)→ x · y <dim x∧ x · y <dim y (SC: x · y is of a lower dim. than both x and y)
(Int-T10) x · x = x (· idempotent)
(Int-T11) (x · x) · y = x · (x · y) (· left-alternative)
(Int-T12) y · (x · x) = (y · x) · x (· right-alternative)
(Int-T13) ZEX(y)→ ZEX(x · y) (existence of a null element for ·)

4.2. Differences

Models of unidimensional mereotopologies are usually closed under complementation
in the sense that some universal region U exists that contains all other nonzero regions,
and every region y has a complement y′ = U − y. But even without a universal entity, it
is reasonable to require that relative complements exist: any region y that is a proper part
of a region x has a nonzero relative complement x−y if y �= x. Inspired by set theory, we
refer to − as the difference operations.

To ensure that in a multidimensional mereotopology the difference x− y has a uni-
form dimension, we again only take the pieces of largest dimension into account, simi-
lar to how the intersection operation drops lower-dimensional pieces in the intersection.
Thus, whenever the difference is not empty, it has the same dimension as the minuend x
(Dif-A1). For equidimensional regions, the difference matches the definitions from uni-
dimensional mereotopology [14,16], as exemplified by the difference between the 2D
regions in Fig. 1(b). Likewise, the difference between two 1D regions, e.g. between y
and x ·y in Fig. 1(c), is a 1D region. This idea extends to differences whose subtrahend is
of a greater dimension than the minuend (Dif-A3), as exemplified by the difference y−x
between the line segment y and the 2D region x in Fig. 1(c), which is a line segment that
is a proper part of y. But when the minuend is of a greater dimension than the subtrahend,
the difference must be the minuend itself (Dif-A2), ignoring missing lower-dimensional
artifacts (e.g., x−y = x in Fig. 1(c)). This works in general because the intersection never
has a greater dimension than either of the intersecting regions. Dif-T7 verifies that the
difference between x and y is indeed equivalent to the difference between x and the in-
tersection of x and y. Dif-A4 captures the exact conditions when the difference may be

12All theorems in Section 4—indicated by labels of the form XX-Tx—are proved using the automated the-
orem provers Prover9 and Vampire. The full proofs are provided in COLORE in http://colore.oor.
net/multidim_mereotopology_codi/theorems/ with proofs in the subfolder output. For ex-
ample, the files codi_int_theorems_goal5.p9.out to codi_int_theorems_goal24.p9.out
and similarly, the outputs ending with .vam.out contain proofs for Int-T5–T13. Some theorems are proved
in multiple parts, for example, to treat the zero entity separately (e.g., Int-T5) or to prove the two directions of
the biconditional in Dif-T9. Dif-T6–8 are re-expressed using extensionality of P (EP-T9). See [17] for more
details.

13Commutativity is proven indirectly from multiple pieces: ¬ZEX(x · y)→ P(x · y,y · x)), ¬ZEX(y · x)→
P(y · x,x · y)), ZEX(x · y)→ ZEX(y · x), and ZEX(y · x)→ ZEX(x · y), which together entail commutativity with
¬ZEX(x)→ [x = y↔ P(x,y)∧P(y,x)] and D’-A4.
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empty: either the minuend is zero or the minuend is contained in the subtrahend. From
reflexivity of Cont for nonzero regions, it follows that x− x is always the zero region.

We define the theory CODI↓ = CODI ∪ {Int-A1 – Int-A4, Dif-A1 – Dif-A4}14 and
its atomic variant as CODIat

↓ = CODI↓ ∪ME-E115. Because differences must exist for
all pairs of entities, as proven later in Thmeorem 2, CODI↓ and CODIat

↓ both entail that
some zero region must exist (Z-T1).

(Dif-A1) ¬ZEX(x− y)→ x− y =dim x (dimension of the difference x− y)
(Dif-A2) y <dim x→ x− y = x (difference x− y for a lower-dimensional y)
(Dif-A3a) x≤dim y→ [Cont(z,x)∧ z · y <dim z→ Cont(z,x− y)]
(Dif-A3b) x≤dim y→ [Cont(z,x− y)→ Cont(z,x)]
(Dif-A3c) x≤dim y→ [P(z,x− y)→ z · y <dim z]

(Dif-A3a – Dif-A3c: constitution of x− y when y has equal or greater dimension than x)
(Dif-A4) ZEX(x− y)↔ ZEX(x)∨Cont(x,y)

(zero difference x− y only when x is contained in y or x is the zero region)
(Z-T1) ∃x[ZEX(x)] (existence of a zero region)

We next prove theorems about the behavior of the difference operation that are pre-
requisites to prove that it is a well-defined function and satisfies the desired supplemen-
tation principles from unidimensional mereotopology. The first theorems confirm the re-
lationship of x− y to x and y (Dif-T1–T3), that the intersection x · y and the difference
x− y never overlap (Dif-T4), and that the difference can be described in terms of part-
hood alone (Dif-T5)16. Dif-T6,T7 capture the interaction between the intersection and
difference operations, ensuring that x− y = x− (x · y) = x · (x− y) holds as expected,
where Dif-T6 confirms the remainder principle from mereology [28]. Dif-T8–T10 verify
that the difference works correctly in borderline case, such as for parts, for equivalent
regions, and for regions that only share a lower-dimensional region.
(Dif-T1) ¬ZEX(x− y)→ P(x− y,x) (a nonempty difference x− y is part of x)
(Dif-T2) PP(y,x)→ PP(x− y,x) (for a proper part y of x, x− y is also a proper part of x)
(Dif-T3) ¬PO(x− y,y) (y and x− y do not partially overlap)
(Dif-T4) ¬PO(x− y,x · y) (x · y and x− y do not partially overlap)
(Dif-T5) P(z,x− y)↔ P(z,x)∧¬PO(z,x · y) (parts of the difference x− y)
(Dif-T6) x− y = x− (x · y) (x− y and x− (x · y) are identical)
(Dif-T7) x− y = x · (x− y) (x− y and its intersection with x are identical)
(Dif-T8) P(y,x)→ y = x− (x− y) (− involutary)
(Dif-T9) x = y↔ ZEX(x− y)∧ZEX(y− x) (− anticommutative)
(Dif-T10) SC(x,y)→ x− y = x (difference between entities in superficial contact)

In set theory, the intersection and difference operations are interdefinable through
the equivalence x · y = x− (x− y). Because of CODI↓’s lossy operations that ensures all
regions have uniform dimensions, the same equivalence does not hold here as demon-
strated by x and y in Fig. 1(c): x · y yields a segment of y, while x− y = x because y
has a lower dimension than x. Then x− (x− y) = x− x, yielding the zero region rather
than the lower-dimensional intersection of x and y. Thus, intersections and differences
must be axiomatized separately in CODI though many of the relationships between the
operations from set theory are still preserved.

14http://colore.oor.net/multidim_mereotopology_codi/codi_down.clif
15http://colore.oor.net/multidim_mereotopology_codi/codi_down_atomic.

clif
16Recall that PO denotes overlap in a part rather than proper overlap and thus includes full containment.

Thus PO is the most general overlap relation between unidimensional entities similar to O in [4,9,27].

T. Hahmann / On Decomposition Operations in a Theory of Multidimensional Qualitative Space182

http://colore.oor.net/multidim_mereotopology_codi/codi_down.clif
http://colore.oor.net/multidim_mereotopology_codi/codi_down_atomic.clif
http://colore.oor.net/multidim_mereotopology_codi/codi_down_atomic.clif


4.3. Supplementation and Extensionality Principles

Important criteria for evaluating unidimensional mereological and mereotopological the-
ories are supplementation principles [4,28]. Its weakest form requires each part of a
region to be complemented by some other non-overlapping part of the same region
(EP-E1). The stronger variant requires every region that is not a part of x to have a proper
part that does not overlap x (EP-E2) and thus is also not a part of x. Both are provable
in CODI↓. EP-E2 can be generalized to multidimensional cases: every region y not con-
tained in x has a part z such that the intersection z · x is of a lower dimension than z (EP-
E3), meaning that z does not share a part with x. EP-E3 is also provable in CODI↓. In
fact, all of three principles are consequences of the remainder principle (Dif-T6), which
strengthens strong supplementation further. These supplementation principles verify that
the axiomatized closure operations properly capture common intuitions about such oper-
ations. At the same time, they are a crucial step towards our ultimate goal of establishing
decomposability for regions in models of CODIat

↓ such that every region is identified by
a finite sum of minimal parts. Towards this goal, strong supplementation already entails
that the partial overlap relation PO is extensional (PO-E1) in CODI↓, which ensures that
every entity is uniquely identified by its atomic parts.

(EP-E1) PP(y,x)→∃z [P(z,x)∧¬PO(z,y)] (weak supplementation)
(EP-E2) ¬ZEX(y)∧¬P(y,x)→∃z [P(z,y)∧¬PO(z,x)] (strong supplementation)
(EP-E3) ¬ZEX(x)∧¬ZEX(y)∧¬Cont(y,x)→∃z [P(z,y)∧ z · x <dim z]

(strong supplementation of containment)
(PO-E1) ∀z[PO(z,x)↔ PO(z,y)]→ x = y (PO extensional)

PO-E1 and Dif-T5 now help prove that the difference x− y is indeed fully defined
for every pair of elements x,y in a model of CODI↓.

Theorem 2. The operation − is fully defined in CODI↓.

Proof Sketch. The proof distinguishes the two exhaustive cases: (1) when 〈x,y〉 ∈
(>>>dim)M and (2) when 〈x,y〉 ∈ (≤≤≤dim)M . The case 〈x,y〉 ∈ (≤≤≤dim)M considers each
part z of the entity x− y individually. If 〈z,y〉 ∈ POM , then 〈z,x− y〉 /∈ PM , otherwise
〈z,x−y〉 ∈ PM . By extensionality of PO, this uniquely determines the parts of x−y.

4.4. Decomposability of Atomic Models of CODI↓

In the atomic models of many unidimensional mereotopologies, each region can be de-
composed into a set of minimal, covering and non-overlapping parts if extensionality of
PO (PO-E1) and strong supplementation (EP-E2) are satisfied [32]. We now confirm that
decomposability, as exemplified in Fig. 2, also works in the atomic version CODIat

↓ of
our multidimensional mereotopology. Again, PO-E1 and EP-E2 are central to the proof.

In any model of CODIat
↓ all nonzero regions contain some minimal, i.e., indivisi-

ble, proper part. Proving decomposability then amounts to showing that the models are
atomistic, that is, proving that every two partially overlapping regions share some min-
imal part. Then, any region is the sum of its minimal parts and those minimal parts
uniquely define the region. This also means that each region in contact with a given re-
gion x shares a, possibly lower dimensional, region contained in some minimal part of
x. In other words, the containment of lower-dimensional regions in models of the mul-
tidimensional mereotopology CODIat

↓ does not significantly alter the models’ structure
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Figure 2. A model of CODIat
↓ (left) decomposed by intersections and differences into its atomic entities:

points p1–p7, lines l7–l19, and areas a4–a8, shown in the three right figures. Non-atomic entities are sums
of atomic ones, e.g., a3 = a5∪ a7∪ a8 and l5 (the boundary of a2) equals to l9∪ l10∪ l14∪ l13. Because
of the existence of complements, additional non-atomic entities are entailed to exist: a3 · a1 = a5∪ a7 and
l5− l9 = l10∪ l14∪ l13.

that is still defined—as in most unidimensional mereotopologies— by (equidimensional)
parthood. Instead, the additional structure from containment of lower-dimensional works
within the confines of the models’ parthood structure.

Theorem 3. Let M be a model of CODIat
↓ with domain M. Then every entity x ∈M is

uniquely determined by its set of non-overlapping minimal parts that jointly cover x.

Proof. Let M be a model of CODIat
↓ with domain M.

By ME-E1, we have M � ∀x
[¬ZEX(x)→∃y[P(y,x)∧Min(y)]

]

Recall that by PO-E1, every entity x ∈ M in the model is uniquely defined by the
following extension of PO involving x: POM (x) = {〈x,w〉 | 〈x,w〉 ∈ POM }.

Choose an arbitrary x∈M. We need to prove that x is uniquely defined by the subset
POMin

M (x)⊆ POM (x) relating x to minimal entities:

POMin
M (x) = {〈x,w〉 | w ∈MinM } ⊆ POM (x) = {〈x,w〉 | 〈x,w〉 ∈ POM }

Now suppose there exists another entity x′ ∈ M with x′ �= x that partially overlaps
the same set of minimal entities as x, i.e., POMin

M (x′) = POMin
M (x). From x′ �= x, either

〈x′,x〉 ∈PPM or 〈x′,x〉 /∈PM . In the former case, some minimal entity w∈M would exist
by ME-E1 such that w ∈ POMin

M (x) and w /∈ POMin
M (x), contradicting our assumption. In

the second case, by EP-E2 some w ∈M exists such that 〈w,x′〉 ∈ PM and 〈w,x〉 /∈ POM .
Such a w would—by ME-E1—contain a minimal entity v ∈M. Then 〈x,v〉 /∈ POMin

M but
〈x′,v〉 ∈ POMin

M , which contradicts the assumption that x′ and x partially overlap the same
minimal entities.

Thus, any region x is uniquely defined by its minimal parts, i.e., by its extension
PMin

M (x), in a model of CODIat
↓ . Because distinct minimal entities cannot overlap and

entities that partially overlap must share a minimal part, the minimal parts of a region x
form a spatial partition: they are pairwise non-overlapping and they are exhaustive, i.e.,
any other region in contact with x must be in contact with one of its minimal parts.

5. Conclusions

Mereotopology is at the core of representing space qualitatively, but with existing
theories being either restricted to a unidimensional view of space wherein all enti-
ties must have the same dimension, or limited in their product/intersection and dif-
ference/complement operations to entities of equal dimension, which misses many vi-
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able inferred entities. This work proposes axiomatic extensions to the multidimensional
mereotopology CODI that fully define an intersection and difference operation with
nonzero results whenever regions are in contact. The operations’ results agree with
those of other mereotopologies when applied to regions of equal dimensions, corrob-
orating earlier results that show CODI can be logically restricted to unidimensional
mereotopologies as a special case [18].

The intersection and difference operations satisfy key properties from the set-
theoretic intersection and difference operations as evidence that they behave as expected.
But two properties cannot be preserved: (1) associativity of intersection and (2) inter-
definability of intersection and differences, due to both operations being inherent lossy.
However, lossy definitions are a necessary compromise to avoid creating entities of
mixed dimensions (i.e. a region with a protruding or missing line segment).

It is further verified that the strong supplementation principle from mereology holds
in the extended theory CODI↓ and that the partial overlap relation is extensional. This
suffices to prove decomposibility of all atomic models—and thus all finite models—of
CODI↓ with the consequence that any region in such a model can be uniquely repre-
sented as the set of its atomic parts. This property increases the theory’s practical utility
by allowing to represent complex entities of any dimension as sets of simple entities,
similar to how geometric data models, e.g., ISO’s Simple Features standard [21], define
complex linear (e.g., MultiLineString) and areal (e.g., MultiPolygon) features. CODIat

↓
only requires information about its two primitives, relative dimension and containment,
between its minimal entities (rather than all entities) to completely represent a model
and query its mereotopological relations between simple or complex entities. This is due
to the following inferred definitions, which can efficiently be implemented on existing
geometric data models:
C(x,y)≡ ∃z[Min(z)∧Cont(z,x)∧Cont(z,y)] (Contact)
PO(x,y)≡ ∃z[Min(z)∧P(z,x)∧P(z,y)] (Overlap in a part)
Inc(x,y)≡ ∃z

[
Min(z)∧ [P(z,x)∧ z <dim y∧Cont(z,y)]∨ [P(z,y)∧ z <dim x∧Cont(z,x)]

]

(Incidence)
SC(x,y)↔∃z[Min(z)∧Cont(z,x)∧Cont(z,y)]∧¬∃z[Min(z)∧P(z,x)∧P(z,y))]

(Superficial contact)

CODI’s approach avoids the combinatorial explosion of the number of mereotopo-
logical relations in related work [7,8,13,25] wherein each specific dimensional combina-
tion (e.g., 0D-1D, 0D-2D, 1D-1D, 1D-2D, etc.) is assigned a separate relation. Instead,
CODI provides a small, more manageable set of relations. While the relative dimension
relations≤dim or <dim seem intuitive, their cognitive adequacy require further study. But
the outcome does not affect the usability of CODI↓, as the dimension information is al-
ready implicitly available from geometric data sources, typically as a class of objects for
each dimension, which permits implementing the mereotopological theory on top of or
in lieu of geometric models. Future work must also axiomatize sums in a way that takes
into account which sums are ontologically warranted or desirable [4,28].
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