
Deriving Persuasion Strategies Using
Search-Based Model Engineering

Josh MURPHY 1, Alexandru BURDUSEL, Michael LUCK, Steffen ZSCHALER, and
Elizabeth BLACK

Department of Informatics, King’s College London

Abstract. We consider a one-to-many persuasion setting, where a persuader
presents arguments to a multi-party audience, aiming to convince them of some par-
ticular goal argument. The individual audience members each have differing per-
sonal knowledge, which they use, together with the arguments presented by the per-
suader, to determine whether they are convinced of the goal. The persuader must,
therefore, carefully consider its strategy, i.e., which arguments to assert, in order to
maximise the number of convinced audience members. Here, we use evolutionary
search to find (near-)optimal strategies for the persuader. We implement our ap-
proach using search-based model engineering, which provides a natural and effi-
cient encoding for such problems. We investigate the performance of our approach
on a range of settings, considering different structures and sizes of argumentation
frameworks (representing the underlying knowledge available to the persuader and
audience members), and varying the size of audience and of the audience mem-
bers’ personal knowledge bases. We show that we can find effective strategies for
problems with more than 200 arguments and more than 100 audience members.
Further, we show that the approach supports multiple persuader objectives, finding
persuader strategies that aim to minimise arguments to assert while still maximising
the number of convinced audience members.

Keywords. argumentation, persuasion, strategy, search-based model engineering

1. Introduction

Persuasion is the task of inducing the acceptance of a belief in other agents. A political
speech is an example of persuasion, in which the politician attempts to persuade the pub-
lic that their party is the one to vote for at the next election. This paper focuses on such
a one-to-many persuasion setting, where a single persuader broadcasts arguments to a
multi-party audience with the aim of convincing them of some goal argument. Since each
individual audience member reasons with its own set of personal knowledge (which we
assume is known to the persuader) any particular set of persuader arguments may be con-
vincing to some audience members but not others, and so the persuader must carefully
select which arguments they should assert in order to maximise the number of audience
members they convince. This is a challenging problem because of the number of poten-
tial solutions and the number of audience members to evaluate against: to exhaustively

1Corresponding author: Josh Murphy, Department of Informatics, King’s College London, 30 Aldwych,
London, WC2B 4BG, UK; E-mail: josh.murphy@kcl.ac.uk

Computational Models of Argument
S. Modgil et al. (Eds.)
© 2018 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-906-5-221

221

explore the solution space, for each subset of the persuader’s arguments one must con-
sider each audience member and determine whether they would be convinced by those
arguments. The number of possible solutions is exponential in the number of arguments
known by the persuader, so an exhaustive search for the optimal set is not practical.

Much of the recent work looking at strategic argumentation settings focuses on one-
to-one persuasion, e.g., [3,8,21,9,12,19]. Notably, Hunter and Thimm [14] also consider
how to determine which set of arguments to present to an audience, using probabilistic
argumentation to capture uncertainty about the audience members’ beliefs. However, in
contrast to our approach, they do not allow for a range of audience members each with
different beliefs. Furthermore, their approach has been applied to settings with up to 7 ar-
guments, while our approach scales to more than 200 arguments. In earlier work [10,11],
Hunter looks at how one can select arguments to resonate with a particular audience, but
this similarly assumes a typical audience member, while our approach allows represen-
tation of distinct audience members. Bench-Capon et al. present a framework that can be
used to describe audiences comprised of members with different values [2], but do not
address the strategic considerations of the persuader in such a domain.

To efficiently determine the arguments the persuader should assert, we use evolu-
tionary search to find a near-optimal strategy for the persuader, that maximises the num-
ber of convinced audience members. We use techniques from search-based model engi-
neering (SBME) [4] to encode the problem. We ran experiments over a range of settings,
varying both the size of the problem and the structure of argumentation framework rep-
resenting the underlying knowledge available to the persuader and audience members,
and show that our approach:
C1 produces strategies that are effective in convincing members of the audience;
C2 finds strategies efficiently, in that it scales well with increasing numbers of arguments

in the domain, and increasing numbers of audience members; and
C3 can efficiently find strategies that satisfy multiple objectives (in particular, maximis-

ing convinced audience members while minimising arguments asserted).
To the best of our knowledge, this work is the first to apply evolutionary search to

strategic argumentation. McBurney and Parsons [16] propose an application of an evolu-
tionary algorithm to automate a chance discovery dialogue, where individuals exchange
knowledge with the aim of discovering unknown risks and opportunities, but, while they
outline their proposed approach, it has not been specified in detail. While the focus here
is on a one-to-many persuasion setting, where a persuader uses its knowledge of the au-
dience members to select a set of arguments to assert, the approach we present is suffi-
ciently flexible to capture a range of argument dialogue settings, and we discuss in Sec-
tion 6 our plans to extend this work to account for uncertainty in the persuader’s knowl-
edge of its audience and to allow dialogues in which each party may present arguments.

This paper is set out as follows. In Section 2 we formally define multi-audience per-
suasion and introduce search-based model engineering (SBME) in Section 3. Section 4
explains how we use techniques from SBME to search for persuader strategies. We eval-
uate our approach in Section 5 and finish with a discussion in Section 6.

2. Multi-Audience Persuasion Games (MAPGs)

We can represent arguments as abstract entities in an argumentation framework (AF) [6].
AFs are comprised of a set of arguments and the attacks between them.

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering222

a

b

c

d

et

Figure 1. An argumentation framework.

p =

a

b

c

d

et

u1 = at

u2 = bt

S = cd d

Figure 2. A multi-audience persuasion game, with per-
suader p, persuadees u1,u2, and strategy S.

Definition 1. An argumentation framework is a pair 〈A,R〉 s.t. A is a finite set of argu-
ments and R⊆ A2 is a set of attacks. (a,b) ∈ R denotes a attacks b.

Given an AF, we can ask which arguments are justifiable. Various argumentation
semantics have been defined that seek to capture different notions of what it means for
an argument to be justified. Our approach does not assume any particular semantics but
for our evaluation we use the preferred credulous semantics, which is well-suited to
practical reasoning about what to do [18]. An argument is justified under the preferred
credulous semantics if it is part of a maximal (under set inclusion) subset of arguments
that is conflict-free and that defends all of its members (i.e., if an argument attacks some
member of the set, there is some member of the set that attacks that argument).

Definition 2. Let 〈A,R〉 be an AF and S⊆ A.
• S is conflict-free iff ∀a,b ∈ S: (a,b) �∈ R.
• a ∈ A is acceptable w.r.t. S iff ∀b s.t. (b,a) ∈ R: ∃c ∈ S s.t. (c,b) ∈ R.
• S is admissible iff S is conflict-free and each argument in S is acceptable w.r.t. S.
• S is maximally admissible iff �e ∈ (A−S) : S∪{e} is admissible.

We denote the justified arguments under the preferred credulous semantics as σ(AF)=
{a | ∃S⊆ A s.t. S is maximally admissible and a ∈ S}

We consider a multi-audience persuasion game (MAPG), in which a persuader seeks
to convince a set of persuadees, known as the audience, that a particular topic argument
is justified. The persuader’s knowledge is represented by an AF, from which each per-
suadee’s knowledge is an AF induced from a subset of arguments in the persuader’s AF.
The audience captures each persuadee’s knowledge, thus we assume that the persuader
has exact knowledge of the audience members; we discuss in Section 6 how our approach
can be adapted to allow for uncertain knowledge of the persuadees. The persuader’s strat-
egy is a subset of the persuader’s AF, which are the arguments the persuader will assert
to the audience. We assume w.l.o.g. that persuadees each know the topic argument before
the persuader presents their arguments.

Definition 3. A multi-audience persuasion game is a tuple g = 〈p, t,U,S〉, such that:
• p = 〈Ap,Rp〉 is the argumentation framework belonging to the persuader.
• t ∈ Ap is the topic, the argument the persuader tries to convince the audiences of.
• U = {u1, ...,un} is the audience, where ui = 〈Ai,Ri〉 is the argumentation frame-

work belonging to persuadee i, s.t. Ai ⊆ Ap, Ri ⊆ Rp, and t ∈ Ai.
• S⊆ Ap is the persuader’s strategy.

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering 223

An example MAPG is shown in Figure 2. Note, the persuader’s strategy is asserted
to all persuadees at once; the persuader cannot choose to assert an argument to only a
subset of persuadees. A persuadee is convinced if, under their framework combined with
the strategy, the topic is justified under the preferred credulous semantics. Note that, in
an MAPG, the topic does not have to be justified w.r.t. the persuader’s AF, who may wish
to persuade the audience of an argument they do not themselves find justified.

Definition 4. In a multi-audience persuasion game g = 〈p,U, t,S〉 with the persuader’s
framework p = 〈Ap,Rp〉, a persuadee i with AF 〈Ai,Ri〉 ∈U is initially convinced in g
iff t ∈ σ(〈Ai,Ri〉). The function γ(g,ui)→ [0,1] returns 1 iff ui is initially convinced in
g, 0 otherwise. Similarly, i is convinced in g iff t ∈ σ(〈Ai∪S,Rp∩ (Ri∪ (Ai∪S)2)〉). The
function γ̂(g,ui)→ [0,1] returns 1 iff ui is convinced in g, 0 otherwise.

A persuader is typically interested in convincing as many persuadees as they can.
We measure effectiveness of a strategy as the increase in the number of convinced per-
suadees from those that are initially convinced. By asserting arguments, the persuader
may dissuade audience members of the topic; a persuader that dissaudes more audience
members than they persuade will have a negative effectiveness. As well as trying to con-
vince as many persuadees as possible, the persuader may also wish to minimise some
cost associated with asserting a strategy. In this paper, we assume the cost of a strategy
is the proportion of the persuader’s arguments put forward in the strategy. The persuader
wants to minimise the number of arguments they present, since more arguments may
lead to audience disengagement [13]. We refer to this cost as the efficiency of a strategy.

Definition 5. The effectiveness of the strategy in a multi-audience persuasion game
g = 〈p,U, t,S〉, denoted ε(g), is: ∑u∈U γ̂(g,u)−∑u∈U γ(g,u).

Definition 6. The efficiency of the strategy in a multi-audience persuasion game g =

〈p,U, t,S〉 with persuader’s framework p = 〈Ap,Rp〉, denoted κ(g), is: |Ap|−|S|
|Ap| .

Example 1. Consider the example multi-audience persuasion game in Figure 2. The
effectiveness of the strategy S is 2, as both persuadees will find the topic acceptable
once the arguments in S are added to their respective frameworks. The efficiency of the
strategy S is 6−2

6 = 4
6 as two argument are asserted in the strategy. Note that had the

persuader chosen strategy {e} instead, then the effectiveness would remain the same but
the efficiency would be improved to 6−1

6 = 5
6 .

We use evolutionary search to find an effective and efficient strategy of a multi-
audience persuasion game. We implement the problem using SBME, which provides a
natural and efficient encoding.

3. Search-Based Model Engineering (SBME)

Search-based methods have long been used to solve optimisation problems [7]. Here, we
give an overview of search-based methods, before examining SBME in more detail.

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering224

Meta-heuristic search. Many optimisation problems can be solved by dedicated algo-
rithms or using specialised heuristics. However, as problems become more complex, it
often becomes more efficient to find (near-)optimal solutions using meta-heuristic search
techniques. These techniques start from one (or a population of) randomly generated fea-
sible candidate solutions (i.e., solutions that satisfy all relevant constraints) and incre-
mentally change these to explore the solution search space. The quality of any candidate
solution is indicated by one or more objective functions—functions that take a solution
and provide a numeric value indicating relative quality. A meta-heuristic algorithm then
evolves the population of candidate solutions by:
1. creating a set of new candidate solutions derived from the existing solutions;

2. ranking old and new candidate solutions according to their objective values; and

3. keeping only the highest-ranked n candidate solutions for the next round.
The algorithm ends either when a pre-defined number of evolutions have been ex-

plored or when another stopping criterion has been reached (e.g., when the objective
values of candidate solutions no longer change significantly).

Different meta-heuristic algorithms use different techniques for encoding solutions
and deriving new ones, as well as for ranking solutions. Here, we focus on evolutionary
search techniques, which derive a new candidate solution from each existing candidate
solution by applying a mutation operator randomly picked from a pre-defined set.

Search-based model engineering. SBME [24,15] aims to apply meta-heuristic search
techniques in the context of model-driven engineering (MDE). Specifically, SBME tech-
niques search for models that are optimal as defined by some objective functions.

To understand SBME, we first need to briefly introduce key notions of MDE, such
as model, meta-model, and model transformation. MDE’s central tenet is that software
should be developed using high-level models, expressed in domain-specific modelling
languages, rather than by directly writing programs in general-purpose modelling lan-
guages such as Java or C. Key to this is the ability to define modelling languages and
automatically and efficiently manipulate models expressed in these languages. Meta-
models support this by providing a formalised representation of a modelling-language’s
abstract syntax; that is, the concepts of the language and their interactions. Typically
in MDE, meta-models are expressed as class diagrams. Models are considered valid iff
they are an instance of the meta-model; that is, if every model element is an instance of
a corresponding meta-model element and all connections between model elements are
specified according to the associations defined in the meta-model. Model transforma-
tions, finally, are programs that take models as input and produce new models as outputs
(possibly instances of different meta-models).

By employing SBME techniques for specifying optimisation problems we benefit
from three main advantages: 1. we can use the concept of model transformations to
simplify the definition of complex search operators that can ensure consistency of the
generated offspring; 2. the use of models allows us to use the user’s domain expertise to
consistently encode complex problems and solutions and, we can ensure that the search
space exploration is done without generating inconsistent solutions; 3. this approach does
not require the step of genotype to phenotype mapping that would otherwise be required
in traditional genetic programming approaches.

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering 225

topic

1
strategy

∗

attacks
∗

∗∗

1 ∗
MAPG

PersuadeeAFPersuaderAF

Argument

Figure 3. Metamodel for multi-audience persuasion games, represented as a class diagram

4. Multi-Audience Persuasion as a Search-Based Model Engineering Problem

To represent a multi-audience persuasion game (MAPG) as a SBME problem, we must
first define a metamodel that encodes the space of possible solutions. This is shown in
Figure 3 and we explain now how this corresponds to our MAPGs (Definition 3). The
persuader’s AF (〈Ap,RP〉 in Def. 3) and the persuadees’ AFs (〈Ai,Ri〉 in Def. 3) are repre-
sented by the PersuaderAF class and the PersuadeeAF class respectively. An MAPG has
exactly one persuader and multiple persuadees, captured by the multiplicity constraints
in Figure 3 (1, resp. * for many). The persuader framework contains all Arguments, de-
noted by the composition link between PersuaderAF and Argument, while persuadee
frameworks contain some subset of the arguments. Arguments may attack one another
(captured by the attacks edge in Figure 3), and exactly one argument is distinguished
as the topic. Multiple arguments can be identified as forming the strategy of an MAPG
(S in Def. 3), captured via the strategy link between the MAPG and Argument classes.

For a particular persuader, audience and topic argument, we are interested in finding
a strategy that is effective and also, perhaps, efficient. To do this with our SBME ap-
proach, we mutate the strategy using two mutation operators: the first adds a new argu-
ment to the strategy; the second removes an argument from the strategy. The rest of the
model does not change. Applying these mutations to the solution candidates allows ex-
ploration of any strategy in the search space. Two objective functions are used to evaluate
any strategy found: one determines its effectiveness and one determines its efficiency.

5. Evaluation of Application of SBME to Find Strategies for MAPGs

We ran experiments to investigate performance of our approach, looking both at the
quality of solutions found and the time taken to find them. We used the SBME tool
MDEOptimiser (MDEO)2 to run the NSGA-II [5] algorithm over models that instantiate
the metamodel we define in the previous section, where only the strategy is mutable. The
NSGA-II algorithm uses a crowding distance comparator to ensure a diverse population
and improve the fitness landscape exploration for problems that have more than one
objective. The algorithm is run for 250 generations with population size 30. We used
Tweety [22] together with the argmat-sat [1] argument solver to determine whether a
particular persuadee is convinced by a strategy. The performance of the solver used to
evaluate a strategy has a significant impact on the runtime of our implementation. In
order to find the fastest solver, we have evaluated several solvers [20,22,1] for our use
case using runtime. We found argmat-sat to be the fastest for our use case.

2https://mde-optimiser.github.io/

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering226

Across experiments, we varied: the number of arguments in the persuader’s frame-
work (af-size); the structure of the persuader’s framework (struct); the number of
persuadees (p-num); and the number of arguments known to each persuadee, expressed
as a proportion of the number of arguments in the persuader’s framework (p-size).

We performed experiments with a range of argumentation framework structures:
Ladders and Cycles These were used in Black et al.’s evaluation of their strategies for
one-to-one persuasion dialogues [3]. We do not redefine the structures here but note they
were designed to be especially challenging, due to the existence of arguments that may
be both beneficial or detrimental for a persuader, depending on the persuadee’s beliefs.
Trees These are standard directed trees, whose root is the topic argument. As a bipartite
AF, these are expected to be less challenging for the persauder than ladder or cycle AFs,
since asserting an argument supporting the topic does not risk dissuading persuadees.
Competition Frameworks We randomly selected three AFs from the set used in the
2017 argumentation solver competition3, specifically one derived from a planning prob-
lem (with 490 arguments), one based on a Barabási-Albert network (with 160 argu-
ments), and one translated from assumption-based argumentation (with 691 arguments).

For Ladders, Cycles, and Trees we can vary the size of the AF, but for the competi-
tion frameworks this is fixed. The framework is used as the persuader’s AF. The p-num

persuadees’ AFs are uniformly random sub-graphs of the persuader’s AF, each com-
posed of p-size × af-size arguments (recall, p-size is a proportion), one of which
is ensured to be the topic argument.

As no existing work allows generation of strategies for multi-audience persuasion
games, we benchmarked our approach against the two naive approaches below.
Brute-force (BF) searches through all possible assertions (that is, the power set of the
arguments in the persuader’s AF) to find a strategy that maximises the number of per-
suadees that are convinced. If, during the search, a strategy is found that convinces all
persuadees then the search terminated, otherwise the search is exhaustive. This approach
is computationally intractable for large games, as shown in Table 3, but for smaller AFs
it is feasible to use this approach to determine an optimal solution.
Random asserter (RA) first selects a uniformly random number of arguments to assert,
from 0 to the size of the persuader’s AF. Then a uniformly random subset of this size is
selected from the arguments in the persauder’s AF to assert.

We ran our experiments on Amazon Web Services Elastic Compute Spot instances.
We used c4.large instances, running Amazon Linux. The experiments have been con-
figured to run inside a Docker container running Java 1.8.0 and Amazon Linux version
2017.12.0.20180330. Each experiment has been performed on an individual machine,
with 2 CPU cores and 2.5GB RAM allocated to the container. For each experiment, we
ran MDEO 10 times and RA 10 times, so as to consider both average and best perfor-
mance. The complete implementation and results are available online4.

C1: MDEO finds strategies that are effective We compare the performance of our
approach to RA and BF, considering here the single objective to maximise the number
of persuadees who are convinced. We use three settings: (1) small games where struct
∈ {cycle, ladder, tree} of af-size ∈ {21, 51, 101} (+1 argument for trees), with
p-num ∈ {1, 2, 5} persuadees, with p-size= {.25, .5, .75}; (2) larger games where

3http://argumentationcompetition.org/2017
4https://github.com/mde-optimiser/comma-18-mapg

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering 227

struct ∈ {cycle, ladder, tree} of af-size ∈ {51, 101, 201}, with p-num ∈ {10,
50, 100} persuadees, with p-size ∈ {.25, .5, .75}; (3) games using the competition
frameworks, with p-num = 50 and p-size = .5.

As BF is an exhaustive search, the strategies it returns are guaranteed to be optimal.
However, BF is computationally intractable and so we are unable to compute the best
outcome for larger games. For the games where we were able to use BF to determine the
best outcome (where af-size ≤ 21) MDEO always found an optimal solution.

Tables 1 and 2 compare performance of RA and MDEO, showing average effective-
ness of each solution found (Ma for MDEO, Ra for RA) and effectiveness of the best so-
lution found (Mb for MDEO, Rb for RA). For smaller games (Table 1) both approaches
generally found the best solutions, but average effectiveness of the strategies found using
MDEO is significantly better than for RA. For larger games (Table 2) MDEO produces
better average solutions than RA, and the best solutions of MDEO are better than the
best of RA. Cycle AFs proved difficult for both approaches, often resulting in failure to
find a strategy that increases the number of convinced persuadees. We plan to investigate
whether by giving MDEO a larger population of solutions, or more evolutions, we may
be able to find solutions for cycle AFs at the cost of additional computational resources.

Results for the competition frameworks are shown in Table 4. Our approach was un-
able to cope with the largest of these frameworks (with 691 arguments), timing out after
24 hours, but was able to find effective strategies for the smaller competition frameworks.

C2: MDEO can find solutions to large problems For a single objective to maximise
the number of convinced persuadees, we compare average time taken by MDEO to find a
strategy with time taken by BF. Table 3 shows the results for small games. For games with
af-size > 11, the MDEO approach is almost always faster than BF search. Exceptions
to this (e.g. Ladder-21, with p-num and p-size 25%) are when BF gets ‘lucky’ and
quickly finds a solution that convinces all persuadees. For games with af-size of 11, BF
is faster. However, closer observation of the MDEO search reveals that the best solution is
actually found in earlier generations. Therefore, for these scenarios, MDEO runtime can
be improved by specifying a lower number of generations or by specifying an additional
termination condition that stops after there is no improvement in solutions quality for a
number of algorithm steps, without an effect on the quality of solution produced.

For larger games, with af-size up to 201 arguments and number of persuadees up
to 50, MDEO returns results within 90 minutes. (Full results are omitted here for space
reasons but can be found in our repository. 4) This demonstrates the scalability of MDEO,
both to the number of arguments in the domain, but also with increasing numbers of
persuadees. Table 4 shows results for the competition frameworks: MDEO took more
than 24 hours to run for the largest of these, just over an hour for the framework with 480
arguments, and less than 16 minutes for the smallest competition framework.

C3: MDEO can find strategies that satisfy multiple objectives Here we seek strate-
gies that aim to both maximise the number of convinced persuadees and minimise the
number of arguments asserted. We compare both efficiency and effectiveness of the
strategies produced by MDEO and RA for this multi-objective case. To compare the
quality of search solutions with two objectives we use the hypervolume (HV) unary qual-
ity indicator. [23]. The HV measures the volume of objective space dominated by a set
of objectives that form a Pareto front. A Pareto front with higher HV value is considered
better. To use RA to determine a Pareto front, each run consisted of a batch of 10 appli-

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering228

Table 1. Average and best effectiveness of solutions found by MDEO (respectively, Ma, top left, Mb, bottom
left) and by RA (respectively, Ra, top right, and Rb, bottom right) for small games. The results in bold are the
better performing approach for a game. Asterisks show results where all persuadees are convinced.

p-num 1 1 1 2 2 2 5 5 5

p-size 25% 50% 75% 25% 50% 75% 25% 50% 75%

struct af-size
Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ladder 11
1.0* 0.2

1.0* 1.0*

1.0* 0.08

1.0* 1.0*

0.0 0.0

0.0 0.0

0.0* -1.03

0.0* 0.0*

0.0 -0.5

0.0 0.0

0.0 -0.47

0.0 0.0

2.0 -0.61

2.0 2.0

1.0 -1.29

1.0 1.0

0.0 0.0

0.0 0.0

Ladder 21
0.0* -0.58

0.0* 0.0*

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

1.0* -0.48

1.0* 1.0*

0.0* -1.08

0.0* 0.0*

0.0 0.0

0.0 0.0

0.0* -2.87

0.0* 0.0*

2.0 -0.19

2.0 2.0

0.0 -0.56

0.0 0.0

Ladder 51
0.0* -0.54

0.0* 0.0*

0.0* -0.63

0.0* 0.0*

0.0* -0.53

0.0* 0.0*

2.0* 0.28

2.0* 2.0*

0.0 -0.48

0.0 0.0

0.0* -0.92

0.0* 0.0*

2.0* -1.32

2.0* 2.0*

1.0 -0.45

1.0 1.0

0.0 0.0

0.0 0.0

Cycle 11
1.0* 0.01

1.0* 1.0*

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

1.0 0.04

1.0 1.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

1.0 -1.35

1.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

Cycle 21
0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

1.0 0.0

1.0 0.0

0.0 0.0

0.0 0.0

1.7 -0.85

2.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

Cycle 51
0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

Tree 12
0.0* -0.12

0.0* 0.0*

0.0* -0.5

0.0* 0.0*

0.0 0.0

0.0 0.0

2.0* 0.51

2.0* 2.0*

1.0* -0.49

1.0* 1.0*

0.0 0.0

0.0 0.0

2.0* 0.99

2.0* 2.0*

2.0 0.1

2.0 2.0

1.0 0.16

1.0 1.0

Tree 22
0.0* -0.88

0.0* 0.0*

0.0 0.0

0.0 0.0

0.0* -0.75

0.0* 0.0*

0.0 -0.63

0.0 0.0

2.0* 0.52

2.0* 2.0*

0.0 -0.44

0.0 0.0

0.0 -1.56

0.0 0.0

2.0* 1.1

2.0* 2.0*

0.0 -2.19

0.0 0.0

Tree 52
0.0* -0.67

0.0* 0.0*

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

1.0 0.16

1.0 1.0

0.0* 0.0*

0.0* 0.0*

0.0 0.0

0.0 0.0

1.0* 0.34

1.0* 1.0*

3.0 0.17

3.0 2.0

0.0 0.0

0.0 0.0

cations of RA (so we ran RA 10×10 times for each experiment). For space reasons, we
consider only games based on the larger AFs, including competition frameworks, and do
not consider cycles, for which it is hard to find a solution that satisfies a single objective.

For the larger tree and ladder problems, we compare the hypervolumes over 10 runs,
included as box plots in Figure 4. In almost all cases, the average hypervolume obtained
by MDEO is higher than that obtained with RA, indicating that MDEO outperformed
RA. Furthermore, MDEO performance is more consistent than that of RA (in the box
plots, vertically smaller plots indicate a smaller variance in the individual Pareto fronts).
For competition-based games, MDEO was able to find a solution for frameworks with
160 and 480 arguments in a reasonable time (Table 4).

In two experiments (indicated on Figure 4 with asterisks) RA found a better solution
than MDEO. We repeated these experiments, adding two additional mutation operators
that can assign and remove 10 arguments each time (instead of 1). With these new op-
erators, MDEO outperformed RA, indicating that only mutating a single argument may
not always be sufficient to allow the search to escape a local maximum.

Across all experiments, the average time taken for MDEO to find the strategy for
the two objective case was not statistically longer than the time for the single objective
case. Indeed, due to the non-deterministic search of MDEO, there were many scenarios
in which the two objective cases were faster. This demonstrates that there is no compu-
tational overhead for adding the additional objective.

6. Conclusions and Future Work

We have shown that we can use techniques from SBME to represent the multi-audience
persuasion setting as a meta-model, to which we can apply evolutionary search to find
persuader strategies that maximise the number of convinced persuadees. Our evaluation
demonstrates that the approach produces strategies that are effective, and that it does so

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering 229

Table 2. Average and best effectiveness of solutions found by MDEO (respectively, Ma, top left, Mb, bottom
left) and by RA (respectively, Ra, top right, and Rb, bottom right) for large games. The results in bold are the
better performing approach for a game. Asterisks show results where all persuadees are convinced.

p-num 10 10 10 50 50 50 100 100 100

p-size 25% 50% 75% 25% 50% 75% 25% 50% 75%

struct af-size
Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ma Ra

Mb Rb

Ladder 51
1.0 -4.59

1.0 1.0

2.6 -1.55

3.0 2.0

0.0 0.06

0.0 1.0

7.0 -15.93

7.0 7.0

8.8 -10.25

10.0 7.0

4.0 -4.61

5.0 1.0

12.9 -28.44

13.0 13.0

15.8 -21.28

17.0 10.0

12.8 -10.0

14.0 5.0

Ladder 101
1.0 -4.23

1.0 1.0

3.2 0.03

4.0 3.0

4.1 -0.81

5.0 4.0

10.6 -16.16

11.0 10.0

10.0 -8.85

10.0 9.0

4.8 -8.26

6.0 2.0

19.9 -27.27

22.0 21.0

7.7 -21.74

9.0 7.0

12.4 -5.78

13.0 11.0

Ladder 201
3.0 -2.81

3.0 3.0

0.1 -2.09

1.0 1.0

1.0 -1.28

1.0 1.0

7.4 -17.34

8.0 7.0

7.8 -8.73

10.0 8.0

0.2 -6.13

2.0 1.0

20.0 -31.48

20.0 20.0

18.7 -17.39

21.0 16.0

9.9 -8.75

12.0 7.0

Cycle 51
0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

1.9 0.0

2.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

Cycle 101
0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

Cycle 201
0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

Tree 52
4.0 -0.18

4.0 4.0

1.0 -2.68

1.0 1.0

1.0 -0.63

1.0 1.0

4.0 -14.78

4.0 4.0

6.2 -15.66

8.0 8.0

1.0 -7.37

1.0 1.0

35.0 -17.85

35.0 35.0

27.0 -4.8

27.0 27.0

0.0 -0.67

0.0 0.0

Tree 102
1.0 -4.44

1.0 1.0

2.0 -3.5

2.0 1.0

4.0* 1.75

4.0* 4.0*

11.0 -11.69

11.0 11.0

5.0 -1.3

5.0 3.0

1.0 -5.56

1.0 1.0

20.0 -20.23

20.0 7.0

36.0 -22.96

36.0 25.0

7.0 -9.68

7.0 7.0

Tree 202
5.0 -2.71

5.0 4.0

5.6 2.71

6.0* 6.0*

6.2 1.11

7.0 6.0

25.0 -9.37

25.0 21.0

8.0 -4.98

8.0 4.0

8.3 -5.11

9.0 3.0

50.0 -12.13

50.0 23.0

42.0 -11.87

42.0 29.0

7.0 -3.98

7.0 3.0

Table 3. Comparison of average time taken by MDEO (M Avg Time, in HH:MM:SS:ms) with time taken by
BF for small games. The faster approach is in bold. N/A indicates a solution could not be found in <24 hours.

p-num 1 1 1 2 2 2 5 5 5

p-size 25% 50% 75% 25% 50% 75% 25% 50% 75%

struct af-size
M Avg Time

BF Time

M Avg Time

BF Time

M Avg Time

BF Time

M Avg Time

BF Time

M Avg Time

BF Time

M Avg Time

BF Time

M Avg Time

BF Time

M Avg Time

BF Time

M Avg Time

BF Time

Cycle 11
00:00:11.395

00:00:01.953

00:00:12.381

00:00:07.727

00:00:13.313

00:00:05.871

00:00:22.299

00:00:13.061

00:00:21.723

00:00:15.044

00:00:23.961

00:00:15.816

00:00:52.838

00:00:41.273

00:00:51.912

00:00:36.301

00:00:58.086

00:00:41.116

Cycle 21
00:00:11.940

03:36:53.909

00:00:12.976

03:32:46.163

00:00:13.281

03:56:49.568

00:00:22.576

06:45:16.808

00:00:22.388

07:17:00.997

00:00:24.030

07:40:23.322

00:00:53.318

10:02:09.465

00:00:55.401

18:41:30.431

00:00:56.283

13:20:00.271

Cycle 51
00:00:13.071

N/A

00:00:14.075

N/A

00:00:15.338

N/A

00:00:24.370

N/A

00:00:26.274

N/A

00:00:29.230

N/A

00:00:57.730

N/A

00:01:03.490

N/A

00:01:03.469

N/A

Ladder 11
00:00:12.052

00:00:00.009

00:00:11.967

00:00:02.037

00:00:13.071

00:00:06.517

00:00:20.877

00:00:00.009

00:00:23.162

00:00:13.927

00:00:22.691

00:00:13.533

00:00:52.066

00:00:31.977

00:00:55.853

00:00:32.643

00:00:52.202

00:00:32.826

Ladder 21
00:00:12.597

00:00:00.257

00:00:12.502

01:54:49.975

00:00:12.262

01:56:35.045

00:00:22.761

00:00:00.720

00:00:22.284

00:00:00.254

00:00:22.852

03:54:35.445

00:00:53.578

00:00:00.839

00:00:54.698

18:36:18.219

00:00:58.530

18:58:09.416

Ladder 51
00:00:13.840

N/A

00:00:14.349

N/A

00:00:15.588

N/A

00:00:24.631

N/A

00:00:27.745

N/A

00:00:26.854

N/A

00:00:54.616

N/A

00:00:59.969

N/A

00:01:05.558

N/A

Tree 11
00:00:12.045

00:00:00.011

00:00:12.512

00:00:00.011

00:00:11.860

00:00:25.352

00:00:22.131

00:00:01.117

00:00:21.805

00:00:03.519

00:00:23.251

00:00:50.224

00:00:52.180

00:00:04.924

00:00:52.359

00:02:10.301

00:00:52.013

00:02:10.088

Tree 21
00:00:12.011

00:00:01.621

00:00:12.817

07:12:59.317

00:00:13.271

00:00:00.550

00:00:22.640

07:24:38.857

00:00:23.136

00:00:06.757

00:00:25.649

13:57:47.948

00:00:53.472

19:45:43.663

00:00:55.301

00:00:05.547

00:00:53.260

18:54:44.007

Tree 51
00:00:12.976

N/A

00:00:14.427

N/A

00:00:15.116

N/A

00:00:24.586

N/A

00:00:25.851

N/A

00:00:27.659

N/A

00:00:56.856

N/A

00:00:57.988

N/A

00:01:04.171

N/A

efficiently even for large and complex scenarios. Further, we have shown how MDEO can
be adjusted to a multi-objective problem, in which the persuader minimises the number
of arguments asserted, while maximising the number of convinced persuadees.

A key advantage of this SBME approach is that the high-level metamodel which
encodes multi-audience persuasion games is easy to interpret and to adjust to other types
of strategic argumentation problems. Having demonstrated here the potential of SBME
for solving strategic argumentation problems, we plan to apply SBME techniques to
other settings, such as those in which persuadees are able to respond to assertions of the

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering230

Table 4. Results for MDEO and RA on competition frameworks (BA:Barabási-Albert, PP:Planning-problem,
AB:Assumption-based). HV shows average hypervolume, eff shows effectiveness (best and average). Times
shown are averages. N/A indicates the solution took longer than 24 hours to find.

Single Objective Multi Objective
MDEO time MDEO eff RA eff MDEO time MDEO HV RA HV

BA(160)
Avg

00:15:31.438
10 -2.64

00:15:04.175 0.20 0
Best 10 1

PP (480)
Avg

01:04:00.672
34 9.86

01:00:16.931 0.640 0.649
Best 34 34

AB(691)
Avg

N/A
N/A 0

N/A N/A 0
Best N/A 0

0

1

10 50 100

ladder, af-size=51

p-num

H
V

0

1

ladder, af-size=101

H
V

0

1

ladder, af-size=201

H
V

0

1

tree, af-size=51

H
V

0

1

tree, af-size=101

H
V

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

0

1

tree, af-size=201

p-size

H
V

*

*

Figure 4. Multi-objective performance of MDEO and RA. Ticks on the top x axis shows number of per-
suadees in the scenario; bottom x axis shows number of arguments known to each persuadee (as a proportion
of af-size). The size of the persuader’s AF and the graph structure are included in the top left corner of each
row. For each comparison, the light gray box plot on the left shows the spread of HVs obtained by MDEO and
the dark gray box plot on the right shows the spread of HVs obtained by RA.

persuader, and in which the persuader has a probabilistic model of the persuadees’ AFs.
Another avenue of future work is the implementation of more specific mutation op-

erators that can select arguments which have a higher chance of increasing the strategy
effectiveness. For example, we could use a heuristic that estimates the utility of assert-

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering 231

ing a particular argument and specify the total utility as an additional objective to be
maximised [17]. We are also interested in exploring if we can reduce the search time by
trimming from the search space the arguments that do not support the topic.

References

[1] argumatrix argmat-sat. https://sites.google.com/site/argumatrix/argmat-sat. Accessed: 2018-04-02.
[2] T. J.M. Bench-Capon, S. Doutre, and P. E. Dunne. Audiences in argumentation frameworks. Artificial

Intelligence, 171(1):42 – 71, 2007.
[3] E. Black, A. J. Coles, and C. Hampson. Planning for persuasion. In Proc. of the 16th International

Conference on Autonomous Agents and MultiAgent Systems, pages 933–942, 2017.
[4] I. Boussaı̈d, P. Siarry, and M. Ahmed-Nacer. A survey on search-based model-driven engineering.

Automated Software Engineering, 24(2):233–294, 2017.
[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.
[6] P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,

Logic Programming and n-Person Games. Artificial Intelligence, 77(2):321–357, 1995.
[7] A. Eiben and J. Smith. Introduction to Evolutionary Computing. Springer, 2nd edition, 2015.
[8] E. Hadoux, A. Beynier, N. Maudet, P. Weng, and A. Hunter. Optimization of probabilistic argumen-

tation with Markov decision models. In Proc. of the 24th International Joint Conference on Artificial
Intelligence, pages 2004–2010, 2015.

[9] E. Hadoux and A. Hunter. Strategic sequences of arguments for persuasion using decision trees. In
Proc. of the 31st AAAI Conference on Artificial Intelligence, pages 1128–1134, 2017.

[10] A. Hunter. Making argumentation more believable. In Proc. of the 19th AAAI Conference on Artificial
Intelligence, pages 269–274, 2004.

[11] A. Hunter. Towards higher impact argumentation. In Proc. of the 19th AAAI Conference on Artificial
Intelligence, pages 275–280, 2004.

[12] A. Hunter. Probabilistic strategies in dialogical argumentation. In Proc. of the 8th International Confer-
ence on Scalable Uncertainty Management, pages 190–202. Springer, 2014.

[13] A. Hunter. Towards a framework for computational persuasion with applications in behaviour change.
Argument and Computation, 9(1):15 – 40, 2018.

[14] A. Hunter and M. Thimm. Optimization of dialectical outcomes in dialogical argumentation. Interna-
tional Journal of Approximate Reasoning, 78:73–101, 2016.

[15] M. Kessentini, P. Langer, and M. Wimmer. Searching models, modeling search: On the synergies of
SBSE and MDE. In Proc. of the 1st International Workshop Combining Modelling and Search-Based
Software Engineering, pages 51–54, 2013.

[16] P. McBurney and S. Parsons. Chance discovery using dialectical argumentation. In Proc. of JSAI 2001
International Workshop on Chance Discovery, pages 414–424, 2001.

[17] J. Murphy, E. Black, and M. Luck. A heuristic strategy for persuasion dialogues. In Proc. of the 6th
International Conference on Computational Models of Argument, pages 411 – 418. IOS Press, 2016.

[18] H. Prakken. Combining sceptical epistemic reasoning with credulous practical reasoning. In Proc. of
the 1st International Conference on Computational Models of Argument, pages 311–322, 2006.

[19] T. Rienstra, M. Thimm, and N. Oren. Opponent models with uncertainty for strategic argumentation. In
Proc. of the 23rd International Joint Conference on Artificial Intelligence, pages 332–338, 2013.

[20] O. Rodrigues. Eqargsolver system description. In Proceedings of the 4th International Conference on
Theory and Applications of Formal Argumentation, pages 150–158, 2018.

[21] A. Rosenfeld and S. Kraus. Strategical argumentative agent for human persuasion. In Proc. of the 22nd
European Conference on Artificial Intelligence, pages 320–328, 2016.

[22] M. Thimm. Tweety - A comprehensive collection of Java libraries for logical aspects of artificial intel-
ligence and knowledge representation. In Proc. of the 14th International Conference on Principles of
Knowledge Representation and Reasoning, pages 528–537, 2014.

[23] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study and the
strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999.

[24] S. Zschaler and L. Mandow. Towards model-based optimisation: Using domain knowledge explicitly.
In Proc. Workshop on Model-Driven Engineering, Logic and Optimization, 2016.

J. Murphy et al. / Deriving Persuasion Strategies Using Search-Based Model Engineering232

