
Reasoning with Metalevel Argumentation
Frameworks in Aspartix

Nadin KOKCIYAN a,1, Isabel SASSOON a, Anthony P. YOUNG a, Sanjay MODGIL a

and Simon PARSONS a

a Department of Informatics, King’s College London

Keywords. Computational argumentation, metalevel argumentation frameworks

1. Introduction

In this demo paper, we propose an encoding for Metalevel Argumentation Frameworks
(MAFs) to be used in Aspartix, an Answer Set Programming (ASP) approach to find
the justified arguments of an AF [2]. MAFs provide a uniform encoding of object level
Dung Frameworks and extensions thereof that include values, preferences and attacks
on attacks (EAFs). The justification status of arguments in the object level AF can then
be evaluated and explained through evaluation of the arguments in the MAF. The demo
includes multiple examples from the literature to show the applicability of our proposed
encoding for translating various object level AFs to the uniform language of MAFs.

2. An Encoding to Reason with MAFs in Aspartix

In Table 1, we provide a subset of ASP rules that can be used for reasoning with MAFs.
Each rule is of the form head :- body. In this work, body consists of a conjunction of
predicates and head is a predicate. Every predicate in the metalevel is shown in italics,
every predicate in the object level is shown in normal text, and each variable is in upper-
case letter. At the object-level, a(X) and r(a(X), a(Y)) represent the argument X and the
attack relation between the arguments X and Y, respectively. Moreover, an attack on an
attack is represented with d(a(Z), a(X), a(Y)) where the argument Z attacks the attack
between X and Y. Such an object-level description is then translated into a MAF [4]. At
the metalevel, the meta-argument A and the meta-attack between the meta-arguments A
and B are described by arg(A) and att(A, B), respectively. Each object-level argument
has a justified or rejected status in the metalevel. The object-level attacks are translated
into defeat or ddefeat meta-attack arguments. A preference argument is specified with the
predicate preferred. The rules r1−r6 are the core rules to map the object-level arguments
and attacks to the corresponding MAF. P-MAF rules (r7− r9) add preferences and E-
MAF rules (r10− r12) add attacks on attacks into the metalevel.

1Corresponding Author: Department of Informatics, King’s College London, Bush House, Strand Campus,
30 Aldwych, WC2B 4BG, London, United Kingdom.; E-mail: nadin.kokciyan@kcl.ac.uk

Computational Models of Argument
S. Modgil et al. (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-906-5-463

463

nadin.kokciyan@kcl.ac.uk


Dung MAF

r1: arg(justified(X)) :- a(X)
r2: arg(rejected(X)) :- a(X)
r3: arg(defeat(X, Y)) :- r(a(X), a(Y))
r4: att(defeat(X, Y), justified(Y)) :- arg(defeat(X, Y)), arg(justified(Y))
r5: att(rejected(X), defeat(X, Y)) :- arg(defeat(X, Y)), arg(rejected(X))
r6: att(justified(X), rejected(X)) :- arg(justified(X)), arg(rejected(X))

P-MAF

r7: att(preferred(X, Y), preferred(Y, X)) :- arg(preferred(X, Y)), arg(preferred(Y, X))
r8: arg(preferred(X, Y)) :- p(a(X), a(Y))
r9: att(preferred(X, Y), defeat(Y, X)) :- arg(preferred(X, Y)), arg(defeat(Y, X))

E-MAF

r10: arg(ddefeat(Z, X, Y)) :- d(a(Z), a(X), a(Y))
r11: att(ddefeat(Z, X, Y), defeat(X, Y)) :- arg(defeat(X, Y)), arg(ddefeat(Z, X, Y))
r12: att(rejected(Z), ddefeat(Z, X, Y)) :- arg(rejected(Z)), arg(ddefeat(Z, X, Y))

Table 1. A Subset of ASP Rules to Reason with Metalevel Argumentation Frameworks (MAFs)

Demo Details. We use multiple scenarios from the literature to demonstrate our pro-
posed encoding in various AFs. Our first scenario concerns finding a consistent firewall
policy that contains a set of firewall rules collected from various gateways with different
preferences [1]. In this scenario, a MAF is used to explain why conflicts occur between
policies and help one to resolve such conflicts. In a variation of the same scenario, dif-
ferent parties associate values with their arguments and a preference relation between
these values. Our second scenario concerns recommending hypertension treatments [3]
where an EAF is used to recommend treatments given doctor and patient preferences.
We also consider various abstract examples from [4]. We have a Python implementation
that (1) uses DLV2 as the ASP engine to map an AF into a MAF and computes the set
of acceptable arguments according to Dung’s semantics, (2) generates the correspond-
ing MAF graphs as figures that explain the decision-making process. The X-MAF en-
codings, the input/output files for the scenarios and our Python implementation will be
accessible online at https://consult.kcl.ac.uk/comma18-demo/.

Acknowledgments. This research was supported by the UK Engineering & Physical Sciences
Research Council (EPSRC) under grant #EP/P010105/1.

References

[1] A. Applebaum, Z. Li, K. Levitt, S. Parsons, J. Rowe, and E. I. Sklar. Firewall configuration: An applica-
tion of multiagent metalevel argumentation. Argument & Computation, 7(2-3):201–221, 2016.

[2] U. Egly, S. Gaggl, and S. Woltran. Aspartix: Implementing argumentation frameworks using answer-set
programming. Logic Programming, pages 734–738, 2008.

[3] N. Kokciyan, I. Sassoon, A. Young, M. Chapman, T. Porat, M. Ashworth, V. Curcin, S. Modgil, S. Par-
sons, and E. Sklar. Towards an Argumentation System for Supporting Patients in Self-Managing their
Chronic Conditions. 2018.

[4] S. Modgil and T. J. Bench-Capon. Metalevel argumentation. Journal of Logic and Computation,
21(6):959–1003, 2011.

2http://www.dlvsystem.com/dlv/

N. Kokciyan et al. / Reasoning with Metalevel Argumentation Frameworks in Aspartix464

https://consult.kcl.ac.uk/comma18-demo/
http://www.dlvsystem.com/dlv/

