Computational Models of Argument 241
S. Modgil et al. (Eds.)

© 2018 The authors and IOS Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-906-5-241

Implementing the ArgQL Query
Language

Dimitra ZOGRAFISTOU 2, Giorgos FLOURIS ?, Theodore PATKOS # and
Dimitris PLEXOUSAKIS #

 Institute of Computer Science, Foundation for Research and Technology Hellas,
Heraklion, Greece

Abstract. Exploration and information identification constitute challenging re-
search problems, with important applications in sensemaking over structured argu-
mentative dialogues. In this paper, we present the implementation ArgQL, a high-
level declarative query language, designed for querying dialogical data, structured
in the principles of argumentation. We implement the language using an AIF-based
representation and a translation of ArgQL into (complex) SPARQL queries. ArgQL
provides a simple and intuitive way to query a structured dialogue using pure argu-
mentative terminology.

Keywords. Argumentation, Declarative Query Languages, Graph data models,
Semantic Web

1. Introduction

The recent advancements in the Web technologies transformed its users from pas-
sive information consumers to active creators of digital content. Web became a universal
terrain, wherein humans accommodate their inherent need for communication and self-
expression. This new era revealed several new research problems. Studying the informa-
tional requirements while navigating in dialogues and identifying specific pieces of data
is one of the most challenging ones. The process of human argumentation on the other
side has been an object of longstanding theoretical studies. Computational Argumenta-
tion [6,10] is a branch of Al and it serves theoretical and computational reasoning mod-
els that simulate human cognitive behavior while arguing [8,1,2]. It has been observed
that it also defines solid and discrete constructs able to structure dialogical data.

Motivated by this observation, we introduced ArgQL (Argumentation Query Lan-
guage) a high-level declarative query language, that allows for information extraction
from a graph of structured and interconnected arguments. The initial specification of the
language was presented in our previous work [13]. As highlighted there, ArgQL consti-
tutes an effort to realize the requirements of querying argumentative data by translating
them into particular lexicographic and syntactic rules of a language. Its syntax takes into
account arguments’ internal structure, as well as the abstract, graph-like view, shaped
by the existing interrelations. It serves a simple and quite elegant mechanism to write
queries in the argumentation domain like "How an argument with a given conclusion is
attacked?”. Its prominence is amplified by the expressive complexity of traditional lan-

242 D. Zografistou et al. / Implementing the ArgQL Query Language

guages (e.g. SPARQL), even for such simple statements. We discuss such issues and give
illustrative examples in Section 3.

In this work, we describe our methodology and the technical details regarding the
execution of ArgQL. In particular, since there is no native storage scheme that conforms
to the principles of the suggested data model, we propose a mapping to the RDF data
model and then we describe the translation method of ArgQL into the associated query
language, SPARQL [9]. We choose to show the method in the context of the Semantic
Web, however given that ArgQL has been designed as a domain independent language,
we claim that it can be translated in any query language as long as there exist valid
translation mechanisms.

The rest of the document is structured as follows. In Section 2 we give a brief de-
scription of the argumentation data model and ArgQL. Section 3 presents the mechanism
for the query execution and we conclude in section 4, with a small discussion about the
results so far and with some thoughts about future directions of this work.

2. Data model and Language

In this section we will give a brief description and some examples of the argumenta-
tion data model and ArgQL. Formal definitions and the language specification (syntax-
semantics) are found in [13]. Due to the lack of space, we describe here informally some
necessary concepts.

2.1. Argumentation Data model

The main concept in the data model is the argument. An argument is a tuple (pr,c),
where pr is called premise, c is called conclusion and it holds that c is inferred by pr.
Premise and conclusion are constituted by propositions taken from the infinite set P.
Arguments are organized in an argument base, which also contains relations among ar-
guments, defined through contrariness and equivalence. In particular, rebut (mutually
inconsistent conclusions) and undercut (conflict between one’s conclusion and some
premise of the other) are sub-relations of attack, while endorse (equivalent conclusions)
and backing (equivalence between one’s conclusion and some premise of the other) are
sub-relations of support. Overall, the abstract view of the argument base forms a graph,
whose nodes are structured arguments and in which, there are four different types of
edges created by these four types of sub-relations. We also use the notion of path as a
sequence of relations between two arguments in the argument graph.

2.2. ArgQL language

Let an infinite set V, which includes the variables of the language. Variables are
prefixed with ’?” and are used to bind with values from the data. Values of propositions
are always in quotes ” . The general form of an ArgQL query is:

q < match dialogue_pattern (°, dialogue_pattern)*

return varlist
where varlist = (vy,vy,...,v,), with v; € V is a list of variables. A dialogue pattern may
have one of the following two forms:

dialogue_pattern := argpattern | argpattern pathpattern dialogue_pattern

D. Zografistou et al. / Implementing the ArgQL Query Language 243

Argument patterns constitute primary units in the language and are designed to
match the structure of arguments. Syntactically, an argument pattern can be either a sin-
gle variable v, € V, or have the form v,:(premisePattern, conclusionPattern). PremiseP-
attern and conclusionPattern restrict the premise and conclusion part of arguments, re-
spectively. More precisely, the second form of an argument pattern may be one of the
following:

Val({pl,-.,pn},0> or Vll:(vp[ch)
where p; € P,ce’PuV,v, eV and f a premise filter. Variable v, matches the premise part
of arguments and takes values from 27, whereas ¢ matches the conclusion part and may
be either a variable or a constant proposition value. The occurrence of the expression [f]
is optional. When existed, the premise is restricted based on a particular proposition set,
let s, and we have 3 types of filters: inclusion, join and disjointness written as [/s] , [.s]
and [!s], respectively. Below, we show some examples of argument patterns:

o (MW[/{"p1”}],?¢) : match arguments whose premise include some equivalent
proposition of ”p;”.

o (?v,”¢”) : match arguments with conclusion any equivalent proposition of ”c”

o (W[.{’p1”,”p2"}],7c) : match arguments whose premise intersect with a set

equivalent to {"p1”,”p2”}
o ({"p1”,”p2"},7¢”) : instantiated arguments are also argument patterns

Path patterns are expressions that match with complete paths and allow for naviga-
tion in the graph of arguments. They are recognized by sequences of relations separated
by the character ’/’ (e.g. attack/support/support). Note that a relation can be either
one of the sub-relations (rebut, undercut, endorse, backing) or one of the general ones (at-
tack, support). In the second case, it is indifferent which of the two sub-relations is satis-
fied. The expression *n is a syntactic sugar to express the ”n repetitions of a path pattern”.
For example rebut*2, is an alternative of rebut/rebut. In addition, we can express the
case “’up to n repetitions”, by using the notation ’+n’. In particular, attack+3 defines
three different path patterns: {attack, attack/attack, attack/attack/attack}.
The coexistence of multiple number indicators in the same pattern gives a number of
combinations, equal to the proliferation of the ’+ indicators.

ELRT)

o %a (attack*2/support)+2 (?pry,”c”): matches with sequences of arguments,
satisfying the path attack/attack/support or the attack/attack/support/attack/attack/support
and also result to an argument with conclusion “c”.

Next, we show some examples of complete queries in ArgQL:

QI. Find arguments which ”defend”(attack the attackers of) arguments with conclusion
equivalent to ”Cloning is going to be awesome” and return all of them. Such queries are
inspired by Dung [6] and can be used to implement some of his semantics.

match ?ai1 (attack/attack)+3

?a2:<?pr, "Cloning is going to be awesome'">

return ?2ai, laz
Q2. Find and return arguments which attack arguments at distance of three support rela-
tions from an argument, which contains as one of its premises the proposition "cloning
contributes positively in artificial insemination”, or an equivalent one.

match ?arg attack/ (support) *3

<?pr[/{“cloning contributes ... insemination”}}, ce>

return ?arg, ?c

244 D. Zografistou et al. / Implementing the ArgQL Query Language

Q3. Find pairs of arguments whose premise sets intersect and return them.
match 2a1:<?pri, ?ci>, 2az2:<?prz2[.?pri], ?cz>
return ?7ai, a2

3. Query execution

In this section, we describe the proposed implementation of ArgQL. Figure 1 depicts
the execution flow for the translation into a arbitrary storage scheme. The ArgQL Parser
part is responsible to recognize valid queries of the language. Data and Query mappings
part bridges the gap between ArgQL and the actual data, by realizing the translation of
queries and their results. Finally, part KB represents the data stored in a specific format
(Relational, RDF, XML etc). Each different format should define different data and query
mappings.

1. Parse/ 2.Tranzlation 3. Execution
validztion ArgQL of query g of translated
a Parser queryq*
4 Data and .
Query
i Mappings
Expact=d 4. Result:
Results 5 Retumn transformation

Figure 1. Process of query execution

In this work, we will show this flow for the RDF data model. To this end, we break
down our strategy into the following tasks:

* Building an ArgQL parser

* Creating a dataset by defining an ontological scheme in RDFS and store RDF data
of this form

» Formalizing the mappings between the concepts of the argumentation data model
and the specific ontology

* Implementing a translation method of an ArgQL query into its respective SPARQL
that will target the RDF data.

ArgQL parser. To implement the validation of ArgQL queries, we use the ANTLR
compiler!, a tool for language recognition, which provides a framework for constructing
recognizers, compilers and translators from grammatical descriptions, containing Java,
C++, or C# actions.

Ontology Scheme and Dataset description. In recent years, the community of Argu-
ment Web [3,7] seem to have consented into a standard RDF conceptualization for argu-
mentative data, the AIF ontology [5,4]. In order to be compatible with this tendency, we
also adopt that scheme to cover our requirements for this task. More precisely, we use its
latest version, AIF+ [11], which constitutes an extension designed to capture concepts
for dialogical argumentation. The core ontology of AIF constitutes a two-level ontology.
The topmost layer consists of two disjoint sets of nodes, which are abstractly defined:

Thttp://www.antlr.org/

D. Zografistou et al. / Implementing the ArgQL Query Language 245

information nodes denoted by I, to hold the textual content, and scheme nodes, denoted
by S. Scheme nodes are further specialized into three different and also disjoint sets of
nodes for inference application, preference application and conflict application, denoted
as RA-, PA-, CA-node, respectively. At this level, there are also various constraints on
how components interact: information nodes, for example, can only be connected to other
information nodes via scheme nodes of one sort or another. Scheme nodes, on the other
hand, can be connected to other scheme nodes directly to express complex statements
like conflicts on inferences, preferences on conflicts etc. At the lowest layer, these con-
cepts become more specific by allowing via inheritence, to define for example particular
inference schemes (e.g. presumptive), or represent the Walton schemes [12], retaining
constraints defined in the layer above. AIF+ makes a separation between the representa-
tion of actual arguments and the representation of the normative structures in a dialogue
protocol. Further classes are introduced at the dialogue side, like L-node called locution
node that inherits I-node, TA-node called transition node, YA-node, called anchor node
and MA-node, called default rephrase.

AIFdb corpora® is an online dataset that contains argumentative data structured in
the AIF+. It contains several data formats, including RDF. Currently, it enumerates over
5000 argument maps, gathered by the various argument tools and with this number to be
continuously increasing.

Data mapping. In this part, we will describe the mapping between the argumentation
data model targeted by ArgQL and the concepts of AIF+. The following table includes
this mapping. We use the notation cls(x) to denote the class instance in AIF, created by the
concept x from the data model on the left. As a result, cls may have one of the types (i, ra,
ca, pa, loc, ya, ta, ma) for the respective AIF+ classes I-, RA-, CA-, PA-, Locution-, YA-,
TA-, MA-node. Each cell in the right column includes two sets: The set nodes describes
the class instances in AIF to which the concept on the left cell is mapped. The set edges
includes the edges between these instances. An edge is represented as clsy (x) — clsa(y)
(e.g. i(p1) —i(py) is an edge between two instances of the class I-node).

Argument data model AIF+

Proposition p nodes: i(p), content of i(p) = p

nodes: i(p1),...,i(pn),i(c),ra(a)

edges: i(p1) —ra(a),...,i(pa) —ra(a),ra(a) -i(c)

nodes: i(p1),i(p2),ca(x)

edges: i(p1) - ca(x),ca(x) —i(p2)

nodes: i(p1),i(p2),loc(p1),loc(pa),ya(pr),ya(p2),ta(e),ya(e),ma(e)
Equivalence e between py and py | edges: i(p1) —ya(p1),i(p2) —ya(p2),ya(p1) —loc(pi),ya(p2) —loc(p2)
loc(p1) —ta(e),ta(e) —loc(pa),ta(e) —ya(e),ya(e) —ma(e)

Argument a = ({p1,...,pn},c)

Conflict x between p; and py

Table 1. Data mapping table

Each single proposition p € P generates a unique I-node, the information content of
which is the value of p. Each argument a is mapped to an instance of inference node
(RA), for which, there are n incoming edges from the I-nodes generated by the premises
p1,---,Pn and one outgoing edge to the I-node generated by the conclusion c. Conflicts

Zhttp://www.corpora.aifdb.org/

246 D. Zografistou et al. / Implementing the ArgQL Query Language

between propositions p1, p, are mapped to instance nodes of CA class, which lie between
the I-nodes of p; and p,. Finally, concerning the equivalences between propositions
P1, P2, AIF+ introduces the notion of default rephrase represented by the class MA.
To express the default rephrase between the I-nodes of py, p>, a number of classes are
created that make the transition to the dialogue side and a number of edges linking them
that result to the particular instance of MA, as shown in the last row of the mapping table.

Query translation and execution. Due to the lack of space, we will give an visual
description of the translation mechanism. For anyone interested to deepen in the formal
details, there is a comprehensive analysis in the document 3.

The main idea is that each different element (usually pattern) of a query generates a
small piece in the overall graph pattern. The final SPARQL query is built progressively,
throughout the construction of the parse tree in the process of the lexicographic and
syntactic recognition of g. During the whole process, new variables are created to bind
with the URIs of the RDF resources and to perform the various joins. Each different
alternative even in the same rule, usually gives a different result. Let the query:

q : match ?a1:(?pri[/{"p1"}], 2ci1) attack ?az:(?prz, "cz2"),
?a3:(?pr3[/?pr1i], ?c3)
return ?ai, a2z, ?a3
It asks to find arguments that attack those with conclusion ”c,”, and then to find those,
which have also as premises the premises of the “attackers”.

5. wargPatterns:

ARGUMENT «premPattemn».
«conclPatterns.

PATTERN ?_ra, rdf:type RA-node.
2. apremPatterns; // 4. «conclPattern»:
“;pf":—’ : PREMISE CONCLUSION agn
Ppry®. . .
2 pr. aif-Bramise ? ra,. PATTERN PATTERN ?_ra; aif-=Conclusion ?_c,.
1. alprow: | | 3. "
?_pr; rdf:type aifl-node. VARIABLE FROPOSITION ?_r, rdftype aif:l-node .
?_pr; aifclaimText ?pr;. | | ?_c; aifclaimText “c,” .
< pra ' e >

Figure 2. Part of the translation process of q

Figure 2 illustrates a part of the translation of q and in particular shows how the SPARQL
graph pattern, that corresponds to the second argument pattern in g ({?prz,”c,”)) is com-
posed upon its parse tree generation. With {(x)) we denote the part of graph pattern gen-
erated by the ArgQL component x. The leaves of the tree contain the tokens appear-
ing in the ArgQL query, while the internal nodes represent the names of the grammar
rules. In stages 1 and 2 the graph pattern for the premise pattern ?pr; is created, denoted
as {(premPattern)). It is composed by the triple pattern (?_pr2 aif:Premise ?_ra;) and
the graph pattern (?pr,), created by the invocation of the grammatical rule, in which a
premise pattern is a single variable. Accordingly, the steps 3 and 4 show the creation of
the graph pattern {conclPattern)) generated by the conclusion pattern "c,”. In the end,

3http://www.ics.forth.gr/isl/ArgQL/ArgQLtoSPARQL.pdf

D. Zografistou et al. / Implementing the ArgQL Query Language 247

at step 5 when the complete argument pattern has been recognized, the SPARQL graph
pattern that corresponds to it is composed by the conjunction of the {premPattern)) and
{conclPattern)) graph patterns and the triple pattern (?_ra2 rdf:type aif:RA-node).

The next figure, shows the complete SPARQL generated by the query above. What
is highlighted by this example is the expressive complexity of SPARQL to the particular
requirements set by the ArgQL query. Apart from the difficulty to write such a query, it
is also impossible for someone to read it and understand what it requires. The implemen-

tation of the language can be found here®.

SELECT *

WHERE |
?_id rdf-type -nods.
?_i1 aifcdaimText fpri.
?_i1 aif:Premise ?_ral.
?_i2 rdftype -node.
? iz afclaimTaxt “pa”.
{ ?_iz aif:Premise ¥_ral. }
LiioN
{

#yal aif:Locution Flocd.
loci rdf:type aif:L-node.
?_i3 rdftype aifzl-node.
?_i3 aif:daimText ?_ja.

Hyaz aif:Locution Flocz.
loc2 rdftype aif:L-node.

yal siflllocutionaryContent ?_jz2.

Hyaz aif:lllocutionanyContent 7_i3.

?_ia rdfitype l-node.

?_id aifclaimTest ?prz .

?_id aif:Premise ?_ral.

?_c2 rdftype -node.

? 2 aifuclzimText “c2".

{ *_raz sif:Conclusion ¥_c2 .}
LiIoN

i

L}

Fyad aiflllacutionaryContent ?_c2.

*yad aif-Locution lacs.
Floc3 rdf-type aif:L-node.
?_i5 rdf:type aif:l-node.
?_is aifclaimTeaxt ?_i5.

a5 aifzlllocutionanyContent 7_i5.

&5 aif-Locution ?locd.
Flocd rdf-type aif:L-node.

?_ra rdftype Ca-node

[7_c1 aifzconfliciing-elerment ?_ca.
?_ca aif:conflicted-elernent 7_c2. }

LiION

[?_ 1 aif:conflicting-elernent ?_ca
?_ca aif:conflicted-elernent 7_jd .}

?_i5 rdf:type I-node.
?_ig aif-clzimText ?pr; .
?_iG aif-Premise ?_ra3.
FILTER NOT EXISTS {
? & gif:Premise Tral.
FILTER NOT EXISTS |
?_x aif:Premise Fra3.
}
?_c3 rdftype node.

a1 rdf-type aif TA-node. Pta2 rdf-type aif Ta-noda. ?_c3 aifclaimTest #o,.
Jloct aif-Startlocution al. Floc4 sif:startLocution 2taz. ?_ra3 aif-Conclusion ?_c3.
Ital sifEndLocution Tloca. a2 aif-EndLocution Plocd, ?_ra3 rdf:type Ra-node.
a3 sif:anchor el ?y35 aif-Anchor 7raz. H

a3 sifllocutionaryContent ?_mal. PyasaifillocutionargContent ?_ma2.
?_mal rdftype aif-Ma-nods . ?_ma2 rdf:type aif:Ma-node .
?_i3 gif:Premise 7_ral. ?_raz sif:Conclusion ?_i5.
)
1
?_ci rdfitype I-node. ?_raz rdf:itype RA-node.
?_ci aificlaimTast o, .
?_al aif:Conclusion ?_c, .
?_alrdf:type Ra-node.

Figure 3. SPARQL query g*, generated by the translation of query q

4. Discussion and Conclusions

In this work, we presented the technical details concerning the implementation of
ArgQL. The ability to execute ArgQL queries in real datasets, gives prominence also to
its practical application and usefulness, except from the theoretic significance presented
in [13]. To our point of view, ArgQL is a language with important prospects in the ar-
gumentation domain. It revealed several interesting issues relevant to the searching into
dialogical data, the confrontation of which would enhance remarkably the process with
more qualitative data extraction techniques. For example, the integration of the language
with some reasoning mechanisms that will allow for dynamic computations and creation
of data "at query time” is an idea. Such mechanisms will allow for Dung-style (and simi-

“http://www.ics.forth.gr/isl/ArgQL

248

D. Zografistou et al. / Implementing the ArgQL Query Language

lar) analysis of argumentation frameworks and the identification of acceptable arguments
under various semantics. Furthermore, we plan to afford ”smart” searching mechanisms
within the textual content of argument, such as advanced keyword-searching and content-
based searching, imprecise textual mappings (e.g., taking into account synonyms, or ty-
pos in the text), exploratory/navigational capabilities etc.

References

(1]
(2]
(3]
(4]

[5]

(6]
(71
(8]
(91
[10]
[11]

[12]
[13]

Trevor J. M. Bench-capon, Sylvie Doutre, and Paul E. Dunne. Value-based argumentation frameworks.
In Artificial Intelligence, pages 444-453, 2002.

Tudor Berariu. An Argumentation Framework for BDI Agents, pages 343—-354. Springer International
Publishing, Cham, 2014.

Floris Bex, John Lawrence, Mark Snaith, and Chris Reed. Implementing the argument web. Commun.
ACM, 56(10):66-73, October 2013.

Floris Bex, Sanjay Modgil, Henry Prakken, and Chris Reed. On logical specifications of the argument
interchange format. Journal of Logic and Computation, 23(5):951-989, 2012.

Carlos Chesiievar, Jarred McGinnis, Sanjay Modgil, Iyad Rahwan, Chris Reed, Guillermo Simari,
Matthew South, Gerard Vreeswijk, and Steven Willmott. Towards an argument interchange format.
Knowl. Eng. Rev., 21(4):293-316, December 2006.

Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. Artif. Intell., 77(2):321-357, September 1995.

Giorgos Flouris, Antonis Bikakis, Patkos Theodore, and Dimitris Plexousakis. Globally interconnecting
persuasive arguments: The vision of the persuasive web. Technical report, FORTH-ICS/TR-438, 2013.
Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic programming: An argumentative ap-
proach. Theory Pract. Log. Program., 4(2):95-138, January 2004.

Steve H. Garlik, Andy Seaborne, and Eric Prud’hommeaux. @ SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query/.

Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence. Springer Publishing
Company, Incorporated, 1st edition, 2009.

Chris Reed, Simon Wells, Joseph Devereux, and Glenn Rowe. Aif+: Dialogue in the argument inter-
change format. In COMMA, 2008.

Douglas N. Walton. Argumentation Schemes for Presumptive Reasoning. L. Erlbaum Associates, 1996.
Dimitra Zografistou, Giorgos Flouris, and Dimitris Plexousakis. Argql: A declarative language for
querying argumentative dialogues. In International Joint Conference on Rules and Reasoning, pages
230-237. Springer, 2017.

