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Abstract. This paper presents a tool for constructing and evaluating deductive
mathematical proofs using formal argumentation called CLEAR (Constructing and
evaLuating dEductive mAthematical pRoofs). This tool has a twofold objective: (i)
allows students to construct deductive proofs collaboratively using a structured ar-
gumentative debate; and (ii) helps instructors to evaluate these proofs and all inter-
mediary steps in order to provide constructive feedbacks to students. This paper fo-
cuses on objective (i) and presents results of an experimental study conducted with
undergraduate students. The behavior of students during the construction of deduc-
tive proofs is analyzed to show whether formal argumentation frameworks allow
students to build deductive proofs and measure students’ acceptance of CLEAR.
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1. Introduction

Learning deductive proofs is fundamental for mathematics education [13,20]. Yet, many
students have difficulties to understand and write deductive mathematical proofs which
has severe consequences for problem solving as highlighted by several studies [18,24].
To tackle this problem, several approaches in mathematical didactics have used a social
approach in classrooms where students are engaged in a debate and use argumentation
in order to build proofs [12,14,15,23]. The term "argumentation" in this context refers to
the use of informal discussions in classrooms to allow students to publicly express claims
and justify them to build proofs for a given problem [2]. The underlying hypotheses are
that argumentation: (i) enhances critical thinking and meta-cognitive skills such as self
monitoring and self assessment; (ii) increases student’s motivation by social interactions;
and (iii) allows learning among students. From instructors’ point of view, some difficul-
ties arise with these approaches for assessment. In fact, the evaluation of outcomes – that
includes not only the final proof but also all intermediary steps and aborted attempts –
introduces an important work overhead. We hypothesis that this evaluation step of all
produced data is important to capture students’ misconceptions and provide them with
constructive feedbacks; however, the introduced overhead can limit the acceptability by
instructors of approaches based on informal argumentation.
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We present a tool for constructing and evaluating deductive mathematical proofs
using formal argumentation called CLEAR (Constructing and evaLuating dEductive
mAthematical pRoofs) that has been outlined in [5]. CLEAR has a twofold objective:
(i) allow students to build deductive mathematical proofs using structured argumentative
debate; (ii) help the instructors to evaluate these proofs and assess all intermediary steps
in order to identify misconceptions and provide a constructive feedback to students. Our
approach uses AI argumentation frameworks to represent an argumentative debate as a
graph with support and defeat relations to respectively express deduction and conflict.
This graph will be analyzed using Dung’s semantics to identify relevant arguments that
will form the final deductive proof. The instructors will have access to this final proof.
They can also get access to all steps that led to this proof in order to get more insights.

In this paper, we focus on the first objective, namely construction of deductive math-
ematical proofs using structured argumentative debate. Our aim is to answer the follow-
ing questions: (i) are argumentation frameworks suitable to build deductive mathemat-
ical proofs? (ii) are actions used in CLEAR sufficient to build deductive mathematical
proofs? (iii) how do students evaluate the usability of CLEAR?

2. Formal argumentation frameworks for deductive mathematical proofs

The deductive proof is one of the fundamental techniques that students need to master
for mathematical problem solving. Other techniques include: proof by contrapositive,
contradiction and induction. What characterizes the deductive proof is its direct and se-
quential process. It starts from a list of hypotheses written as “assuming ...”; followed
by a sequence of deduction steps expressed as “if ... then ...”; and finally concludes with
a result written as “therefore ...” In its basic form, we can model a deductive proof by
the following structure < (ai),(d j),c > where (ai) are hypotheses, (d j) is a sequence of
deduction steps and c represents the conclusion. As previously said, (d j) is an ordered
sequence and this order is important since it makes it possible to use the conclusion of
a line di as a premise of line d j given i < j. If all deduction steps (d j) are accepted then
< (ai),(d j),c > is a proof for the following theorem: "a0 and... an implies c"

Artificial intelligence witnesses a large amount of contributions in argumentation
theory. In particular Dung’s argumentation framework is a pioneer work in the topic [11].

Definition 1 (Dung’s Framework) An argumentation framework (AF) is a tuple
〈A ,Def〉, where A is a finite set of arguments and Def ⊆ A ×A is a binary defeat1

relation. Given A,B ∈ A , A Def B stands for “A defeats B”.

The outcome of Dung’s AF is a set of sets of arguments, called extensions, that are ro-
bust against defeats. We distinguish several definitions of extension (e.g. grounded ex-
tension, preferred extensions, stable extensions), each corresponding to an acceptability
semantics that formally rules the argument evaluation process. For details, see [11].

In addition of the defeat relation, several authors have considered a support relation
[19,17,9].

1called attack in [11].
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Definition 2 (Bipolar Argumentation Framework) An abstract bipolar argumentation
framework (BAF) is a tuple 〈A ,Def,Supp〉, where 〈A ,Def〉 is Dung’s AF and Supp ⊆
A ×A is a binary support relation. For A,B ∈ A , A Supp B means “A supports B”.

Three interpretations have been proposed for the support relation [19,17,9]: deductive
support in which “A supports B” stands for “the acceptance of A implies the acceptance
of B”, necessary support in which “A supports B” stands for “the acceptance of A is
necessary for the acceptance of B”, and evidential support. Deductive and necessary
support relations show duality like classical implication. In fact, “A is a deductive support
for B” if and only if “B is a necessary support for A”. As far as this paper is concerned, we
concentrate on the deductive support. This focus will be motivated later in the paper. One
way to deal with BAF is to compute a new Dung’s AF consisting of the set of arguments
of the BAF and whose defeat relation is the defeat relation of the BAF augmented with
new defeat relations. The latter are obtained by combining the support relations and
defeat relations of the BAF at hand [8,4].

So far Dung’s AF and its extensions have mainly considered interactions between
arguments only. However in practice one may also need to defeat or support the relations
between arguments. Such relations are called recursive. Different proposals have been
made to deal with these relations [3,10,7]. We briefly recall the framework presented
in [7] called Defeat-Support AF2 (DSAF). In this framework, both defeat and support
(which is necessary support) relate an argument and another argument, a defeat relation
or a support relation. Handling DSAF consists in computing an associated BAF with
necessary support relation. The obtained BAF is then transformed into a Dung’s AF.
Although DSAF deals with necessary support relations, it can be directly used in our
setting (recall that we focus on deductive support relations) thanks to the duality between
necessary and deductive support relations.

Deductive proofs come in the form “if hypothesis then conclusion”. In order to trans-
late these proofs in a formal AF we first need to provide a structure to the arguments.
The prominent framework for structured argumentation is the ASPIC+ framework [16].
As far as this paper is concerned we only need a simple fragment of this framework (e.g.
we do not need defeasible rules).

Definition 3 (Argument) Let Γ be a set of formulas constructed from a given lan-
guage L . An argument over Γ is a pair A = 〈Δ,α〉 s.t. (i) Δ ⊆ Γ, (ii) Δ ��∗ ⊥,
(iii) Δ �∗ α and, (iv) for all Δ′ ⊂ Δ, Δ′ ��∗ α , where �∗ is the inference symbol.

Definition 4 (Defeat) Let A = 〈Δ,α〉 and B = 〈Δ′,α ′〉 be two arguments. We say that A
undercuts B iff for some φ ∈ Δ′, α and φ are contradictory w.r.t. the language at hand. A
rebuts B iff α and α ′ are contradictory. Then, A Def B iff A rebuts or undercuts B.

The definition of the support relation depends on the context. In our setting, its seman-
tics derives from the structure of the deductive proofs presented in Sec. 2. Roughly, a
deductive proof will be encoded by a set of arguments related with the support relation.
More precisely, an argument A is mapped to a deduction step di. The support relation
between two arguments A and B is interpreted as a transition between the corresponding
deduction steps. Suppose that the argument A is mapped to a deduction step di and B is
mapped to a deduction step d j, then A supports B means that i < j.

2Called Attack-Support AF in [7].
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3. CLEAR tool

CLEAR is based on the following core elements: collaboration among students, argu-
ments, relations and actions. For the collaboration, students build collaboratively a de-
ductive proof by taking turns to construct arguments and relations. The arguments can
be either formal or informal: formal arguments are structured following Definition 3.
Checking their validity w.r.t. this definition is left to students as this is part of the problem
solving task. Informal arguments are expressed as a free text. Three types of relations are
available: support, defeat and append. Support relation stands for deduction and defeat
stands for conflict. These relations can connect either two arguments or an argument with
a relation. The append relation creates a conjoint support from two or more arguments to
another argument. Finally, CLEAR makes available the following actions for students:
Add argument, Edit argument, Add relation, Delete relation, Pass turn and Debate end.
Since arguments represent students’ reasoning, CLEAR does not allow their deletion to
keep them in the graph. Only an update is available to correct input errors. To remove an
argument, it has to be either defeated by another argument or not connected to the graph
by any relation.

3.1. CLEAR process

Construction step The system provides the theorem to be proved as a formal argument
and a set of propositions P from which formal arguments are constructed following
Definition 3. P contains all propositions needed to prove the theorem but also frequent
mistakes done by students. Since P contains frequent mistakes, students have to choose
the right propositions to construct a correct proof. The output of the argumentative debate
is a graph called argumentative debate graph. It contains arguments and relations that
led to the deductive proof.

Analysis step This is an intermediate step between the construction and the evaluation
steps. The input of this step is the argumentative debate graph and the output is one or
multiple proof graphs. The analysis step is done in three stages:

1. Representation of the argumentative debate graph by an argumentation frame-
work: Given the argumentation graph submitted by students, a formal AF (BAF or
DSAF depending on the type of interaction used by the students) is used to model
the interaction between the students.

2. Computation of Dung’s AF and preferred extensions: Dung’s AF associated to the
AF (BAF or DSAF) obtained in the previous step is computed. Acceptable ex-
tensions associated to Dung’s AF should correspond to the proof if students suc-
ceeded to write a correct proof. At first sight, we may be tented to use the grounded
extension as it corresponds to the set of arguments that are "safe". However this
intuition is misleading in our setting. In fact, there is generally no single proof but
multiple proofs that may be conflicting. Preferred extensions are appropriate to
deal with multiple proofs.

3. Filtering extensions and constructing the proof graphs: It is worth noticing that
a preferred extension does not necessarily correspond to a proof. For example, in
order to express the fact that an argument A1 is not valid, a student has to provide
a defeating argument A2. Now, suppose that A2 is not defeated; A2 belongs to the
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acceptable extensions but does not contribute to the construction of the proof. Thus
it must not appear in the proof graph. We say that an argument contributes in the
construction of the proof if there is a path of support relations from that argument
to the theorem to be proved. Each filtered extension gives rise to a proof graph.
The latter is obtained by projecting the arguments of the extension at hand on
the argumentative debate graph and the support relation relating these arguments.
Each proof graph is submitted to the instructor for evaluation step.

Evaluation step CLEAR is used by the instructors during the evaluating step to correct
the proof graph and to provide a constructive feedback to students. In case of erroneous
proofs, the instructor is able to access to the initial debate graph in order to identify
students’ mistakes and thus write a constructive feedback.

4. Experimental study

Population: 16 undergraduate students in computer science (6 females and 10 males)
took part to the experiment.
Choice of exercises: Three exercises treating each a different subject have been con-
ceived in collaboration with the teachers of mathematics in order to ensure that students
had the prerequisites to understand and solve these problems.
Procedure: The experimental procedure comprises the following stages: (i) the 16 vol-
unteers have been randomly grouped into 8 pairs; (ii) concepts such as formal argument,
support and defeat relations are briefly introduced; (iii) the CLEAR system, available in
[1], was presented; (iv) finally, all pairs began to solve the exercises with a free resolution
order for a maximum duration of 2 hours.
Dependant variables: The observed variables are divided into two groups: the first
group of variables is concerned with students’ activity analysis. The second group is
concerned with their perceived usability. For activity analysis, the following dependent
variables are observed: number of formal and informal arguments; the number of rela-
tions; the number of actions; and the correctness of the proof. The perceived usability is
evaluated through the standard Usability Scale (SUS) [6] that comprises 10 standardized
items with 5 response options from strongly agree to strongly disagree. To get more in-
sights, we have developed a specific questionnaire in order to evaluate comprehension of
the argumentation concepts; expressiveness of the debate graph to build a proof; utility
of actions; and finally, the usefulness of collaboration.

4.1. Results & Discussion

Table 1.a presents the average and standard deviation of number of arguments and re-
lations per exercise. Table 1.b presents the average and standard deviation of number
of append, delete relation, edit argument and pass turn actions used per exercise. Table
2 presents students’ average rating of a self reported questionnaire that explores differ-
ent aspects such as: understanding of the argumentation concepts, the easiness of con-
structing formal arguments and adding relations, relevance of CLEAR’s actions and the
contribution of collaboration.

Now, we provide answers to the three main questions previously presented:
i) Are argumentation frameworks suitable to build deductive proofs? The response to this
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(a) The average and standard deviation of number of arguments and relations.

Formal argument Informal argument Defeat Support

Exercise 1 10(2.2) 0(0) 0.25(0.7) 9.37(5.57)
Exercise 2 7.37(3.11) 0.5(0.92) 0.5(0.75) 6.75(2.76)
Exercise 3 4.85(2.54) 0.14(0.37) 0(0) 3.57(2.5)

(b) The average and standard deviation of actions.

Append Delete relation Edit argument Pass turn

Exercise 1 4.25(3.24) 3(3.81) 1.87(2.35) 0.12(0.35)
Exercise 2 2.37(2.26) 0.5(1.41) 2(2.67) 0.12(0.34)
Exercise 3 0.85(1.06) 0.71(1.49) 1.14(0.89) 0.28(0.75)

Table 1. The average and standard deviation of number of arguments, relations and actions per exercise.

Item average rating /5

C1: Comprehension of formal argument and argumentation theory 3,46
C2: Representation of proof by graph and its visualization: arguments and relations 3,34

C3: Building formal argument by selecting premise(s) and conclusion 3,37
C4: Adding relations: support, defeat and append 2,94

C5: Importance of having append relation 3,63
C6: Importance of having edit argument action 4,43
C7: Importance of having delete relation action 4,75
C8: Importance of having pass action 1,78
C9: Importance of having informal arguments 2,56
C10: Relevance of building proofs in pair 3,78

Table 2. The average rating of a self reported questionnaire on the different aspects of CLEAR.

question is quite important as it affects the acceptability, by students, of any argumenta-
tion based system to express deductive proofs. Besides, it is necessary to ensure that stu-
dents having necessary skills to prove a result are able to express it correctly through the
system. The activity analysis shows that students, without prior knowledge on argumen-
tation theory, were able to express correct proofs (13 out of 24) using formal arguments
and support relations. It is worth noticing that some proofs (6 out of 24) although not
wrong, they were considered as incomplete since not all cases were considered or some
intermediary results were assumed without justification. The analysis of wrong proofs
shows that the argumentation concepts were correctly used and that the errors are mainly
due to misunderstanding of mathematical concepts. The marks obtained for components
C1 and C2 concerning comprehension and representation of the deductive proofs within
the framework of the argumentation theory are 3.5/5 and 3.3/5 respectively. This is con-
sistent with the results of activity analysis and illustrates an acceptance of this framework
by students. Therefore we can conclude that the proposed tool allows students, with no
prior knowledge on the argumentation, to construct deductive proofs.
ii) Are actions used in CLEAR sufficient to build proofs? From Table 1 we observe that
the students used all actions available in CLEAR with however a much low extent for
passing turn action, informal arguments and defeat relation. The students have mainly
used the following actions: add formal argument, add support relation, append an existing
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support relation, edit of an argument and delete of a relation. The passing turn action,
informal arguments and defeat relation have been rarely used.

Concerning informal arguments, both activity analysis and questionnaire (C9) have
shown that they have been rarely used. This is quite a surprise since we were expecting
that building a formal argument by selecting premises and conclusion from a predefined
list was more difficult than writing down a free text argument.

Most of relations are of type ’support’ and only few ‘defeat’ relations have been
used. This is coherent with the fact that deductive proof building is mainly concerned
with the support relations among arguments. The defeat relations are only used to express
conflicts whenever they arise. All features have been judged as important (append C5,
edit C6, delete C7 and build the proofs in pairs C10) except the passing turn action (C8).
As a conclusion, we think that CLEAR includes all required features to build deductive
proofs using an argumentation debate.
iii) How do students evaluate the usability of CLEAR? The system has obtained an av-
erage score of 58 on SUS scale. This represents the "low marginal" category that ranges
from 50 to 62. Consequently, the usability of the system is evaluated as being "ok" by
students [6].

5. Conclusion and perspectives

This paper presented an experimental study that shows that: (i) students, with no prior
knowledge on formal argumentation, are able to build deductive proofs using formal ar-
gumentation frameworks; (ii) and the usability of CLEAR is evaluated as being "ok" on
the SUS scale. To the best of our knowledge the closest work to ours is given in [21]
which considers the Lakatos’s method [21,22]. Lakatos proposed a novel approach of
mathematics in which mathematical reasoning is defeasible. Moreover he promoted the
social processes of proof construction. In [21] the authors proposed an implementation
of the Lakatos’s method in the form of a dialog game between a proponent, who aims at
proving a conjecture, and an opponent, who aims at invalidating the conjecture. To prove
the conjecture the proponent uses lemmas. The opponent attacks with counterexamples.
The proponent defends the conjecture either by correcting the proof which leads to a
modified conjecture, by showing that counterexamples are incorrect, or by modifying
lemmas used to prove the conjecture. While the ideas are close to ours, our work differs
from [21] in the following aspects: (i) the Lakatos game proposed in [21] is a persuasion
dialog between a proponent and an opponent. The dialog builds on a conjecture that can
be accepted or rejected at the end of the dialog. It can also be modified during the dialog.
Our system is both persuasion and inquiry dialog. A group of students collaborate to
prove a theorem (not a conjecture). Each student may have the role of proponent or oppo-
nent during the dialog. The output of the dialog is a proof of the theorem at hand. During
the construction of the proofs, our system allow students to build informal arguments, as
in [22], but also formal arguments which better structures the proof. Formal arguments
make proof reasoning and relation between arguments explicit, determined and clear; (ii)
the approach proposed in [21] has not been formalized in terms of structured arguments
and formal relations (defeat and/or support); (iii) the output of the dialog in [22] is the
acceptance of the conjecture or not. There is no evaluation of the dialog: detecting the
correct arguments and relations that allowed the proof. On the contrary, the evaluation is
one of the main objective of our proposition.
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As future work, we will assess experimentally the acceptance and usability of
CLEAR by instructors.
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