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Abstract. We propose a new graded semantics for abstract argumentation frame-
works that is based on the constellations approach to probabilistic argumentation.
Given an abstract argumentation framework, our approach assigns uniform prob-
ability to all arguments and then ranks arguments according to the probability of
acceptance wrt. some classical semantics. Albeit relying on a simple idea this ap-
proach (1) is based on the solid theoretical foundations of probability theory, and
(2) complies with many rationality postulates proposed for graded semantics. We
also investigate an application of our approach for inconsistency measurement in
argumentation frameworks and show that the measure induced by the probabilistic
graded semantics also complies with the basic rationality postulates from that area.
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1. Introduction

Abstract argumentation frameworks [11] provide a simple approach for a computational
model of argumentation [4] by solely focusing on the interplay of arguments through a
conflict relation. An abstract argumentation framework is a directed graph where vertices
are identified with arguments and a directed edge between an argument a and an argu-
ment b denotes an attack of a on b. Given such a framework the natural reasoning ques-
tion is to determine a set of arguments E (also called extension) that represents a coherent
point of view on a possible outcome of the argumentation represented by the framework.
Building on simple desirable properties of such an extension such as conflict-freeness,
i. e., no argument in E should attack another argument in E, a variety of different se-
mantics can be defined [5], which assigns to every framework a set of these extensions.
However, the classical notion of a semantics lacks expressivity when it comes to a more
fine-grained assessment of the acceptability status of arguments as they usually only
differentiate between acceptance and rejection of arguments. Recent years have seen a
sparking interest in graded semantics (or ranking semantics) [9,1,13,8,3], i. e., semantics
that assign a ranking relation S over arguments in abstract argumentation frameworks
such that aSb expresses that a is at least as acceptable as b. The technical foundation for
such a graded approach to acceptability usually stems from topological considerations
and assesses arguments more acceptable than others if, e. g., they are attacked by less
arguments of defended by more arguments.

We contribute to the field of graded semantics by presenting a novel approach that
is based on the constellation approach to probabilistic argumentation [18,14,12], viz.,
a probabilistic extension of abstract argumentation frameworks where arguments and
attacks can be attached with probabilities that model uncertainty on the actual presence
of these components. Such probabilistic argumentation frameworks induce a probability
distribution over all subgraphs of the original framework and, by applying a classical
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semantics on each subgraph, a probability of acceptability of each argument. We use
the constellation approach to define a graded semantics by assigning to each argument
the same probability and using the resulting probabilities of acceptability as a means to
rank the arguments. A high probability of acceptability of an argument means that it is
usually accepted when it is present, despite a changing topology of the argumentation
framework. This means that the acceptability of this argument is robust wrt. the topology,
leading to a high level of acceptability. On the other hand, if an argument has a low
probability of acceptability it means that it is often rejected, even when subgraphs are
considered. This leads to a low level of acceptability. In addition to be founded on solid
theoretical foundations, our approach also turns out to comply with many rationality
postulates for graded semantics [8].

We also apply our novel graded semantics on the problem of measuring inconsis-
tency (or disagreement) in abstract argumentation frameworks [15,16,2]. It is motivated
by the field of inconsistency measurement in classical logic [20] and aims at assessing
the degree of conflicts in an abstract argumentation framework in one number. This area
has certain relationships with graded semantics and we show that a straightforward ap-
plication of our concrete graded semantics complies with the basic rationality postulates
of inconsistency measurement as well, but also provides a new perspective.

In summary, the contributions of this paper are as follows.

1. We propose a novel graded semantics based on the constellation approach to
probabilistic argumentation (Section 4)

2. We apply the probabilistic graded semantics on the problem of measuring incon-
sistency in an abstract argumentation framework (Section 5)

Section 2 recalls background information on abstract argumentation, Section 3 intro-
duces notation for general graded semantics, and Section 6 concludes with a summary.
Proofs are omitted due to space restrictions but an extended version can be found online.1

2. Preliminaries

An abstract argumentation framework AF is a tuple AF = (A,R) where A is a set of
arguments and R is a relation R ⊆ A×A. For two arguments a,b ∈ A the relation aRb
means that argument a attacks argument b.

A path from b to a, noted P(b,a) is a sequence s = (c0, . . . ,cn) of arguments such
as c0 = a, cn = b, and ∀i < n,(ci+1,ci) ∈ R. We denote by lP = n the length of P. In
accordance with [8], for fixed AF= (A,R) and for all a ∈ A define

R−n (a) = {b | ∃P(b,a) with lP = n ∈ 2N+1} (attackers of a at n)

R−(a) =
⋃
n

R−n (a) (attackers of a)

B−
n (a) = {b ∈ R−n (a) | R−1 (b) = /0} (attack roots of a)

B−(a) =
⋃
n

B−
n (a) (attack branches of a)

R+
n (a) = {b | ∃P(b,a) with lP = n ∈ 2N} (defenders of a at n)

1http://mthimm.de/misc/comma18pgs.pdf
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R+(a) =
⋃
n

R+
n (a) (defenders of a)

B+
n (a) = {b ∈ R+

n (a) | R−1 (b) = /0} (defence roots of a)

B+(a) =
⋃
n

B+
n (a) (defense branches of a)

AncAF(a) = (A′,{(b,c) ∈ R | b ∈ A′,c ∈ A′})
with A′ = {a}∪R+(a)∪R−(a) (ancestor graph of a)

For a∈ A, the defense branch added to a is P+(a) = (A′,R′) where A′ = {a0, . . . ,an},n∈
2N,a0 = a,A∩A′ = {a} and R′ = {(ai,ai−1) | i ≤ n}. The attack branch added to a
is P−(a) = (A′,R′) where A′ = {a0, . . . ,an},n ∈ 2N+ 1,a0 = a,A∩A′ = {a} and R′ =
{(ai,ai−1) | i≤ n}.

Two abstract argumentation frameworks AF = (A,R) and AF′ = (A′,R′) are iso-
morphic, written AF ≡ AF′, if there is a bijective function γ : A→ A′ such that aRb iff
γ(a)R′γ(b) for all a,b ∈ A (γ is then called an isomorphism).

A connected component of an AF = (A,R) is a maximal subgraph AF′ = (A′,R′)
such that every two arguments a,b∈A′ are connected through a path while ignoring edge
directions. Let cc(AF) be the set of all connected components of AF.

An extension E is a set E ⊆ A that contains a set of arguments that are mutually
acceptable. We say that

• E is conflict-free iff for no a,b ∈ E, aRb;
• E defends a ∈ A iff for all c ∈ A with cRa there is b ∈ E with bRc;
• E is admissible iff E is conflict-free and for all a ∈ E, E defends a;
• E is complete (co) iff E is admissible and for all b ∈ A s. t. E defends b, b ∈ E;
• E is grounded (gr) iff E is complete and E is minimal (wrt. set inclusion);
• E is preferred (pr) if E is complete and E is maximal (wrt. set inclusion).

Note that the grounded extension is uniquely determined and every argumentation frame-
work possess at least one complete, grounded, and preferred extension [11]. Note that
we do not consider stable semantics as existence of stable extensions is not universally
guaranteed [11] and this would lead to some case differentiations in our definitions.

Let σ ∈ {co,gr,pr} be any semantics. An argument a ∈ A is credulously accepted
in AF wrt. σ , written AF |∼c

σ a, iff a ∈ E for some σ -extension E. An argument a ∈ A is
skeptically accepted in AF wrt. σ , written AF |∼s

σ a, iff a ∈ E for all σ -extensions E. We
use ◦ ∈ {s,c} as a symbol to refer to any inference mode.

3. Graded Semantics

In contrast to the classical semantics introduced above, graded semantics [9,1,13,8,3]
take a more fine-grained perspective on the acceptability of an argument by assigning
numerical values.

Definition 1. A graded semantics G assigns to each argumentation framework AF =
(A,R) a function GAF : A→ R.

The intuition behind the value GAF(a) of an argument a is that larger values of
GAF(a) indicate larger acceptability of a. For every classical semantics σ ∈ {co,gr,pr}
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and inference type ◦ ∈ {s,c} we can define a simple graded semantics Gσ via

Gσ ,◦
AF (a) =

{
1 iff AF |∼◦σ a
0 otherwise

However, the idea behind graded semantics is to obtain a more fine-grained perspective
on the acceptability of arguments. An example of a more elaborate graded semantics
is the categoriser function [7,19] GCat

AF defined by the (unique) solution to the set of
equations

GCat
AF (a) =

1
1+∑b∈R−1 (a) GCat

AF (b)

for all a ∈ A with the usual convention that the value of the empty sum is zero. In other
words, GCat

AF assigns to an argument 1 if it is not attacked. Otherwise, the more and
stronger arguments are attacking that argument, the lower the score. We refer to [8,10]
for a more thorough discussion of various approaches.

A different perspective on graded semantics can be obtained by focusing solely on
the relationships between arguments wrt. acceptability and not on the actual numbers.

Definition 2. A ranking semantics S assigns to each argumentation framework AF =
(A,R) a relation SAF ⊆ A×A.

Similarly as for graded semantics, aSAFb is interpreted as a is at least as acceptable
as b. Every graded semantics can be trivially translated into a ranking semantics SG via
aSG

AFb iff GAF(a) ≥ GAF(b) but there are instances of ranking semantics that cannot be
formalised as graded semantics, in particular in cases where arguments are not compa-
rable, see e. g. [13]. However, when there is no risk of confusion we will use the terms
ranking semantics and graded semantics interchangeably.

A ranking SAF can be extended to sets of arguments X ,X ′ ⊆ A as follows [1]. We
write XSAFX ′ iff there is an injective function f : X ′ → X such that for all a ∈ X ′,
f (a)SAFa. We write XS>AFX ′ iff XSAFX ′ and (|X ′|< |X | or there is a ∈ X ′ with f (a)SAFa
and not aSAF f (a)).

4. Probabilistic Argumentation and Graded Semantics

We now propose a graded semantics that is based on probabilistic abstract argumentation
[18,14,17]. We briefly recall probabilistic argumentation frameworks in Section 4.1 and
continue with our approach and its analysis in Section 4.2.

4.1. Probabilistic Argumentation Frameworks

In order to define our graded semantics, we will consider a simplified version of prob-
abilistic argumentation frameworks due to [18]. In our simplification, we only consider
probabilities of arguments (in contrast to the general case of [18]) where probabilities of
attacks are allowed as well).

Definition 3. A probabilistic argumentation framework PAF is a triple PAF= (A,R,P)
where (A,R) is an abstract argumentation framework and P is a function P : A→ [0,1].

For every argument a∈ A of a probabilistic argumentation framework PAF the value
P(a) is the probability that a is actually present in the argumentation framework. By
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ba c d

Figure 1. The argumentation framework from Example 1

X /0 a b a,b c a,c b,c a,b,c d a,d b,d a,b,d c,d a,c,d b,c,d a,b,c,d

Accepted /0 a b a c a,c b a,c d a,d b,d a,d c a,c b,d a,c
Table 1. Choices of X and corresponding accepted arguments in Example 1

assuming probabilistic independence between the presence of different arguments, we
obtain a probability distribution over sets of arguments. By abuse of notation we denote
this probability distribution P as well, which is defined as

P(X) = ∏
a∈X

P(a)∏
a/∈X

(1−P(a))

for all X ⊆ A. It can be easily shown that ∑X⊆A P(X) = 1, so P is indeed a probability
distribution. Given a set X ⊆ A of arguments, we denote by AFX the induced subgraph
of X , i. e. AFX = (X ,R∩ (X×X)).

Let now σ ∈ {co,gr,pr} be a semantics and ◦ ∈ {s,c} be an inference mode. The
probability of acceptance of a, denoted by PPAF◦,σ (a), is then defined via

PPAF
◦,σ (a) = ∑

a∈X⊆A,AFX |∼◦σ a
P(X)

In other words, PPAF◦,σ (a) is the sum of the probabilities of the subgraphs of (A,R) where
a is accepted wrt. σ and ◦.
Example 1. Let AF= (A,R) be the AF shown in Figure 1 and consider credulous reason-
ing wrt. grounded semantics. Let PAF=(A,R,P) be a probabilistic argumentation frame-
work with P(x)= 0.5 for all x∈A. Table 1 lists each subset of X ⊆A, together with the set
of arguments x ∈ A such that AFX |∼c

gr x. For each X ⊆ A we have P(X) = 0.54 = 0.0625.
Thus, for each x ∈ A we can calculate the probability PPAF

c,gr (x) by multiplying the number
of subsets of A that make x accepted by 0.0625. This yields

PPAF
c,gr (a) = 0.5 PPAF

c,gr (b) = 0.25 PPAF
c,gr (c) = 0.375 PPAF

c,gr (d) = 0.3125

4.2. Probabilistic Graded Semantics

We now turn to the main contribution of this paper, namely a graded semantics based on
probabilistic argumentation frameworks. The main idea is to assign to all arguments of
an argumentation framework uniform probability and interpret the obtained justification
probabilities as scores in a graded semantics approach.

Definition 4. Let AF= (A,R) be an argumentation framework and p ∈ [0,1]. We denote
by AF[p] the probabilistic argumentation framework PAF = (A,R,P) with P(a) = p for
all a ∈ A.

Definition 5. Let AF = (A,R) be an argumentation framework, p ∈ [0,1], σ ∈
{co,gr,pr}, and ◦∈ {s,c}. The probabilistic graded semantics Gσ ,◦,p is defined through
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Gσ ,◦,p
AF (a) = PAF[p]

◦,σ (a)
for every a ∈ A.

Our idea is simple, yet effective (as we will see below) and based on probabilistic
foundations. We assess the strength (or level of acceptability) of an argument on the
effect this argument has globally in varying scenarios. In our setting, a high score of an
argument means that it is usually accepted, given that it is present in some subgraph.
That means that even under a changing topology, i. e., when other arguments are ignored,
the argument under consideration is usually accepted and thus, more or less, independent
of other arguments. On the other hand, if an argument has a low score then it is usually
rejected in subgraphs, i. e., even in subgraphs where some of its attackers are not even
present. Using a uniform probability for all arguments in the graph is a natural way
of assessing the impact of each argument in changing scenarios. It shows that some
arguments, even when starting with the same initial probability, behave differently and
thus should be assigned different levels of acceptability.

Example 2. Consider again the argumentation framework AF in Figure 1. Using the
results obtained in Example 1 it is straightforward to determine that

Ggr,c,0.5
AF (a) = 0.5 Ggr,c,0.5

AF (b) = 0.25 Ggr,c,0.5
AF (c) = 0.375 Ggr,c,0.5

AF (d) = 0.3125.

We can see that our graded semantics complies with some basic intuitions on graded
acceptability. First, argument a has the largest score, which is intuitive as it is the only
argument that is not attacked. Argument c has the second highest score, which is clear as
though it is attacked by b it is also defended by a. Argument d is attacked and defended,
but ultimately defeated by a. Finally, b is attacked but undefended, thus resulting in the
lowest score.

We now establish some basic properties of our approach.

Theorem 1. Let AF=(A,R) be an argumentation framework, p∈ [0,1], σ ∈{co,gr,pr},
and ◦ ∈ {s,c}.

1. 0≤ Gσ ,◦,p
AF (a)≤ p, for all a ∈ A

2. Gσ ,◦,p
AF (a) = p iff R−1 (a) = /0, for all a ∈ A

3. Gσ ,◦,p
AF (a) = 0 iff p = 0 or aRa, for all a ∈ A

4. If p = 0 then Gσ ,◦,p
AF (a) = 0, for all a ∈ A

5. Gσ ,◦,1 = Gσ ,◦

Property 1 above establishes general bounds for the scores in our approach and thus
can be used for normalisation purposes. Property 2 states that unattacked arguments al-
ways have the highest score, while property 3 states that self-attacking arguments always
have the lowest score of zero. Property 4 shows that the semantics trivialises to a uniform
score for all arguments in the case p = 0 and property 5 shows that the semantics trivi-
alises to classical semantics in the case p = 1. Due to properties 4 and 5 we will assume
p ∈ (0,1) for the rest of the paper.

A question one might ask is about the implications of choosing a particular uniform
probability p over another one. In particular, one might ask the question whether different
choices of p lead to the same qualitative ranking in the end.

Example 3. Consider the argumentation framework AF in Figure 2. Using credulous
reasoning with grounded semantics and p1 = 0.1 and p2 = 0.9 we get
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a

bc

d

Figure 2. The argumentation framework from Example 3

Ggr,c,p1
AF (a) = 0.0829 Ggr,c,p1

AF (b) = Ggr,c,p1
AF (c) = 0.09 Ggr,c,p1

AF (d) = 0.1

Ggr,c,p2
AF (a) = 0.8109 Ggr,c,p2

AF (b) = Ggr,c,p2
AF (c) = 0.09 Ggr,c,p2

AF (d) = 0.9

As one can see, Ggr,c,p1
AF (a)< Ggr,c,p1

AF (b) but Ggr,c,p2
AF (a)> Ggr,c,p2

AF (b), so a is less accept-
able than b wrt. p1 = 0.1 but more acceptable wrt. p2 = 0.9.

As the previous example illustrated, the parameter p (roughly) controls whether at-
tackers or defenders are of more importance to assess the score of an argument. For large
p the semantics behaves more like classical semantics and makes an argument more ac-
ceptable if it has defenders. For low p the existence of many attackers can lower the
score, even if the argument is eventually accepted in classical semantics. We leave a
thorough analysis of the role of p for future work.

We will now analyse the properties of our approach and thus demonstrate its suit-
ability as a graded semantics. We follow the practice established by Amgoud and Ben-
Naim [1] of evaluating graded semantics by checking the compliance to a series of ra-
tionality postulates, see also [10] for an overview. We state these properties for ranking
semantics, so let S be an arbitrary ranking semantics and SAF its induced relation on an
argumentation framework AF.

Abstraction For every pair AF = (A,R),AF′ = (A′,R′) of isomorphic frameworks and
every isomorphism γ : A→A′, for all a,b∈A, aSAFb iff γ(a)SAFγ(b). (The ranking
on arguments should be defined only on the basis of the attacks between them.)

Independence For every AF = (A,R) and AF′ = (A′,R′) ∈ cc(AF), for all a,b ∈ A′,
aSAF′b iff aSAFb. (The ranking between two arguments a and b should be indepen-
dent of any argument that is neither connected to a nor to b.)

Void precedence For every AF = (A,R), for all a,b ∈ A, if R−1 (a) = /0 and R−1 (b) �= /0
then aSAFb and not bSAFa. (A non-attacked argument should be ranked strictly
higher than any attacked argument.)

Self-contradiction For every AF= (A,R), for all a,b∈ A, if not aRa but bRb then aSAFb
and not bSAFa. (A self-attacking argument should be ranked lower than any non
self-attacking argument.)

Cardinality precedence For every AF = (A,R), for all a,b ∈ A, if |R−1 (a)| < |R−1 (b)|
then aSAFb and not bSAFa. (The greater the number of direct attackers for an
argument, the weaker the level of acceptability of this argument.)

Quality precedence For every AF = (A,R), for all a,b ∈ A, if there is c ∈ R−1 (b) such
that for all d∈R−1 (a), cSAFd but not dSAFc, then aSAFb and not bSAFa. (The greater
the acceptability of one direct attacker for an argument, the weaker the level of
acceptability of this argument.)
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Counter-Transitivity For every AF = (A,R), for all a,b ∈ A, if R−1 (b)SAFR−1 (a) then
aSAFb. (If the direct attackers of b are at least as numerous and acceptable as
those of a, then a is at least as acceptable as b.)

Strict Counter-Transitivity For every AF = (A,R), for all a,b ∈ A, if R−1 (b)S
>
AFR−1 (a)

then aSAFb and not bSAFa. (The direct attackers of b are strictly more numerous or
acceptable than those of a, then a is strictly more acceptable than b.)

Defense precedence For every AF = (A,R), for all a,b ∈ A, if |R−1 (a)| = |R−1 (b)| and
R+

2 (a) �= /0 but R+
2 (b) = /0 then aSAFb and not bSAFa. (For two arguments with

the same number of direct attackers, a defended argument is ranked higher than a
non-defended argument.)

Distributed Defense precedence For every AF = (A,R), for all a,b ∈ A, if |R−1 (a)| =|R−1 (b)| and |R+
2 (a)|= |R+

2 (b)|, if the defence of a is simple—every direct defender
of a directly attacks exactly one direct attacker of a—and distributed—every direct
attacker of a is attacked by at most one argument—and the defence of b is simple
but not distributed, then aSAFb and not bSAFa. (The best defense is when each
defender attacks a distinct attacker (distributed defense).)

Addition of an Attack Branch For every AF = (A,R), for all a ∈ A, for every isomor-
phism γ such that AF = γ(AF), if AF∗ = AF∪ γ(AF)∪P−(γ(a)), then γ(a)SAF∗a
and not aSAF∗γ(a). (Adding a new attack line to any argument degrades its rank-
ing.)

Strict addition of a Defense Branch For every AF = (A,R), for all a ∈ A, for every
isomorphism γ such that AF = γ(AF), if AF∗ = AF ∪ γ(AF) ∪ P+(γ(a)), then
γ(a)SAF∗a and not aSAF∗γ(a). (Adding a defence branch to any argument improves
its ranking.)

Addition of a Defense Branch For every AF = (A,R), for all a ∈ A, for every isomor-
phism γ such that (A′,R′) = γ(AF) and A′ ∩A= /0, if AF∗=AF∪γ(AF)∪P+(γ(a))
and R−1 (a) �= /0, then γ(a)SAF∗a and not aSAF∗γ(a). (Adding a defence branch to
an attacked argument should improve its ranking.)

Increase of an Attack branch For every AF = (A,R), for all a ∈ A, for every isomor-
phism γ such that (A′,R′) = γ(AF) and A′ ∩A = /0, if ∃b ∈B−(a), b /∈B+(a) and
AF∗ = AF∪ γ(AF)∪P+(γ(b)), then γ(a)SAFa and not aSAFγ(a). (Increasing the
length of an attack branch of an argument improves its ranking.)

Increase of a Defense branch For every AF = (A,R), for all a ∈ A, for every isomor-
phism γ such that (A′,R′) = γ(AF) and A′ ∩A = /0, if ∃b ∈B+(a), b /∈B−(a) and
AF∗ = AF∪ γ(AF)∪P+(γ(b)), then aSAFγ(a) and not γ(a)SAFa. (Increasing the
length of a defense branch of an argument degrades its ranking.)

Total For every AF = (A,R), for all a,b ∈ A, aSAFb or bSAFa. (All pairs of arguments
can be compared.)

Non-attacked Equivalence For every AF = (A,R), for all a,b ∈ A, R−1 (a) = /0 and
R−1 (b) = /0 then aSAFb and bSAFa. (All the non-attacked arguments have the same
rank.)

Argument Equivalence For every AF = (A,R), for all a,b ∈ A, for every isomorphism
γ such that AncAF(a) = γ(AncAF(b)), then aSAFb and bSAFa. (If two arguments
have the same ancestors’ graph, then they should be equally acceptable.)

Ordinal Equivalence For every AF = (A,R), for all a,b ∈ A, if there exists a bijective
function f from R−1 (a) to R−1 (b) such that ∀c ∈ R−1 (a), cSAF f (c) and f (c)SAFc,
then aSAFb and bSAFa. (If two arguments a and b have the same number of direct
attackers and, for each direct attacker of a there is an equally acceptable direct
attacker of b, then a and b should also be equally acceptable.)
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Figure 3. The argumentation frameworks AF1 (left) and AF2 (right) from Example 4

Attack vs Full Defense For every acyclic AF = (A,R), for all a,b ∈ A, |B−(a)| = 0,
|R−1 (b)| = 1, and |R+

2 (b)| = 0 then aSAFb and not bSAFa. (An argument without
any attack branch should be ranked higher than an argument only attacked by one
non-attacked argument.)

Note that not all of the postulates are independent, some follow from others and some
are incompatible, see [10] for a thorough analysis.

As the following result shows, our approach satisfies many of the above postulates.

Theorem 2. For p ∈ (0,1), σ ∈ {co,gr,pr}, and ◦ ∈ {s,c}, Gσ ,◦,p satisfies Abstraction,
Independence, Void precedence, Self-contradiction, Defense precedence, Increase of an
Attack Branch, Addition of an Attack Branch, Total, Argument Equivalence, and Non-
attacked Equivalence.

Counter-examples for the other postulates can be constructed but are omitted due to
space restrictions. We will, however, look a bit closer at the case of Distributed Defense
Precedence.

Example 4. Consider the two argumentation frameworks AF1 and AF2 in Figure 3 and

Ggr,c,0.5
AF1

(a)≈ 0.219 Ggr,c,0.5
AF2

(a)≈ 0.195

showing that Distributed Defense Precedence is violated. However, we argue that a in
AF2 should be indeed ranked lower than a in AF1. In AF1 argument a is defended against
b and all its defenders are unattacked. However, in AF2 all defenders are attacked them-
selves. Distributed Defense Precedence would require that a in AF2 should be ranked
higher than a in AF1. The problem with that requirements here is that only direct attack-
ers and direct defenders are considered, but whether the defenders are acceptable or not
is unimportant. The case could be made more extreme by adding an arbitrary number of
attackers on d and/or e in AF2. Distributed Defense Precedence would still require a in
AF2 to be more acceptable than a in AF1 but our semantics will further degrade the score
of a in AF2.

It is worthwhile noting that no other graded semantics investigated in [8] satisfies
the exact same set of rationality postulates nor a superset of it.

5. Application: Inconsistency Measurement

In [15,16] and independently in [2] inconsistency measures on abstract argumentation
frameworks are investigated. These are functions I that map any abstract argumentation
framework AF to a real value I(AF) with the intuition that larger values indicate larger
inconsistency (or rather disagreement) in AF. The idea is that a framework without any
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attacks should be assessed consistent, as all arguments are mutually compatible. Hav-
ing more attacks indicates less compatibility and thus an increased value of inconsis-
tency/disagreement. While the number of attacks is thus already a simple implementation
of this idea [16], more advanced techniques can be used to measure further subtleties.

We can use our probabilistic graded semantics to define a new measure of inconsis-
tency/disagreement as follows.

Definition 6. Let p ∈ (0,1), σ ∈ {co,gr,pr}, and ◦ ∈ {s,c}. Define I p,σ ,◦ through

I p,σ ,◦(AF) = p|A|−∑
a∈A

Gσ ,◦,p
AF (a)

for AF= (A,R).

Our measure I p,σ ,◦ sums up all probabilities of each argument in the framework.
The idea here is that large probabilities for arguments indicate little conflict between the
arguments. In order to obtain a measure of inconsistency/disagreement we subtract this
number from its maximal possible value. Indeed, the following is a direct implication
from Theorem 1 item 1.

Theorem 3. Let p ∈ (0,1), σ ∈ {co,gr,pr}, and ◦ ∈ {s,c}. For every AF = (A,R),
0≤ I p,σ ,◦(AF)≤ p|A|.

Furthermore, our definition complies with Hunter’s basic constraints for such mea-
sures [16].

Theorem 4. Let p ∈ (0,1), σ ∈ {co,gr,pr}, and ◦ ∈ {s,c}. The measure Ip,σ ,◦ satisfies

Consistency I p,σ ,◦((A,R)) = 0 iff R = /0.
Freeness I p,σ ,◦((A,R)) = I p,σ ,◦((A∪{a},R)) for a /∈ A.

The basic intuition behind the property Consistency is that an argumentation frame-
work without any attacks has no conflict and should receive measure zero. The basic
intuition behind the property Freeness is that removing an argument that is not involved
in any conflict does not change the measure.

Hunter considers a series of further postulates in [15,16], two of which are satisfied
by our approach as well.

Theorem 5. Let p ∈ (0,1), σ ∈ {co,gr,pr}, and ◦ ∈ {s,c}. The measure Ip,σ ,◦ satisfies

Isomorphic Invariance I p,σ ,◦(AF) = I p,σ ,◦(AF′) if AF and AF′ are isomorphic.
Disjoint Additivity I p,σ ,◦((A∪A′,R∪R′)) = I p,σ ,◦((A,R))+ I p,σ ,◦((A′,R′)) if A∩A′ =

/0, R⊆ A×A, and R′ ⊆ A′ ×A′.

However, our approach does not satisfy the property monotonicity and its generali-
sation super-additivity, which are defined as

Monotonicity I p,σ ,◦((A,R))≤ I p,σ ,◦((A′,R′)) if A⊆ A′ and R⊆ R′.
Super-Additivity I p,σ ,◦((A∪A′,R∪R′))≥ I p,σ ,◦((A,R))+I p,σ ,◦((A′,R′)) for R⊆A×A,

and R′ ⊆ A′ ×A′.

But as abstract argumentation is a non-monotonic formalism we also argue that a mea-
sure of inconsistency/disagreement should not necessarily behave monotonic as well, see
a recent discussion in [21].
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Figure 4. The argumentation frameworks AF1 (left) and AF2 (right) from Example 5

Example 5. Consider the two argumentation frameworks AF1 and AF2 in Figure 4
where

I0.5,gr,c(AF1) = 2.5− (0.0+0.25+0.25+0.25+0.5) = 1.25
I0.5,gr,c(AF2) = 2.5− (0.0+0.375+0.375+0.375+0.5) = 0.875

therefore violating Monotonicity. However, we argue that there is actually less disagree-
ment in AF2 than in AF1. The self-attack of a in AF1 is unresolved and shows some
“issue” with the framework. However, in AF2 this issue is resolved by an outside attack
and thus AF2 should be regarded as less inconsistent as AF1 (in fact, a stable extension
exists for AF2 but not AF1).

Another property from [16] which is not satisfied by our approach is Inversion. For
AF = (A,R) define Inv(AF) = (A,{(a,b) | bRa}), i. e., Inv(AF) is obtained from AF
by inverting all attacks. Inversion states that both frameworks should possess the same
measure. However, here we can argue similarly as for the case of monotonicity and do
not think that this is a reasonable demand. In fact, Inversion is also violated by many
measures investigated in [16].

In [2], Amgoud and Ben-Naim independently make a similar study and also pro-
pose a series of rationality postulates. In fact, some of their postulates are the same as in
[15,16]. In particular, anonymity in [2] is the same as isomorphic invariance, agreement
is the same as consistency, dummy is the same as freeness, and monotony is (essentially)
the same as monotonicity. Amgoud and Ben-Naim propose three further properties: re-
inforcement, cycle precedence, and size sensitivity. However, we leave a discussion of
these properties and a deeper analysis of Ip,σ ,◦ for future work.

6. Summary

We proposed a novel graded semantics based on the constellations approach to prob-
abilistic argumentation. We showed that this semantics complies with many rational-
ity postulates for graded semantics from the literature and provides an intuitive ranking
based on probability theory. An implementation of the semantics is available in Tweety.2

We applied the semantics to the field of inconsistency measurement in abstract argu-
mentation frameworks and showed that the approach is compatible with this setting as
well.

For future work, we plan to analyse our approach further and, in particular, char-
acterise the exact role of the parameter p and its influences. Note that p has no influ-
ence on the compliance with the rationality postulates. This suggests that further general
properties are needed to describe the role of this parameter.

2http://mthimm.de/r/?r=tweety-pgs
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